Properties

Label 1950.2.a.j.1.1
Level $1950$
Weight $2$
Character 1950.1
Self dual yes
Analytic conductor $15.571$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1950.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +4.00000 q^{11} +1.00000 q^{12} -1.00000 q^{13} +1.00000 q^{16} -1.00000 q^{18} +1.00000 q^{19} -4.00000 q^{22} +4.00000 q^{23} -1.00000 q^{24} +1.00000 q^{26} +1.00000 q^{27} -3.00000 q^{29} +4.00000 q^{31} -1.00000 q^{32} +4.00000 q^{33} +1.00000 q^{36} -5.00000 q^{37} -1.00000 q^{38} -1.00000 q^{39} +9.00000 q^{41} +2.00000 q^{43} +4.00000 q^{44} -4.00000 q^{46} -3.00000 q^{47} +1.00000 q^{48} -7.00000 q^{49} -1.00000 q^{52} +1.00000 q^{53} -1.00000 q^{54} +1.00000 q^{57} +3.00000 q^{58} +10.0000 q^{59} +4.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} -4.00000 q^{66} -9.00000 q^{67} +4.00000 q^{69} +7.00000 q^{71} -1.00000 q^{72} +4.00000 q^{73} +5.00000 q^{74} +1.00000 q^{76} +1.00000 q^{78} +11.0000 q^{79} +1.00000 q^{81} -9.00000 q^{82} +6.00000 q^{83} -2.00000 q^{86} -3.00000 q^{87} -4.00000 q^{88} +10.0000 q^{89} +4.00000 q^{92} +4.00000 q^{93} +3.00000 q^{94} -1.00000 q^{96} -12.0000 q^{97} +7.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) −1.00000 −0.162221
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 1.00000 0.144338
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 1.00000 0.137361 0.0686803 0.997639i \(-0.478121\pi\)
0.0686803 + 0.997639i \(0.478121\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 3.00000 0.393919
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) −9.00000 −1.09952 −0.549762 0.835321i \(-0.685282\pi\)
−0.549762 + 0.835321i \(0.685282\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 7.00000 0.830747 0.415374 0.909651i \(-0.363651\pi\)
0.415374 + 0.909651i \(0.363651\pi\)
\(72\) −1.00000 −0.117851
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 5.00000 0.581238
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) 0 0
\(78\) 1.00000 0.113228
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −9.00000 −0.993884
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) −3.00000 −0.321634
\(88\) −4.00000 −0.426401
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) 4.00000 0.414781
\(94\) 3.00000 0.309426
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 7.00000 0.707107
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −1.00000 −0.0971286
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) 1.00000 0.0962250
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) −5.00000 −0.474579
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) −1.00000 −0.0924500
\(118\) −10.0000 −0.920575
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −4.00000 −0.362143
\(123\) 9.00000 0.811503
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) −17.0000 −1.50851 −0.754253 0.656584i \(-0.772001\pi\)
−0.754253 + 0.656584i \(0.772001\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 4.00000 0.348155
\(133\) 0 0
\(134\) 9.00000 0.777482
\(135\) 0 0
\(136\) 0 0
\(137\) 23.0000 1.96502 0.982511 0.186203i \(-0.0596182\pi\)
0.982511 + 0.186203i \(0.0596182\pi\)
\(138\) −4.00000 −0.340503
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) −7.00000 −0.587427
\(143\) −4.00000 −0.334497
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) −7.00000 −0.577350
\(148\) −5.00000 −0.410997
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.00000 −0.0800641
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) −11.0000 −0.875113
\(159\) 1.00000 0.0793052
\(160\) 0 0
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 9.00000 0.702782
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) 7.00000 0.541676 0.270838 0.962625i \(-0.412699\pi\)
0.270838 + 0.962625i \(0.412699\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 2.00000 0.152499
\(173\) −3.00000 −0.228086 −0.114043 0.993476i \(-0.536380\pi\)
−0.114043 + 0.993476i \(0.536380\pi\)
\(174\) 3.00000 0.227429
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 10.0000 0.751646
\(178\) −10.0000 −0.749532
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) −4.00000 −0.294884
\(185\) 0 0
\(186\) −4.00000 −0.293294
\(187\) 0 0
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 1.00000 0.0721688
\(193\) 20.0000 1.43963 0.719816 0.694165i \(-0.244226\pi\)
0.719816 + 0.694165i \(0.244226\pi\)
\(194\) 12.0000 0.861550
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) −4.00000 −0.284268
\(199\) 1.00000 0.0708881 0.0354441 0.999372i \(-0.488715\pi\)
0.0354441 + 0.999372i \(0.488715\pi\)
\(200\) 0 0
\(201\) −9.00000 −0.634811
\(202\) 2.00000 0.140720
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) −1.00000 −0.0693375
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 24.0000 1.65223 0.826114 0.563503i \(-0.190547\pi\)
0.826114 + 0.563503i \(0.190547\pi\)
\(212\) 1.00000 0.0686803
\(213\) 7.00000 0.479632
\(214\) −9.00000 −0.615227
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) 1.00000 0.0677285
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) 0 0
\(222\) 5.00000 0.335578
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.00000 −0.133038
\(227\) −10.0000 −0.663723 −0.331862 0.943328i \(-0.607677\pi\)
−0.331862 + 0.943328i \(0.607677\pi\)
\(228\) 1.00000 0.0662266
\(229\) 5.00000 0.330409 0.165205 0.986259i \(-0.447172\pi\)
0.165205 + 0.986259i \(0.447172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) 8.00000 0.524097 0.262049 0.965055i \(-0.415602\pi\)
0.262049 + 0.965055i \(0.415602\pi\)
\(234\) 1.00000 0.0653720
\(235\) 0 0
\(236\) 10.0000 0.650945
\(237\) 11.0000 0.714527
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −12.0000 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(242\) −5.00000 −0.321412
\(243\) 1.00000 0.0641500
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) −9.00000 −0.573819
\(247\) −1.00000 −0.0636285
\(248\) −4.00000 −0.254000
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) 23.0000 1.45175 0.725874 0.687828i \(-0.241436\pi\)
0.725874 + 0.687828i \(0.241436\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 17.0000 1.06667
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) −2.00000 −0.124515
\(259\) 0 0
\(260\) 0 0
\(261\) −3.00000 −0.185695
\(262\) 3.00000 0.185341
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) −9.00000 −0.549762
\(269\) −11.0000 −0.670682 −0.335341 0.942097i \(-0.608852\pi\)
−0.335341 + 0.942097i \(0.608852\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −23.0000 −1.38948
\(275\) 0 0
\(276\) 4.00000 0.240772
\(277\) −26.0000 −1.56219 −0.781094 0.624413i \(-0.785338\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) 12.0000 0.719712
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −5.00000 −0.298275 −0.149137 0.988816i \(-0.547650\pi\)
−0.149137 + 0.988816i \(0.547650\pi\)
\(282\) 3.00000 0.178647
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 7.00000 0.415374
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 4.00000 0.234082
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 7.00000 0.408248
\(295\) 0 0
\(296\) 5.00000 0.290619
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) 0 0
\(302\) −12.0000 −0.690522
\(303\) −2.00000 −0.114897
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) 3.00000 0.171219 0.0856095 0.996329i \(-0.472716\pi\)
0.0856095 + 0.996329i \(0.472716\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 1.00000 0.0566139
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 11.0000 0.618798
\(317\) 32.0000 1.79730 0.898650 0.438667i \(-0.144549\pi\)
0.898650 + 0.438667i \(0.144549\pi\)
\(318\) −1.00000 −0.0560772
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −8.00000 −0.443079
\(327\) −1.00000 −0.0553001
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 6.00000 0.329293
\(333\) −5.00000 −0.273998
\(334\) −7.00000 −0.383023
\(335\) 0 0
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 2.00000 0.108625
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) −1.00000 −0.0540738
\(343\) 0 0
\(344\) −2.00000 −0.107833
\(345\) 0 0
\(346\) 3.00000 0.161281
\(347\) −17.0000 −0.912608 −0.456304 0.889824i \(-0.650827\pi\)
−0.456304 + 0.889824i \(0.650827\pi\)
\(348\) −3.00000 −0.160817
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) −4.00000 −0.213201
\(353\) −15.0000 −0.798369 −0.399185 0.916871i \(-0.630707\pi\)
−0.399185 + 0.916871i \(0.630707\pi\)
\(354\) −10.0000 −0.531494
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −17.0000 −0.897226 −0.448613 0.893726i \(-0.648082\pi\)
−0.448613 + 0.893726i \(0.648082\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 12.0000 0.630706
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) 0 0
\(366\) −4.00000 −0.209083
\(367\) −21.0000 −1.09619 −0.548096 0.836416i \(-0.684647\pi\)
−0.548096 + 0.836416i \(0.684647\pi\)
\(368\) 4.00000 0.208514
\(369\) 9.00000 0.468521
\(370\) 0 0
\(371\) 0 0
\(372\) 4.00000 0.207390
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 3.00000 0.154508
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) −17.0000 −0.870936
\(382\) 18.0000 0.920960
\(383\) −5.00000 −0.255488 −0.127744 0.991807i \(-0.540774\pi\)
−0.127744 + 0.991807i \(0.540774\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −20.0000 −1.01797
\(387\) 2.00000 0.101666
\(388\) −12.0000 −0.609208
\(389\) −19.0000 −0.963338 −0.481669 0.876353i \(-0.659969\pi\)
−0.481669 + 0.876353i \(0.659969\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.00000 0.353553
\(393\) −3.00000 −0.151330
\(394\) −12.0000 −0.604551
\(395\) 0 0
\(396\) 4.00000 0.201008
\(397\) 3.00000 0.150566 0.0752828 0.997162i \(-0.476014\pi\)
0.0752828 + 0.997162i \(0.476014\pi\)
\(398\) −1.00000 −0.0501255
\(399\) 0 0
\(400\) 0 0
\(401\) −26.0000 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(402\) 9.00000 0.448879
\(403\) −4.00000 −0.199254
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) 0 0
\(407\) −20.0000 −0.991363
\(408\) 0 0
\(409\) −40.0000 −1.97787 −0.988936 0.148340i \(-0.952607\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) 0 0
\(411\) 23.0000 1.13451
\(412\) 0 0
\(413\) 0 0
\(414\) −4.00000 −0.196589
\(415\) 0 0
\(416\) 1.00000 0.0490290
\(417\) −12.0000 −0.587643
\(418\) −4.00000 −0.195646
\(419\) −37.0000 −1.80757 −0.903784 0.427989i \(-0.859222\pi\)
−0.903784 + 0.427989i \(0.859222\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −24.0000 −1.16830
\(423\) −3.00000 −0.145865
\(424\) −1.00000 −0.0485643
\(425\) 0 0
\(426\) −7.00000 −0.339151
\(427\) 0 0
\(428\) 9.00000 0.435031
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 1.00000 0.0481125
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 −0.0478913
\(437\) 4.00000 0.191346
\(438\) −4.00000 −0.191127
\(439\) −19.0000 −0.906821 −0.453410 0.891302i \(-0.649793\pi\)
−0.453410 + 0.891302i \(0.649793\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) −3.00000 −0.142534 −0.0712672 0.997457i \(-0.522704\pi\)
−0.0712672 + 0.997457i \(0.522704\pi\)
\(444\) −5.00000 −0.237289
\(445\) 0 0
\(446\) 14.0000 0.662919
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 36.0000 1.69517
\(452\) 2.00000 0.0940721
\(453\) 12.0000 0.563809
\(454\) 10.0000 0.469323
\(455\) 0 0
\(456\) −1.00000 −0.0468293
\(457\) 32.0000 1.49690 0.748448 0.663193i \(-0.230799\pi\)
0.748448 + 0.663193i \(0.230799\pi\)
\(458\) −5.00000 −0.233635
\(459\) 0 0
\(460\) 0 0
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −8.00000 −0.370593
\(467\) 15.0000 0.694117 0.347059 0.937843i \(-0.387180\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(468\) −1.00000 −0.0462250
\(469\) 0 0
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) −10.0000 −0.460287
\(473\) 8.00000 0.367840
\(474\) −11.0000 −0.505247
\(475\) 0 0
\(476\) 0 0
\(477\) 1.00000 0.0457869
\(478\) 8.00000 0.365911
\(479\) 25.0000 1.14228 0.571140 0.820853i \(-0.306501\pi\)
0.571140 + 0.820853i \(0.306501\pi\)
\(480\) 0 0
\(481\) 5.00000 0.227980
\(482\) 12.0000 0.546585
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) −4.00000 −0.181071
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −32.0000 −1.44414 −0.722070 0.691820i \(-0.756809\pi\)
−0.722070 + 0.691820i \(0.756809\pi\)
\(492\) 9.00000 0.405751
\(493\) 0 0
\(494\) 1.00000 0.0449921
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) −6.00000 −0.268866
\(499\) −1.00000 −0.0447661 −0.0223831 0.999749i \(-0.507125\pi\)
−0.0223831 + 0.999749i \(0.507125\pi\)
\(500\) 0 0
\(501\) 7.00000 0.312737
\(502\) −23.0000 −1.02654
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) 1.00000 0.0444116
\(508\) −17.0000 −0.754253
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 1.00000 0.0441511
\(514\) −24.0000 −1.05859
\(515\) 0 0
\(516\) 2.00000 0.0880451
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 3.00000 0.131306
\(523\) −30.0000 −1.31181 −0.655904 0.754844i \(-0.727712\pi\)
−0.655904 + 0.754844i \(0.727712\pi\)
\(524\) −3.00000 −0.131056
\(525\) 0 0
\(526\) −6.00000 −0.261612
\(527\) 0 0
\(528\) 4.00000 0.174078
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) −9.00000 −0.389833
\(534\) −10.0000 −0.432742
\(535\) 0 0
\(536\) 9.00000 0.388741
\(537\) −12.0000 −0.517838
\(538\) 11.0000 0.474244
\(539\) −28.0000 −1.20605
\(540\) 0 0
\(541\) −26.0000 −1.11783 −0.558914 0.829226i \(-0.688782\pi\)
−0.558914 + 0.829226i \(0.688782\pi\)
\(542\) −24.0000 −1.03089
\(543\) −12.0000 −0.514969
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 23.0000 0.982511
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) −3.00000 −0.127804
\(552\) −4.00000 −0.170251
\(553\) 0 0
\(554\) 26.0000 1.10463
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) −4.00000 −0.169334
\(559\) −2.00000 −0.0845910
\(560\) 0 0
\(561\) 0 0
\(562\) 5.00000 0.210912
\(563\) −21.0000 −0.885044 −0.442522 0.896758i \(-0.645916\pi\)
−0.442522 + 0.896758i \(0.645916\pi\)
\(564\) −3.00000 −0.126323
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) −7.00000 −0.293713
\(569\) −8.00000 −0.335377 −0.167689 0.985840i \(-0.553630\pi\)
−0.167689 + 0.985840i \(0.553630\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) −4.00000 −0.167248
\(573\) −18.0000 −0.751961
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 12.0000 0.499567 0.249783 0.968302i \(-0.419641\pi\)
0.249783 + 0.968302i \(0.419641\pi\)
\(578\) 17.0000 0.707107
\(579\) 20.0000 0.831172
\(580\) 0 0
\(581\) 0 0
\(582\) 12.0000 0.497416
\(583\) 4.00000 0.165663
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 16.0000 0.660954
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) −7.00000 −0.288675
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 12.0000 0.493614
\(592\) −5.00000 −0.205499
\(593\) −1.00000 −0.0410651 −0.0205325 0.999789i \(-0.506536\pi\)
−0.0205325 + 0.999789i \(0.506536\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 0 0
\(597\) 1.00000 0.0409273
\(598\) 4.00000 0.163572
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 45.0000 1.83559 0.917794 0.397057i \(-0.129968\pi\)
0.917794 + 0.397057i \(0.129968\pi\)
\(602\) 0 0
\(603\) −9.00000 −0.366508
\(604\) 12.0000 0.488273
\(605\) 0 0
\(606\) 2.00000 0.0812444
\(607\) −7.00000 −0.284121 −0.142061 0.989858i \(-0.545373\pi\)
−0.142061 + 0.989858i \(0.545373\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 0 0
\(611\) 3.00000 0.121367
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) −3.00000 −0.121070
\(615\) 0 0
\(616\) 0 0
\(617\) −27.0000 −1.08698 −0.543490 0.839416i \(-0.682897\pi\)
−0.543490 + 0.839416i \(0.682897\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 30.0000 1.20289
\(623\) 0 0
\(624\) −1.00000 −0.0400320
\(625\) 0 0
\(626\) −1.00000 −0.0399680
\(627\) 4.00000 0.159745
\(628\) 2.00000 0.0798087
\(629\) 0 0
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) −11.0000 −0.437557
\(633\) 24.0000 0.953914
\(634\) −32.0000 −1.27088
\(635\) 0 0
\(636\) 1.00000 0.0396526
\(637\) 7.00000 0.277350
\(638\) 12.0000 0.475085
\(639\) 7.00000 0.276916
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) −9.00000 −0.355202
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) 1.00000 0.0391031
\(655\) 0 0
\(656\) 9.00000 0.351391
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 13.0000 0.506408 0.253204 0.967413i \(-0.418516\pi\)
0.253204 + 0.967413i \(0.418516\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 5.00000 0.193746
\(667\) −12.0000 −0.464642
\(668\) 7.00000 0.270838
\(669\) −14.0000 −0.541271
\(670\) 0 0
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) 11.0000 0.424019 0.212009 0.977268i \(-0.431999\pi\)
0.212009 + 0.977268i \(0.431999\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) −2.00000 −0.0768095
\(679\) 0 0
\(680\) 0 0
\(681\) −10.0000 −0.383201
\(682\) −16.0000 −0.612672
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 1.00000 0.0382360
\(685\) 0 0
\(686\) 0 0
\(687\) 5.00000 0.190762
\(688\) 2.00000 0.0762493
\(689\) −1.00000 −0.0380970
\(690\) 0 0
\(691\) −3.00000 −0.114125 −0.0570627 0.998371i \(-0.518173\pi\)
−0.0570627 + 0.998371i \(0.518173\pi\)
\(692\) −3.00000 −0.114043
\(693\) 0 0
\(694\) 17.0000 0.645311
\(695\) 0 0
\(696\) 3.00000 0.113715
\(697\) 0 0
\(698\) −18.0000 −0.681310
\(699\) 8.00000 0.302588
\(700\) 0 0
\(701\) −38.0000 −1.43524 −0.717620 0.696435i \(-0.754769\pi\)
−0.717620 + 0.696435i \(0.754769\pi\)
\(702\) 1.00000 0.0377426
\(703\) −5.00000 −0.188579
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 15.0000 0.564532
\(707\) 0 0
\(708\) 10.0000 0.375823
\(709\) 46.0000 1.72757 0.863783 0.503864i \(-0.168089\pi\)
0.863783 + 0.503864i \(0.168089\pi\)
\(710\) 0 0
\(711\) 11.0000 0.412532
\(712\) −10.0000 −0.374766
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) −8.00000 −0.298765
\(718\) 17.0000 0.634434
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 18.0000 0.669891
\(723\) −12.0000 −0.446285
\(724\) −12.0000 −0.445976
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) 52.0000 1.92857 0.964287 0.264861i \(-0.0853260\pi\)
0.964287 + 0.264861i \(0.0853260\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 4.00000 0.147844
\(733\) −49.0000 −1.80986 −0.904928 0.425564i \(-0.860076\pi\)
−0.904928 + 0.425564i \(0.860076\pi\)
\(734\) 21.0000 0.775124
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) −36.0000 −1.32608
\(738\) −9.00000 −0.331295
\(739\) 53.0000 1.94964 0.974818 0.223001i \(-0.0715853\pi\)
0.974818 + 0.223001i \(0.0715853\pi\)
\(740\) 0 0
\(741\) −1.00000 −0.0367359
\(742\) 0 0
\(743\) −27.0000 −0.990534 −0.495267 0.868741i \(-0.664930\pi\)
−0.495267 + 0.868741i \(0.664930\pi\)
\(744\) −4.00000 −0.146647
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −43.0000 −1.56909 −0.784546 0.620070i \(-0.787104\pi\)
−0.784546 + 0.620070i \(0.787104\pi\)
\(752\) −3.00000 −0.109399
\(753\) 23.0000 0.838167
\(754\) −3.00000 −0.109254
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 28.0000 1.01701
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) −15.0000 −0.543750 −0.271875 0.962333i \(-0.587644\pi\)
−0.271875 + 0.962333i \(0.587644\pi\)
\(762\) 17.0000 0.615845
\(763\) 0 0
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) 5.00000 0.180657
\(767\) −10.0000 −0.361079
\(768\) 1.00000 0.0360844
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) 20.0000 0.719816
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) −2.00000 −0.0718885
\(775\) 0 0
\(776\) 12.0000 0.430775
\(777\) 0 0
\(778\) 19.0000 0.681183
\(779\) 9.00000 0.322458
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) −3.00000 −0.107211
\(784\) −7.00000 −0.250000
\(785\) 0 0
\(786\) 3.00000 0.107006
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 12.0000 0.427482
\(789\) 6.00000 0.213606
\(790\) 0 0
\(791\) 0 0
\(792\) −4.00000 −0.142134
\(793\) −4.00000 −0.142044
\(794\) −3.00000 −0.106466
\(795\) 0 0
\(796\) 1.00000 0.0354441
\(797\) −22.0000 −0.779280 −0.389640 0.920967i \(-0.627401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 26.0000 0.918092
\(803\) 16.0000 0.564628
\(804\) −9.00000 −0.317406
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) −11.0000 −0.387218
\(808\) 2.00000 0.0703598
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) 24.0000 0.841717
\(814\) 20.0000 0.701000
\(815\) 0 0
\(816\) 0 0
\(817\) 2.00000 0.0699711
\(818\) 40.0000 1.39857
\(819\) 0 0
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) −23.0000 −0.802217
\(823\) −31.0000 −1.08059 −0.540296 0.841475i \(-0.681688\pi\)
−0.540296 + 0.841475i \(0.681688\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 4.00000 0.139010
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) −26.0000 −0.901930
\(832\) −1.00000 −0.0346688
\(833\) 0 0
\(834\) 12.0000 0.415526
\(835\) 0 0
\(836\) 4.00000 0.138343
\(837\) 4.00000 0.138260
\(838\) 37.0000 1.27814
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −2.00000 −0.0689246
\(843\) −5.00000 −0.172209
\(844\) 24.0000 0.826114
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 0 0
\(848\) 1.00000 0.0343401
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) −20.0000 −0.685591
\(852\) 7.00000 0.239816
\(853\) 41.0000 1.40381 0.701907 0.712269i \(-0.252332\pi\)
0.701907 + 0.712269i \(0.252332\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.00000 −0.307614
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 4.00000 0.136558
\(859\) 22.0000 0.750630 0.375315 0.926897i \(-0.377534\pi\)
0.375315 + 0.926897i \(0.377534\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3.00000 0.102180
\(863\) 57.0000 1.94030 0.970151 0.242500i \(-0.0779676\pi\)
0.970151 + 0.242500i \(0.0779676\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 19.0000 0.645646
\(867\) −17.0000 −0.577350
\(868\) 0 0
\(869\) 44.0000 1.49260
\(870\) 0 0
\(871\) 9.00000 0.304953
\(872\) 1.00000 0.0338643
\(873\) −12.0000 −0.406138
\(874\) −4.00000 −0.135302
\(875\) 0 0
\(876\) 4.00000 0.135147
\(877\) −23.0000 −0.776655 −0.388327 0.921521i \(-0.626947\pi\)
−0.388327 + 0.921521i \(0.626947\pi\)
\(878\) 19.0000 0.641219
\(879\) −16.0000 −0.539667
\(880\) 0 0
\(881\) 56.0000 1.88669 0.943344 0.331816i \(-0.107661\pi\)
0.943344 + 0.331816i \(0.107661\pi\)
\(882\) 7.00000 0.235702
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 3.00000 0.100787
\(887\) −44.0000 −1.47738 −0.738688 0.674048i \(-0.764554\pi\)
−0.738688 + 0.674048i \(0.764554\pi\)
\(888\) 5.00000 0.167789
\(889\) 0 0
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) −14.0000 −0.468755
\(893\) −3.00000 −0.100391
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −4.00000 −0.133556
\(898\) 9.00000 0.300334
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) 0 0
\(902\) −36.0000 −1.19867
\(903\) 0 0
\(904\) −2.00000 −0.0665190
\(905\) 0 0
\(906\) −12.0000 −0.398673
\(907\) −30.0000 −0.996134 −0.498067 0.867139i \(-0.665957\pi\)
−0.498067 + 0.867139i \(0.665957\pi\)
\(908\) −10.0000 −0.331862
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 1.00000 0.0331133
\(913\) 24.0000 0.794284
\(914\) −32.0000 −1.05847
\(915\) 0 0
\(916\) 5.00000 0.165205
\(917\) 0 0
\(918\) 0 0
\(919\) 1.00000 0.0329870 0.0164935 0.999864i \(-0.494750\pi\)
0.0164935 + 0.999864i \(0.494750\pi\)
\(920\) 0 0
\(921\) 3.00000 0.0988534
\(922\) 24.0000 0.790398
\(923\) −7.00000 −0.230408
\(924\) 0 0
\(925\) 0 0
\(926\) 14.0000 0.460069
\(927\) 0 0
\(928\) 3.00000 0.0984798
\(929\) 1.00000 0.0328089 0.0164045 0.999865i \(-0.494778\pi\)
0.0164045 + 0.999865i \(0.494778\pi\)
\(930\) 0 0
\(931\) −7.00000 −0.229416
\(932\) 8.00000 0.262049
\(933\) −30.0000 −0.982156
\(934\) −15.0000 −0.490815
\(935\) 0 0
\(936\) 1.00000 0.0326860
\(937\) 34.0000 1.11073 0.555366 0.831606i \(-0.312578\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(938\) 0 0
\(939\) 1.00000 0.0326338
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) −2.00000 −0.0651635
\(943\) 36.0000 1.17232
\(944\) 10.0000 0.325472
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 11.0000 0.357263
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 32.0000 1.03767
\(952\) 0 0
\(953\) 56.0000 1.81402 0.907009 0.421111i \(-0.138360\pi\)
0.907009 + 0.421111i \(0.138360\pi\)
\(954\) −1.00000 −0.0323762
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) −12.0000 −0.387905
\(958\) −25.0000 −0.807713
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −5.00000 −0.161206
\(963\) 9.00000 0.290021
\(964\) −12.0000 −0.386494
\(965\) 0 0
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) −5.00000 −0.160706
\(969\) 0 0
\(970\) 0 0
\(971\) 15.0000 0.481373 0.240686 0.970603i \(-0.422627\pi\)
0.240686 + 0.970603i \(0.422627\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 38.0000 1.21760
\(975\) 0 0
\(976\) 4.00000 0.128037
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) −8.00000 −0.255812
\(979\) 40.0000 1.27841
\(980\) 0 0
\(981\) −1.00000 −0.0319275
\(982\) 32.0000 1.02116
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) −9.00000 −0.286910
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1.00000 −0.0318142
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) −7.00000 −0.222362 −0.111181 0.993800i \(-0.535463\pi\)
−0.111181 + 0.993800i \(0.535463\pi\)
\(992\) −4.00000 −0.127000
\(993\) 4.00000 0.126936
\(994\) 0 0
\(995\) 0 0
\(996\) 6.00000 0.190117
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) 1.00000 0.0316544
\(999\) −5.00000 −0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.a.j.1.1 1
3.2 odd 2 5850.2.a.bp.1.1 1
5.2 odd 4 1950.2.e.h.1249.1 2
5.3 odd 4 1950.2.e.h.1249.2 2
5.4 even 2 1950.2.a.s.1.1 yes 1
15.2 even 4 5850.2.e.f.5149.2 2
15.8 even 4 5850.2.e.f.5149.1 2
15.14 odd 2 5850.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1950.2.a.j.1.1 1 1.1 even 1 trivial
1950.2.a.s.1.1 yes 1 5.4 even 2
1950.2.e.h.1249.1 2 5.2 odd 4
1950.2.e.h.1249.2 2 5.3 odd 4
5850.2.a.l.1.1 1 15.14 odd 2
5850.2.a.bp.1.1 1 3.2 odd 2
5850.2.e.f.5149.1 2 15.8 even 4
5850.2.e.f.5149.2 2 15.2 even 4