Properties

Label 1950.2.a.h
Level $1950$
Weight $2$
Character orbit 1950.a
Self dual yes
Analytic conductor $15.571$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(15.5708283941\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} - 2q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - q^{6} - 2q^{7} - q^{8} + q^{9} + 4q^{11} + q^{12} + q^{13} + 2q^{14} + q^{16} - 8q^{17} - q^{18} - 6q^{19} - 2q^{21} - 4q^{22} - 6q^{23} - q^{24} - q^{26} + q^{27} - 2q^{28} - 4q^{29} - q^{32} + 4q^{33} + 8q^{34} + q^{36} + 2q^{37} + 6q^{38} + q^{39} - 2q^{41} + 2q^{42} + 4q^{43} + 4q^{44} + 6q^{46} + q^{48} - 3q^{49} - 8q^{51} + q^{52} + 10q^{53} - q^{54} + 2q^{56} - 6q^{57} + 4q^{58} + 4q^{59} - 10q^{61} - 2q^{63} + q^{64} - 4q^{66} - 12q^{67} - 8q^{68} - 6q^{69} - 8q^{71} - q^{72} + 8q^{73} - 2q^{74} - 6q^{76} - 8q^{77} - q^{78} + 8q^{79} + q^{81} + 2q^{82} - 12q^{83} - 2q^{84} - 4q^{86} - 4q^{87} - 4q^{88} - 14q^{89} - 2q^{91} - 6q^{92} - q^{96} + 16q^{97} + 3q^{98} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 −2.00000 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.a.h 1
3.b odd 2 1 5850.2.a.bi 1
5.b even 2 1 390.2.a.e 1
5.c odd 4 2 1950.2.e.f 2
15.d odd 2 1 1170.2.a.e 1
15.e even 4 2 5850.2.e.i 2
20.d odd 2 1 3120.2.a.o 1
60.h even 2 1 9360.2.a.bh 1
65.d even 2 1 5070.2.a.e 1
65.g odd 4 2 5070.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.e 1 5.b even 2 1
1170.2.a.e 1 15.d odd 2 1
1950.2.a.h 1 1.a even 1 1 trivial
1950.2.e.f 2 5.c odd 4 2
3120.2.a.o 1 20.d odd 2 1
5070.2.a.e 1 65.d even 2 1
5070.2.b.e 2 65.g odd 4 2
5850.2.a.bi 1 3.b odd 2 1
5850.2.e.i 2 15.e even 4 2
9360.2.a.bh 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1950))\):

\( T_{7} + 2 \)
\( T_{11} - 4 \)
\( T_{17} + 8 \)
\( T_{23} + 6 \)
\( T_{31} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( T \)
$7$ \( 2 + T \)
$11$ \( -4 + T \)
$13$ \( -1 + T \)
$17$ \( 8 + T \)
$19$ \( 6 + T \)
$23$ \( 6 + T \)
$29$ \( 4 + T \)
$31$ \( T \)
$37$ \( -2 + T \)
$41$ \( 2 + T \)
$43$ \( -4 + T \)
$47$ \( T \)
$53$ \( -10 + T \)
$59$ \( -4 + T \)
$61$ \( 10 + T \)
$67$ \( 12 + T \)
$71$ \( 8 + T \)
$73$ \( -8 + T \)
$79$ \( -8 + T \)
$83$ \( 12 + T \)
$89$ \( 14 + T \)
$97$ \( -16 + T \)
show more
show less