# Properties

 Label 1950.2.a.a Level $1950$ Weight $2$ Character orbit 1950.a Self dual yes Analytic conductor $15.571$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1950.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$15.5708283941$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{2} - q^{3} + q^{4} + q^{6} - 3q^{7} - q^{8} + q^{9} + O(q^{10})$$ $$q - q^{2} - q^{3} + q^{4} + q^{6} - 3q^{7} - q^{8} + q^{9} - 3q^{11} - q^{12} - q^{13} + 3q^{14} + q^{16} - 3q^{17} - q^{18} + 3q^{21} + 3q^{22} - 4q^{23} + q^{24} + q^{26} - q^{27} - 3q^{28} + 5q^{29} - 3q^{31} - q^{32} + 3q^{33} + 3q^{34} + q^{36} + 12q^{37} + q^{39} + 2q^{41} - 3q^{42} - 4q^{43} - 3q^{44} + 4q^{46} - 3q^{47} - q^{48} + 2q^{49} + 3q^{51} - q^{52} - 9q^{53} + q^{54} + 3q^{56} - 5q^{58} + 15q^{59} - 3q^{61} + 3q^{62} - 3q^{63} + q^{64} - 3q^{66} + 7q^{67} - 3q^{68} + 4q^{69} - 8q^{71} - q^{72} + 16q^{73} - 12q^{74} + 9q^{77} - q^{78} + q^{81} - 2q^{82} + q^{83} + 3q^{84} + 4q^{86} - 5q^{87} + 3q^{88} + 3q^{91} - 4q^{92} + 3q^{93} + 3q^{94} + q^{96} + 2q^{97} - 2q^{98} - 3q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −1.00000 1.00000 0 1.00000 −3.00000 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$5$$ $$-1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.a.a 1
3.b odd 2 1 5850.2.a.bf 1
5.b even 2 1 1950.2.a.bb yes 1
5.c odd 4 2 1950.2.e.j 2
15.d odd 2 1 5850.2.a.w 1
15.e even 4 2 5850.2.e.z 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.2.a.a 1 1.a even 1 1 trivial
1950.2.a.bb yes 1 5.b even 2 1
1950.2.e.j 2 5.c odd 4 2
5850.2.a.w 1 15.d odd 2 1
5850.2.a.bf 1 3.b odd 2 1
5850.2.e.z 2 15.e even 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1950))$$:

 $$T_{7} + 3$$ $$T_{11} + 3$$ $$T_{17} + 3$$ $$T_{23} + 4$$ $$T_{31} + 3$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T$$
$3$ $$1 + T$$
$5$ $$T$$
$7$ $$3 + T$$
$11$ $$3 + T$$
$13$ $$1 + T$$
$17$ $$3 + T$$
$19$ $$T$$
$23$ $$4 + T$$
$29$ $$-5 + T$$
$31$ $$3 + T$$
$37$ $$-12 + T$$
$41$ $$-2 + T$$
$43$ $$4 + T$$
$47$ $$3 + T$$
$53$ $$9 + T$$
$59$ $$-15 + T$$
$61$ $$3 + T$$
$67$ $$-7 + T$$
$71$ $$8 + T$$
$73$ $$-16 + T$$
$79$ $$T$$
$83$ $$-1 + T$$
$89$ $$T$$
$97$ $$-2 + T$$