Newspace parameters
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.u (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.31336515503\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(\zeta_{8})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).
\(n\) | \(106\) | \(131\) | \(157\) |
\(\chi(n)\) | \(\zeta_{8}^{2}\) | \(-1\) | \(\zeta_{8}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 |
|
−2.82843 | 1.29289 | − | 2.70711i | 4.00000 | 0.707107 | + | 4.94975i | −3.65685 | + | 7.65685i | −5.00000 | 0 | −5.65685 | − | 7.00000i | −2.00000 | − | 14.0000i | ||||||||||||||||||||
47.2 | 2.82843 | 2.70711 | − | 1.29289i | 4.00000 | −0.707107 | − | 4.94975i | 7.65685 | − | 3.65685i | −5.00000 | 0 | 5.65685 | − | 7.00000i | −2.00000 | − | 14.0000i | |||||||||||||||||||||
83.1 | −2.82843 | 1.29289 | + | 2.70711i | 4.00000 | 0.707107 | − | 4.94975i | −3.65685 | − | 7.65685i | −5.00000 | 0 | −5.65685 | + | 7.00000i | −2.00000 | + | 14.0000i | |||||||||||||||||||||
83.2 | 2.82843 | 2.70711 | + | 1.29289i | 4.00000 | −0.707107 | + | 4.94975i | 7.65685 | + | 3.65685i | −5.00000 | 0 | 5.65685 | + | 7.00000i | −2.00000 | + | 14.0000i | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
65.f | even | 4 | 1 | inner |
195.u | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 195.3.u.c | yes | 4 |
3.b | odd | 2 | 1 | inner | 195.3.u.c | yes | 4 |
5.c | odd | 4 | 1 | 195.3.j.c | ✓ | 4 | |
13.d | odd | 4 | 1 | 195.3.j.c | ✓ | 4 | |
15.e | even | 4 | 1 | 195.3.j.c | ✓ | 4 | |
39.f | even | 4 | 1 | 195.3.j.c | ✓ | 4 | |
65.f | even | 4 | 1 | inner | 195.3.u.c | yes | 4 |
195.u | odd | 4 | 1 | inner | 195.3.u.c | yes | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.3.j.c | ✓ | 4 | 5.c | odd | 4 | 1 | |
195.3.j.c | ✓ | 4 | 13.d | odd | 4 | 1 | |
195.3.j.c | ✓ | 4 | 15.e | even | 4 | 1 | |
195.3.j.c | ✓ | 4 | 39.f | even | 4 | 1 | |
195.3.u.c | yes | 4 | 1.a | even | 1 | 1 | trivial |
195.3.u.c | yes | 4 | 3.b | odd | 2 | 1 | inner |
195.3.u.c | yes | 4 | 65.f | even | 4 | 1 | inner |
195.3.u.c | yes | 4 | 195.u | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 8 \)
acting on \(S_{3}^{\mathrm{new}}(195, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 8)^{2} \)
$3$
\( T^{4} - 8 T^{3} + 32 T^{2} - 72 T + 81 \)
$5$
\( T^{4} + 48T^{2} + 625 \)
$7$
\( (T + 5)^{4} \)
$11$
\( T^{4} + 28561 \)
$13$
\( (T - 13)^{4} \)
$17$
\( T^{4} + 130321 \)
$19$
\( (T^{2} + 44 T + 968)^{2} \)
$23$
\( T^{4} + 194481 \)
$29$
\( (T^{2} - 1458)^{2} \)
$31$
\( (T^{2} + 26 T + 338)^{2} \)
$37$
\( (T + 15)^{4} \)
$41$
\( T^{4} + 1500625 \)
$43$
\( (T^{2} + 34 T + 578)^{2} \)
$47$
\( (T^{2} + 5202)^{2} \)
$53$
\( T^{4} + 28561 \)
$59$
\( T^{4} + 21381376 \)
$61$
\( (T - 67)^{4} \)
$67$
\( (T^{2} + 10000)^{2} \)
$71$
\( T^{4} + 7890481 \)
$73$
\( (T^{2} + 5776)^{2} \)
$79$
\( (T^{2} + 7921)^{2} \)
$83$
\( (T^{2} + 8712)^{2} \)
$89$
\( T^{4} + 2401 \)
$97$
\( (T^{2} + 625)^{2} \)
show more
show less