Properties

Label 195.3.u.c
Level $195$
Weight $3$
Character orbit 195.u
Analytic conductor $5.313$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,3,Mod(47,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.47");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 195.u (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31336515503\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{2} + ( - 2 \zeta_{8}^{2} - \zeta_{8} + 2) q^{3} + 4 q^{4} + (3 \zeta_{8}^{3} + 4 \zeta_{8}) q^{5} + (8 \zeta_{8}^{3} + 2 \zeta_{8}^{2} + 2) q^{6} - 5 q^{7} + (4 \zeta_{8}^{3} - 7 \zeta_{8}^{2} - 4 \zeta_{8}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{2} + ( - 2 \zeta_{8}^{2} - \zeta_{8} + 2) q^{3} + 4 q^{4} + (3 \zeta_{8}^{3} + 4 \zeta_{8}) q^{5} + (8 \zeta_{8}^{3} + 2 \zeta_{8}^{2} + 2) q^{6} - 5 q^{7} + (4 \zeta_{8}^{3} - 7 \zeta_{8}^{2} - 4 \zeta_{8}) q^{9} + ( - 14 \zeta_{8}^{2} - 2) q^{10} - 13 \zeta_{8} q^{11} + ( - 8 \zeta_{8}^{2} - 4 \zeta_{8} + 8) q^{12} + 13 q^{13} + ( - 10 \zeta_{8}^{3} + 10 \zeta_{8}) q^{14} + ( - 2 \zeta_{8}^{3} - 4 \zeta_{8}^{2} + 14 \zeta_{8} + 3) q^{15} - 16 q^{16} - 19 \zeta_{8} q^{17} + (14 \zeta_{8}^{3} + 14 \zeta_{8} + 16) q^{18} + (22 \zeta_{8}^{2} - 22) q^{19} + (12 \zeta_{8}^{3} + 16 \zeta_{8}) q^{20} + (10 \zeta_{8}^{2} + 5 \zeta_{8} - 10) q^{21} + (26 \zeta_{8}^{2} + 26) q^{22} - 21 \zeta_{8}^{3} q^{23} + (7 \zeta_{8}^{2} - 24) q^{25} + (26 \zeta_{8}^{3} - 26 \zeta_{8}) q^{26} + (23 \zeta_{8}^{3} - 10 \zeta_{8}^{2} - 10) q^{27} - 20 q^{28} + (27 \zeta_{8}^{3} - 27 \zeta_{8}) q^{29} + (14 \zeta_{8}^{3} - 24 \zeta_{8}^{2} + 2 \zeta_{8} - 32) q^{30} + ( - 13 \zeta_{8}^{2} - 13) q^{31} + ( - 32 \zeta_{8}^{3} + 32 \zeta_{8}) q^{32} + (26 \zeta_{8}^{3} + 13 \zeta_{8}^{2} - 26 \zeta_{8}) q^{33} + (38 \zeta_{8}^{2} + 38) q^{34} + ( - 15 \zeta_{8}^{3} - 20 \zeta_{8}) q^{35} + (16 \zeta_{8}^{3} - 28 \zeta_{8}^{2} - 16 \zeta_{8}) q^{36} - 15 q^{37} - 88 \zeta_{8}^{3} q^{38} + ( - 26 \zeta_{8}^{2} - 13 \zeta_{8} + 26) q^{39} + 35 \zeta_{8}^{3} q^{41} + ( - 40 \zeta_{8}^{3} - 10 \zeta_{8}^{2} - 10) q^{42} + ( - 17 \zeta_{8}^{2} - 17) q^{43} - 52 \zeta_{8} q^{44} + ( - 28 \zeta_{8}^{3} - 28 \zeta_{8}^{2} + 21 \zeta_{8} - 4) q^{45} + (42 \zeta_{8}^{2} - 42) q^{46} + (51 \zeta_{8}^{3} + 51 \zeta_{8}) q^{47} + (32 \zeta_{8}^{2} + 16 \zeta_{8} - 32) q^{48} - 24 q^{49} + ( - 62 \zeta_{8}^{3} + 34 \zeta_{8}) q^{50} + (38 \zeta_{8}^{3} + 19 \zeta_{8}^{2} - 38 \zeta_{8}) q^{51} + 52 q^{52} - 13 \zeta_{8} q^{53} + ( - 46 \zeta_{8}^{2} + 40 \zeta_{8} + 46) q^{54} + ( - 52 \zeta_{8}^{2} + 39) q^{55} + ( - 22 \zeta_{8}^{3} + 88 \zeta_{8}^{2} + 22 \zeta_{8}) q^{57} + 108 q^{58} - 68 \zeta_{8}^{3} q^{59} + ( - 8 \zeta_{8}^{3} - 16 \zeta_{8}^{2} + 56 \zeta_{8} + 12) q^{60} + 67 q^{61} + 52 \zeta_{8} q^{62} + ( - 20 \zeta_{8}^{3} + 35 \zeta_{8}^{2} + 20 \zeta_{8}) q^{63} - 64 q^{64} + (39 \zeta_{8}^{3} + 52 \zeta_{8}) q^{65} + ( - 26 \zeta_{8}^{3} - 26 \zeta_{8} + 104) q^{66} - 100 \zeta_{8}^{2} q^{67} - 76 \zeta_{8} q^{68} + ( - 42 \zeta_{8}^{3} - 42 \zeta_{8} - 21) q^{69} + (70 \zeta_{8}^{2} + 10) q^{70} - 53 \zeta_{8}^{3} q^{71} + 76 \zeta_{8}^{2} q^{73} + ( - 30 \zeta_{8}^{3} + 30 \zeta_{8}) q^{74} + ( - 7 \zeta_{8}^{3} + 62 \zeta_{8}^{2} + 24 \zeta_{8} - 34) q^{75} + (88 \zeta_{8}^{2} - 88) q^{76} + 65 \zeta_{8} q^{77} + (104 \zeta_{8}^{3} + 26 \zeta_{8}^{2} + 26) q^{78} - 89 \zeta_{8}^{2} q^{79} + ( - 48 \zeta_{8}^{3} - 64 \zeta_{8}) q^{80} + (56 \zeta_{8}^{3} + 56 \zeta_{8} - 17) q^{81} + ( - 70 \zeta_{8}^{2} + 70) q^{82} + ( - 66 \zeta_{8}^{3} - 66 \zeta_{8}) q^{83} + (40 \zeta_{8}^{2} + 20 \zeta_{8} - 40) q^{84} + ( - 76 \zeta_{8}^{2} + 57) q^{85} + 68 \zeta_{8} q^{86} + (108 \zeta_{8}^{3} + 27 \zeta_{8}^{2} + 27) q^{87} + 7 \zeta_{8}^{3} q^{89} + (48 \zeta_{8}^{3} + 14 \zeta_{8}^{2} + 64 \zeta_{8} - 98) q^{90} - 65 q^{91} - 84 \zeta_{8}^{3} q^{92} + (13 \zeta_{8}^{3} + 13 \zeta_{8} - 52) q^{93} - 204 \zeta_{8}^{2} q^{94} + (22 \zeta_{8}^{3} - 154 \zeta_{8}) q^{95} + ( - 128 \zeta_{8}^{3} - 32 \zeta_{8}^{2} - 32) q^{96} - 25 \zeta_{8}^{2} q^{97} + ( - 48 \zeta_{8}^{3} + 48 \zeta_{8}) q^{98} + (91 \zeta_{8}^{3} + 52 \zeta_{8}^{2} + 52) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{3} + 16 q^{4} + 8 q^{6} - 20 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{3} + 16 q^{4} + 8 q^{6} - 20 q^{7} - 8 q^{10} + 32 q^{12} + 52 q^{13} + 12 q^{15} - 64 q^{16} + 64 q^{18} - 88 q^{19} - 40 q^{21} + 104 q^{22} - 96 q^{25} - 40 q^{27} - 80 q^{28} - 128 q^{30} - 52 q^{31} + 152 q^{34} - 60 q^{37} + 104 q^{39} - 40 q^{42} - 68 q^{43} - 16 q^{45} - 168 q^{46} - 128 q^{48} - 96 q^{49} + 208 q^{52} + 184 q^{54} + 156 q^{55} + 432 q^{58} + 48 q^{60} + 268 q^{61} - 256 q^{64} + 416 q^{66} - 84 q^{69} + 40 q^{70} - 136 q^{75} - 352 q^{76} + 104 q^{78} - 68 q^{81} + 280 q^{82} - 160 q^{84} + 228 q^{85} + 108 q^{87} - 392 q^{90} - 260 q^{91} - 208 q^{93} - 128 q^{96} + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(\zeta_{8}^{2}\) \(-1\) \(\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−2.82843 1.29289 2.70711i 4.00000 0.707107 + 4.94975i −3.65685 + 7.65685i −5.00000 0 −5.65685 7.00000i −2.00000 14.0000i
47.2 2.82843 2.70711 1.29289i 4.00000 −0.707107 4.94975i 7.65685 3.65685i −5.00000 0 5.65685 7.00000i −2.00000 14.0000i
83.1 −2.82843 1.29289 + 2.70711i 4.00000 0.707107 4.94975i −3.65685 7.65685i −5.00000 0 −5.65685 + 7.00000i −2.00000 + 14.0000i
83.2 2.82843 2.70711 + 1.29289i 4.00000 −0.707107 + 4.94975i 7.65685 + 3.65685i −5.00000 0 5.65685 + 7.00000i −2.00000 + 14.0000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
65.f even 4 1 inner
195.u odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 195.3.u.c yes 4
3.b odd 2 1 inner 195.3.u.c yes 4
5.c odd 4 1 195.3.j.c 4
13.d odd 4 1 195.3.j.c 4
15.e even 4 1 195.3.j.c 4
39.f even 4 1 195.3.j.c 4
65.f even 4 1 inner 195.3.u.c yes 4
195.u odd 4 1 inner 195.3.u.c yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.3.j.c 4 5.c odd 4 1
195.3.j.c 4 13.d odd 4 1
195.3.j.c 4 15.e even 4 1
195.3.j.c 4 39.f even 4 1
195.3.u.c yes 4 1.a even 1 1 trivial
195.3.u.c yes 4 3.b odd 2 1 inner
195.3.u.c yes 4 65.f even 4 1 inner
195.3.u.c yes 4 195.u odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 8 \) acting on \(S_{3}^{\mathrm{new}}(195, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 8 T^{3} + 32 T^{2} - 72 T + 81 \) Copy content Toggle raw display
$5$ \( T^{4} + 48T^{2} + 625 \) Copy content Toggle raw display
$7$ \( (T + 5)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 28561 \) Copy content Toggle raw display
$13$ \( (T - 13)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 130321 \) Copy content Toggle raw display
$19$ \( (T^{2} + 44 T + 968)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 194481 \) Copy content Toggle raw display
$29$ \( (T^{2} - 1458)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 26 T + 338)^{2} \) Copy content Toggle raw display
$37$ \( (T + 15)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 1500625 \) Copy content Toggle raw display
$43$ \( (T^{2} + 34 T + 578)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 5202)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 28561 \) Copy content Toggle raw display
$59$ \( T^{4} + 21381376 \) Copy content Toggle raw display
$61$ \( (T - 67)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 10000)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 7890481 \) Copy content Toggle raw display
$73$ \( (T^{2} + 5776)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 7921)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 8712)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 2401 \) Copy content Toggle raw display
$97$ \( (T^{2} + 625)^{2} \) Copy content Toggle raw display
show more
show less