Properties

Label 195.3.j.c.122.2
Level $195$
Weight $3$
Character 195.122
Analytic conductor $5.313$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,3,Mod(8,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.8");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 195.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31336515503\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 122.2
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 195.122
Dual form 195.3.j.c.8.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843i q^{2} +(1.29289 - 2.70711i) q^{3} -4.00000 q^{4} +(4.94975 - 0.707107i) q^{5} +(7.65685 + 3.65685i) q^{6} -5.00000i q^{7} +(-5.65685 - 7.00000i) q^{9} +O(q^{10})\) \(q+2.82843i q^{2} +(1.29289 - 2.70711i) q^{3} -4.00000 q^{4} +(4.94975 - 0.707107i) q^{5} +(7.65685 + 3.65685i) q^{6} -5.00000i q^{7} +(-5.65685 - 7.00000i) q^{9} +(2.00000 + 14.0000i) q^{10} +(9.19239 - 9.19239i) q^{11} +(-5.17157 + 10.8284i) q^{12} -13.0000i q^{13} +14.1421 q^{14} +(4.48528 - 14.3137i) q^{15} -16.0000 q^{16} +(13.4350 + 13.4350i) q^{17} +(19.7990 - 16.0000i) q^{18} +(22.0000 + 22.0000i) q^{19} +(-19.7990 + 2.82843i) q^{20} +(-13.5355 - 6.46447i) q^{21} +(26.0000 + 26.0000i) q^{22} +(-14.8492 + 14.8492i) q^{23} +(24.0000 - 7.00000i) q^{25} +36.7696 q^{26} +(-26.2635 + 6.26346i) q^{27} +20.0000i q^{28} -38.1838 q^{29} +(40.4853 + 12.6863i) q^{30} +(-13.0000 + 13.0000i) q^{31} -45.2548i q^{32} +(-13.0000 - 36.7696i) q^{33} +(-38.0000 + 38.0000i) q^{34} +(-3.53553 - 24.7487i) q^{35} +(22.6274 + 28.0000i) q^{36} -15.0000i q^{37} +(-62.2254 + 62.2254i) q^{38} +(-35.1924 - 16.8076i) q^{39} +(24.7487 + 24.7487i) q^{41} +(18.2843 - 38.2843i) q^{42} +(17.0000 + 17.0000i) q^{43} +(-36.7696 + 36.7696i) q^{44} +(-32.9497 - 30.6482i) q^{45} +(-42.0000 - 42.0000i) q^{46} -72.1249 q^{47} +(-20.6863 + 43.3137i) q^{48} +24.0000 q^{49} +(19.7990 + 67.8823i) q^{50} +(53.7401 - 19.0000i) q^{51} +52.0000i q^{52} +(-9.19239 - 9.19239i) q^{53} +(-17.7157 - 74.2843i) q^{54} +(39.0000 - 52.0000i) q^{55} +(88.0000 - 31.1127i) q^{57} -108.000i q^{58} +(48.0833 + 48.0833i) q^{59} +(-17.9411 + 57.2548i) q^{60} +67.0000 q^{61} +(-36.7696 - 36.7696i) q^{62} +(-35.0000 + 28.2843i) q^{63} +64.0000 q^{64} +(-9.19239 - 64.3467i) q^{65} +(104.000 - 36.7696i) q^{66} -100.000 q^{67} +(-53.7401 - 53.7401i) q^{68} +(21.0000 + 59.3970i) q^{69} +(70.0000 - 10.0000i) q^{70} +(-37.4767 - 37.4767i) q^{71} -76.0000 q^{73} +42.4264 q^{74} +(12.0797 - 74.0208i) q^{75} +(-88.0000 - 88.0000i) q^{76} +(-45.9619 - 45.9619i) q^{77} +(47.5391 - 99.5391i) q^{78} -89.0000i q^{79} +(-79.1960 + 11.3137i) q^{80} +(-17.0000 + 79.1960i) q^{81} +(-70.0000 + 70.0000i) q^{82} -93.3381 q^{83} +(54.1421 + 25.8579i) q^{84} +(76.0000 + 57.0000i) q^{85} +(-48.0833 + 48.0833i) q^{86} +(-49.3675 + 103.368i) q^{87} +(-4.94975 - 4.94975i) q^{89} +(86.6863 - 93.1960i) q^{90} -65.0000 q^{91} +(59.3970 - 59.3970i) q^{92} +(18.3848 + 52.0000i) q^{93} -204.000i q^{94} +(124.451 + 93.3381i) q^{95} +(-122.510 - 58.5097i) q^{96} -25.0000 q^{97} +67.8823i q^{98} +(-116.347 - 12.3467i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{3} - 16 q^{4} + 8 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{3} - 16 q^{4} + 8 q^{6} + 8 q^{10} - 32 q^{12} - 16 q^{15} - 64 q^{16} + 88 q^{19} - 40 q^{21} + 104 q^{22} + 96 q^{25} - 40 q^{27} + 128 q^{30} - 52 q^{31} - 52 q^{33} - 152 q^{34} - 104 q^{39} - 40 q^{42} + 68 q^{43} - 112 q^{45} - 168 q^{46} - 128 q^{48} + 96 q^{49} - 184 q^{54} + 156 q^{55} + 352 q^{57} + 64 q^{60} + 268 q^{61} - 140 q^{63} + 256 q^{64} + 416 q^{66} - 400 q^{67} + 84 q^{69} + 280 q^{70} - 304 q^{73} + 136 q^{75} - 352 q^{76} - 104 q^{78} - 68 q^{81} - 280 q^{82} + 160 q^{84} + 304 q^{85} + 108 q^{87} + 392 q^{90} - 260 q^{91} - 128 q^{96} - 100 q^{97} - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 1.29289 2.70711i 0.430964 0.902369i
\(4\) −4.00000 −1.00000
\(5\) 4.94975 0.707107i 0.989949 0.141421i
\(6\) 7.65685 + 3.65685i 1.27614 + 0.609476i
\(7\) 5.00000i 0.714286i −0.934050 0.357143i \(-0.883751\pi\)
0.934050 0.357143i \(-0.116249\pi\)
\(8\) 0 0
\(9\) −5.65685 7.00000i −0.628539 0.777778i
\(10\) 2.00000 + 14.0000i 0.200000 + 1.40000i
\(11\) 9.19239 9.19239i 0.835672 0.835672i −0.152614 0.988286i \(-0.548769\pi\)
0.988286 + 0.152614i \(0.0487692\pi\)
\(12\) −5.17157 + 10.8284i −0.430964 + 0.902369i
\(13\) 13.0000i 1.00000i
\(14\) 14.1421 1.01015
\(15\) 4.48528 14.3137i 0.299019 0.954247i
\(16\) −16.0000 −1.00000
\(17\) 13.4350 + 13.4350i 0.790296 + 0.790296i 0.981542 0.191246i \(-0.0612529\pi\)
−0.191246 + 0.981542i \(0.561253\pi\)
\(18\) 19.7990 16.0000i 1.09994 0.888889i
\(19\) 22.0000 + 22.0000i 1.15789 + 1.15789i 0.984928 + 0.172967i \(0.0553354\pi\)
0.172967 + 0.984928i \(0.444665\pi\)
\(20\) −19.7990 + 2.82843i −0.989949 + 0.141421i
\(21\) −13.5355 6.46447i −0.644549 0.307832i
\(22\) 26.0000 + 26.0000i 1.18182 + 1.18182i
\(23\) −14.8492 + 14.8492i −0.645619 + 0.645619i −0.951931 0.306312i \(-0.900905\pi\)
0.306312 + 0.951931i \(0.400905\pi\)
\(24\) 0 0
\(25\) 24.0000 7.00000i 0.960000 0.280000i
\(26\) 36.7696 1.41421
\(27\) −26.2635 + 6.26346i −0.972721 + 0.231980i
\(28\) 20.0000i 0.714286i
\(29\) −38.1838 −1.31668 −0.658341 0.752720i \(-0.728741\pi\)
−0.658341 + 0.752720i \(0.728741\pi\)
\(30\) 40.4853 + 12.6863i 1.34951 + 0.422876i
\(31\) −13.0000 + 13.0000i −0.419355 + 0.419355i −0.884981 0.465626i \(-0.845829\pi\)
0.465626 + 0.884981i \(0.345829\pi\)
\(32\) 45.2548i 1.41421i
\(33\) −13.0000 36.7696i −0.393939 1.11423i
\(34\) −38.0000 + 38.0000i −1.11765 + 1.11765i
\(35\) −3.53553 24.7487i −0.101015 0.707107i
\(36\) 22.6274 + 28.0000i 0.628539 + 0.777778i
\(37\) 15.0000i 0.405405i −0.979240 0.202703i \(-0.935027\pi\)
0.979240 0.202703i \(-0.0649725\pi\)
\(38\) −62.2254 + 62.2254i −1.63751 + 1.63751i
\(39\) −35.1924 16.8076i −0.902369 0.430964i
\(40\) 0 0
\(41\) 24.7487 + 24.7487i 0.603628 + 0.603628i 0.941273 0.337646i \(-0.109631\pi\)
−0.337646 + 0.941273i \(0.609631\pi\)
\(42\) 18.2843 38.2843i 0.435340 0.911530i
\(43\) 17.0000 + 17.0000i 0.395349 + 0.395349i 0.876589 0.481240i \(-0.159813\pi\)
−0.481240 + 0.876589i \(0.659813\pi\)
\(44\) −36.7696 + 36.7696i −0.835672 + 0.835672i
\(45\) −32.9497 30.6482i −0.732217 0.681072i
\(46\) −42.0000 42.0000i −0.913043 0.913043i
\(47\) −72.1249 −1.53457 −0.767286 0.641305i \(-0.778393\pi\)
−0.767286 + 0.641305i \(0.778393\pi\)
\(48\) −20.6863 + 43.3137i −0.430964 + 0.902369i
\(49\) 24.0000 0.489796
\(50\) 19.7990 + 67.8823i 0.395980 + 1.35765i
\(51\) 53.7401 19.0000i 1.05373 0.372549i
\(52\) 52.0000i 1.00000i
\(53\) −9.19239 9.19239i −0.173441 0.173441i 0.615048 0.788490i \(-0.289137\pi\)
−0.788490 + 0.615048i \(0.789137\pi\)
\(54\) −17.7157 74.2843i −0.328069 1.37563i
\(55\) 39.0000 52.0000i 0.709091 0.945455i
\(56\) 0 0
\(57\) 88.0000 31.1127i 1.54386 0.545837i
\(58\) 108.000i 1.86207i
\(59\) 48.0833 + 48.0833i 0.814971 + 0.814971i 0.985374 0.170404i \(-0.0545072\pi\)
−0.170404 + 0.985374i \(0.554507\pi\)
\(60\) −17.9411 + 57.2548i −0.299019 + 0.954247i
\(61\) 67.0000 1.09836 0.549180 0.835704i \(-0.314940\pi\)
0.549180 + 0.835704i \(0.314940\pi\)
\(62\) −36.7696 36.7696i −0.593057 0.593057i
\(63\) −35.0000 + 28.2843i −0.555556 + 0.448957i
\(64\) 64.0000 1.00000
\(65\) −9.19239 64.3467i −0.141421 0.989949i
\(66\) 104.000 36.7696i 1.57576 0.557114i
\(67\) −100.000 −1.49254 −0.746269 0.665645i \(-0.768157\pi\)
−0.746269 + 0.665645i \(0.768157\pi\)
\(68\) −53.7401 53.7401i −0.790296 0.790296i
\(69\) 21.0000 + 59.3970i 0.304348 + 0.860826i
\(70\) 70.0000 10.0000i 1.00000 0.142857i
\(71\) −37.4767 37.4767i −0.527840 0.527840i 0.392088 0.919928i \(-0.371753\pi\)
−0.919928 + 0.392088i \(0.871753\pi\)
\(72\) 0 0
\(73\) −76.0000 −1.04110 −0.520548 0.853832i \(-0.674272\pi\)
−0.520548 + 0.853832i \(0.674272\pi\)
\(74\) 42.4264 0.573330
\(75\) 12.0797 74.0208i 0.161063 0.986944i
\(76\) −88.0000 88.0000i −1.15789 1.15789i
\(77\) −45.9619 45.9619i −0.596908 0.596908i
\(78\) 47.5391 99.5391i 0.609476 1.27614i
\(79\) 89.0000i 1.12658i −0.826258 0.563291i \(-0.809535\pi\)
0.826258 0.563291i \(-0.190465\pi\)
\(80\) −79.1960 + 11.3137i −0.989949 + 0.141421i
\(81\) −17.0000 + 79.1960i −0.209877 + 0.977728i
\(82\) −70.0000 + 70.0000i −0.853659 + 0.853659i
\(83\) −93.3381 −1.12456 −0.562278 0.826948i \(-0.690075\pi\)
−0.562278 + 0.826948i \(0.690075\pi\)
\(84\) 54.1421 + 25.8579i 0.644549 + 0.307832i
\(85\) 76.0000 + 57.0000i 0.894118 + 0.670588i
\(86\) −48.0833 + 48.0833i −0.559108 + 0.559108i
\(87\) −49.3675 + 103.368i −0.567443 + 1.18813i
\(88\) 0 0
\(89\) −4.94975 4.94975i −0.0556151 0.0556151i 0.678752 0.734367i \(-0.262521\pi\)
−0.734367 + 0.678752i \(0.762521\pi\)
\(90\) 86.6863 93.1960i 0.963181 1.03551i
\(91\) −65.0000 −0.714286
\(92\) 59.3970 59.3970i 0.645619 0.645619i
\(93\) 18.3848 + 52.0000i 0.197686 + 0.559140i
\(94\) 204.000i 2.17021i
\(95\) 124.451 + 93.3381i 1.31001 + 0.982506i
\(96\) −122.510 58.5097i −1.27614 0.609476i
\(97\) −25.0000 −0.257732 −0.128866 0.991662i \(-0.541134\pi\)
−0.128866 + 0.991662i \(0.541134\pi\)
\(98\) 67.8823i 0.692676i
\(99\) −116.347 12.3467i −1.17522 0.124714i
\(100\) −96.0000 + 28.0000i −0.960000 + 0.280000i
\(101\) −8.48528 −0.0840127 −0.0420063 0.999117i \(-0.513375\pi\)
−0.0420063 + 0.999117i \(0.513375\pi\)
\(102\) 53.7401 + 152.000i 0.526864 + 1.49020i
\(103\) 1.00000 + 1.00000i 0.00970874 + 0.00970874i 0.711944 0.702236i \(-0.247815\pi\)
−0.702236 + 0.711944i \(0.747815\pi\)
\(104\) 0 0
\(105\) −71.5685 22.4264i −0.681605 0.213585i
\(106\) 26.0000 26.0000i 0.245283 0.245283i
\(107\) 41.7193 41.7193i 0.389900 0.389900i −0.484752 0.874652i \(-0.661090\pi\)
0.874652 + 0.484752i \(0.161090\pi\)
\(108\) 105.054 25.0538i 0.972721 0.231980i
\(109\) 99.0000 + 99.0000i 0.908257 + 0.908257i 0.996132 0.0878747i \(-0.0280075\pi\)
−0.0878747 + 0.996132i \(0.528007\pi\)
\(110\) 147.078 + 110.309i 1.33707 + 1.00281i
\(111\) −40.6066 19.3934i −0.365825 0.174715i
\(112\) 80.0000i 0.714286i
\(113\) 14.1421 + 14.1421i 0.125152 + 0.125152i 0.766908 0.641757i \(-0.221794\pi\)
−0.641757 + 0.766908i \(0.721794\pi\)
\(114\) 88.0000 + 248.902i 0.771930 + 2.18335i
\(115\) −63.0000 + 84.0000i −0.547826 + 0.730435i
\(116\) 152.735 1.31668
\(117\) −91.0000 + 73.5391i −0.777778 + 0.628539i
\(118\) −136.000 + 136.000i −1.15254 + 1.15254i
\(119\) 67.1751 67.1751i 0.564497 0.564497i
\(120\) 0 0
\(121\) 48.0000i 0.396694i
\(122\) 189.505i 1.55332i
\(123\) 98.9949 35.0000i 0.804837 0.284553i
\(124\) 52.0000 52.0000i 0.419355 0.419355i
\(125\) 113.844 51.6188i 0.910754 0.412950i
\(126\) −80.0000 98.9949i −0.634921 0.785674i
\(127\) −156.000 + 156.000i −1.22835 + 1.22835i −0.263757 + 0.964589i \(0.584962\pi\)
−0.964589 + 0.263757i \(0.915038\pi\)
\(128\) 0 0
\(129\) 68.0000 24.0416i 0.527132 0.186369i
\(130\) 182.000 26.0000i 1.40000 0.200000i
\(131\) 70.7107i 0.539776i 0.962892 + 0.269888i \(0.0869867\pi\)
−0.962892 + 0.269888i \(0.913013\pi\)
\(132\) 52.0000 + 147.078i 0.393939 + 1.11423i
\(133\) 110.000 110.000i 0.827068 0.827068i
\(134\) 282.843i 2.11077i
\(135\) −125.569 + 49.5736i −0.930137 + 0.367212i
\(136\) 0 0
\(137\) −56.5685 −0.412909 −0.206455 0.978456i \(-0.566193\pi\)
−0.206455 + 0.978456i \(0.566193\pi\)
\(138\) −168.000 + 59.3970i −1.21739 + 0.430413i
\(139\) 223.000i 1.60432i 0.597111 + 0.802158i \(0.296315\pi\)
−0.597111 + 0.802158i \(0.703685\pi\)
\(140\) 14.1421 + 98.9949i 0.101015 + 0.707107i
\(141\) −93.2498 + 195.250i −0.661346 + 1.38475i
\(142\) 106.000 106.000i 0.746479 0.746479i
\(143\) −119.501 119.501i −0.835672 0.835672i
\(144\) 90.5097 + 112.000i 0.628539 + 0.777778i
\(145\) −189.000 + 27.0000i −1.30345 + 0.186207i
\(146\) 214.960i 1.47233i
\(147\) 31.0294 64.9706i 0.211085 0.441977i
\(148\) 60.0000i 0.405405i
\(149\) 53.0330 53.0330i 0.355926 0.355926i −0.506383 0.862309i \(-0.669018\pi\)
0.862309 + 0.506383i \(0.169018\pi\)
\(150\) 209.362 + 34.1665i 1.39575 + 0.227777i
\(151\) 22.0000 + 22.0000i 0.145695 + 0.145695i 0.776192 0.630497i \(-0.217149\pi\)
−0.630497 + 0.776192i \(0.717149\pi\)
\(152\) 0 0
\(153\) 18.0452 170.045i 0.117942 1.11141i
\(154\) 130.000 130.000i 0.844156 0.844156i
\(155\) −55.1543 + 73.5391i −0.355834 + 0.474446i
\(156\) 140.770 + 67.2304i 0.902369 + 0.430964i
\(157\) 106.000 + 106.000i 0.675159 + 0.675159i 0.958901 0.283742i \(-0.0915758\pi\)
−0.283742 + 0.958901i \(0.591576\pi\)
\(158\) 251.730 1.59323
\(159\) −36.7696 + 13.0000i −0.231255 + 0.0817610i
\(160\) −32.0000 224.000i −0.200000 1.40000i
\(161\) 74.2462 + 74.2462i 0.461157 + 0.461157i
\(162\) −224.000 48.0833i −1.38272 0.296810i
\(163\) 271.000 1.66258 0.831288 0.555841i \(-0.187604\pi\)
0.831288 + 0.555841i \(0.187604\pi\)
\(164\) −98.9949 98.9949i −0.603628 0.603628i
\(165\) −90.3467 172.808i −0.547556 1.04732i
\(166\) 264.000i 1.59036i
\(167\) −114.551 −0.685936 −0.342968 0.939347i \(-0.611432\pi\)
−0.342968 + 0.939347i \(0.611432\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) −161.220 + 214.960i −0.948355 + 1.26447i
\(171\) 29.5492 278.451i 0.172802 1.62837i
\(172\) −68.0000 68.0000i −0.395349 0.395349i
\(173\) 175.362 175.362i 1.01366 1.01366i 0.0137505 0.999905i \(-0.495623\pi\)
0.999905 0.0137505i \(-0.00437706\pi\)
\(174\) −292.368 139.632i −1.68027 0.802485i
\(175\) −35.0000 120.000i −0.200000 0.685714i
\(176\) −147.078 + 147.078i −0.835672 + 0.835672i
\(177\) 192.333 68.0000i 1.08663 0.384181i
\(178\) 14.0000 14.0000i 0.0786517 0.0786517i
\(179\) 83.4386i 0.466137i 0.972460 + 0.233069i \(0.0748767\pi\)
−0.972460 + 0.233069i \(0.925123\pi\)
\(180\) 131.799 + 122.593i 0.732217 + 0.681072i
\(181\) 13.0000i 0.0718232i 0.999355 + 0.0359116i \(0.0114335\pi\)
−0.999355 + 0.0359116i \(0.988567\pi\)
\(182\) 183.848i 1.01015i
\(183\) 86.6238 181.376i 0.473354 0.991127i
\(184\) 0 0
\(185\) −10.6066 74.2462i −0.0573330 0.401331i
\(186\) −147.078 + 52.0000i −0.790743 + 0.279570i
\(187\) 247.000 1.32086
\(188\) 288.500 1.53457
\(189\) 31.3173 + 131.317i 0.165700 + 0.694800i
\(190\) −264.000 + 352.000i −1.38947 + 1.85263i
\(191\) 57.9828i 0.303575i −0.988413 0.151787i \(-0.951497\pi\)
0.988413 0.151787i \(-0.0485029\pi\)
\(192\) 82.7452 173.255i 0.430964 0.902369i
\(193\) −99.0000 −0.512953 −0.256477 0.966550i \(-0.582562\pi\)
−0.256477 + 0.966550i \(0.582562\pi\)
\(194\) 70.7107i 0.364488i
\(195\) −186.078 58.3087i −0.954247 0.299019i
\(196\) −96.0000 −0.489796
\(197\) 93.3381i 0.473797i 0.971534 + 0.236899i \(0.0761310\pi\)
−0.971534 + 0.236899i \(0.923869\pi\)
\(198\) 34.9218 329.078i 0.176373 1.66201i
\(199\) 196.000 0.984925 0.492462 0.870334i \(-0.336097\pi\)
0.492462 + 0.870334i \(0.336097\pi\)
\(200\) 0 0
\(201\) −129.289 + 270.711i −0.643230 + 1.34682i
\(202\) 24.0000i 0.118812i
\(203\) 190.919i 0.940487i
\(204\) −214.960 + 76.0000i −1.05373 + 0.372549i
\(205\) 140.000 + 105.000i 0.682927 + 0.512195i
\(206\) −2.82843 + 2.82843i −0.0137302 + 0.0137302i
\(207\) 187.945 + 19.9447i 0.907945 + 0.0963512i
\(208\) 208.000i 1.00000i
\(209\) 404.465 1.93524
\(210\) 63.4315 202.426i 0.302055 0.963935i
\(211\) 16.0000 0.0758294 0.0379147 0.999281i \(-0.487928\pi\)
0.0379147 + 0.999281i \(0.487928\pi\)
\(212\) 36.7696 + 36.7696i 0.173441 + 0.173441i
\(213\) −149.907 + 53.0000i −0.703787 + 0.248826i
\(214\) 118.000 + 118.000i 0.551402 + 0.551402i
\(215\) 96.1665 + 72.1249i 0.447286 + 0.335465i
\(216\) 0 0
\(217\) 65.0000 + 65.0000i 0.299539 + 0.299539i
\(218\) −280.014 + 280.014i −1.28447 + 1.28447i
\(219\) −98.2599 + 205.740i −0.448675 + 0.939453i
\(220\) −156.000 + 208.000i −0.709091 + 0.945455i
\(221\) 174.655 174.655i 0.790296 0.790296i
\(222\) 54.8528 114.853i 0.247085 0.517355i
\(223\) 80.0000i 0.358744i −0.983781 0.179372i \(-0.942593\pi\)
0.983781 0.179372i \(-0.0574066\pi\)
\(224\) −226.274 −1.01015
\(225\) −184.765 128.402i −0.821176 0.570676i
\(226\) −40.0000 + 40.0000i −0.176991 + 0.176991i
\(227\) 127.279i 0.560701i −0.959898 0.280351i \(-0.909549\pi\)
0.959898 0.280351i \(-0.0904508\pi\)
\(228\) −352.000 + 124.451i −1.54386 + 0.545837i
\(229\) 48.0000 48.0000i 0.209607 0.209607i −0.594493 0.804100i \(-0.702647\pi\)
0.804100 + 0.594493i \(0.202647\pi\)
\(230\) −237.588 178.191i −1.03299 0.774743i
\(231\) −183.848 + 65.0000i −0.795878 + 0.281385i
\(232\) 0 0
\(233\) −30.4056 + 30.4056i −0.130496 + 0.130496i −0.769338 0.638842i \(-0.779414\pi\)
0.638842 + 0.769338i \(0.279414\pi\)
\(234\) −208.000 257.387i −0.888889 1.09994i
\(235\) −357.000 + 51.0000i −1.51915 + 0.217021i
\(236\) −192.333 192.333i −0.814971 0.814971i
\(237\) −240.933 115.067i −1.01659 0.485517i
\(238\) 190.000 + 190.000i 0.798319 + 0.798319i
\(239\) 31.8198 31.8198i 0.133137 0.133137i −0.637398 0.770535i \(-0.719989\pi\)
0.770535 + 0.637398i \(0.219989\pi\)
\(240\) −71.7645 + 229.019i −0.299019 + 0.954247i
\(241\) −181.000 181.000i −0.751037 0.751037i 0.223636 0.974673i \(-0.428207\pi\)
−0.974673 + 0.223636i \(0.928207\pi\)
\(242\) 135.765 0.561010
\(243\) 192.413 + 148.413i 0.791822 + 0.610752i
\(244\) −268.000 −1.09836
\(245\) 118.794 16.9706i 0.484873 0.0692676i
\(246\) 98.9949 + 280.000i 0.402418 + 1.13821i
\(247\) 286.000 286.000i 1.15789 1.15789i
\(248\) 0 0
\(249\) −120.676 + 252.676i −0.484643 + 1.01476i
\(250\) 146.000 + 322.000i 0.584000 + 1.28800i
\(251\) −336.583 −1.34097 −0.670484 0.741924i \(-0.733913\pi\)
−0.670484 + 0.741924i \(0.733913\pi\)
\(252\) 140.000 113.137i 0.555556 0.448957i
\(253\) 273.000i 1.07905i
\(254\) −441.235 441.235i −1.73714 1.73714i
\(255\) 252.565 132.045i 0.990451 0.517824i
\(256\) 256.000 1.00000
\(257\) 147.078 + 147.078i 0.572289 + 0.572289i 0.932767 0.360479i \(-0.117387\pi\)
−0.360479 + 0.932767i \(0.617387\pi\)
\(258\) 68.0000 + 192.333i 0.263566 + 0.745477i
\(259\) −75.0000 −0.289575
\(260\) 36.7696 + 257.387i 0.141421 + 0.989949i
\(261\) 216.000 + 267.286i 0.827586 + 1.02409i
\(262\) −200.000 −0.763359
\(263\) −192.333 192.333i −0.731304 0.731304i 0.239574 0.970878i \(-0.422992\pi\)
−0.970878 + 0.239574i \(0.922992\pi\)
\(264\) 0 0
\(265\) −52.0000 39.0000i −0.196226 0.147170i
\(266\) 311.127 + 311.127i 1.16965 + 1.16965i
\(267\) −19.7990 + 7.00000i −0.0741535 + 0.0262172i
\(268\) 400.000 1.49254
\(269\) 173.948 0.646648 0.323324 0.946288i \(-0.395200\pi\)
0.323324 + 0.946288i \(0.395200\pi\)
\(270\) −140.215 355.161i −0.519316 1.31541i
\(271\) −288.000 288.000i −1.06273 1.06273i −0.997896 0.0648346i \(-0.979348\pi\)
−0.0648346 0.997896i \(-0.520652\pi\)
\(272\) −214.960 214.960i −0.790296 0.790296i
\(273\) −84.0381 + 175.962i −0.307832 + 0.644549i
\(274\) 160.000i 0.583942i
\(275\) 156.271 284.964i 0.568257 1.03623i
\(276\) −84.0000 237.588i −0.304348 0.860826i
\(277\) −177.000 + 177.000i −0.638989 + 0.638989i −0.950306 0.311317i \(-0.899230\pi\)
0.311317 + 0.950306i \(0.399230\pi\)
\(278\) −630.739 −2.26885
\(279\) 164.539 + 17.4609i 0.589746 + 0.0625839i
\(280\) 0 0
\(281\) 132.936 132.936i 0.473082 0.473082i −0.429828 0.902911i \(-0.641426\pi\)
0.902911 + 0.429828i \(0.141426\pi\)
\(282\) −552.250 263.750i −1.95833 0.935284i
\(283\) −162.000 162.000i −0.572438 0.572438i 0.360371 0.932809i \(-0.382650\pi\)
−0.932809 + 0.360371i \(0.882650\pi\)
\(284\) 149.907 + 149.907i 0.527840 + 0.527840i
\(285\) 413.578 216.225i 1.45115 0.758686i
\(286\) 338.000 338.000i 1.18182 1.18182i
\(287\) 123.744 123.744i 0.431163 0.431163i
\(288\) −316.784 + 256.000i −1.09994 + 0.888889i
\(289\) 72.0000i 0.249135i
\(290\) −76.3675 534.573i −0.263336 1.84335i
\(291\) −32.3223 + 67.6777i −0.111073 + 0.232569i
\(292\) 304.000 1.04110
\(293\) 250.316i 0.854320i −0.904176 0.427160i \(-0.859514\pi\)
0.904176 0.427160i \(-0.140486\pi\)
\(294\) 183.765 + 87.7645i 0.625049 + 0.298519i
\(295\) 272.000 + 204.000i 0.922034 + 0.691525i
\(296\) 0 0
\(297\) −183.848 + 299.000i −0.619016 + 1.00673i
\(298\) 150.000 + 150.000i 0.503356 + 0.503356i
\(299\) 193.040 + 193.040i 0.645619 + 0.645619i
\(300\) −48.3188 + 296.083i −0.161063 + 0.986944i
\(301\) 85.0000 85.0000i 0.282392 0.282392i
\(302\) −62.2254 + 62.2254i −0.206044 + 0.206044i
\(303\) −10.9706 + 22.9706i −0.0362065 + 0.0758104i
\(304\) −352.000 352.000i −1.15789 1.15789i
\(305\) 331.633 47.3762i 1.08732 0.155332i
\(306\) 480.960 + 51.0395i 1.57177 + 0.166796i
\(307\) 561.000i 1.82736i −0.406433 0.913681i \(-0.633227\pi\)
0.406433 0.913681i \(-0.366773\pi\)
\(308\) 183.848 + 183.848i 0.596908 + 0.596908i
\(309\) 4.00000 1.41421i 0.0129450 0.00457674i
\(310\) −208.000 156.000i −0.670968 0.503226i
\(311\) 250.316 0.804874 0.402437 0.915448i \(-0.368163\pi\)
0.402437 + 0.915448i \(0.368163\pi\)
\(312\) 0 0
\(313\) 342.000 342.000i 1.09265 1.09265i 0.0974071 0.995245i \(-0.468945\pi\)
0.995245 0.0974071i \(-0.0310549\pi\)
\(314\) −299.813 + 299.813i −0.954819 + 0.954819i
\(315\) −153.241 + 164.749i −0.486480 + 0.523012i
\(316\) 356.000i 1.12658i
\(317\) 185.262i 0.584423i 0.956354 + 0.292211i \(0.0943911\pi\)
−0.956354 + 0.292211i \(0.905609\pi\)
\(318\) −36.7696 104.000i −0.115628 0.327044i
\(319\) −351.000 + 351.000i −1.10031 + 1.10031i
\(320\) 316.784 45.2548i 0.989949 0.141421i
\(321\) −59.0000 166.877i −0.183801 0.519867i
\(322\) −210.000 + 210.000i −0.652174 + 0.652174i
\(323\) 591.141i 1.83016i
\(324\) 68.0000 316.784i 0.209877 0.977728i
\(325\) −91.0000 312.000i −0.280000 0.960000i
\(326\) 766.504i 2.35124i
\(327\) 396.000 140.007i 1.21101 0.428156i
\(328\) 0 0
\(329\) 360.624i 1.09612i
\(330\) 488.774 255.539i 1.48113 0.774361i
\(331\) −156.000 + 156.000i −0.471299 + 0.471299i −0.902335 0.431036i \(-0.858148\pi\)
0.431036 + 0.902335i \(0.358148\pi\)
\(332\) 373.352 1.12456
\(333\) −105.000 + 84.8528i −0.315315 + 0.254813i
\(334\) 324.000i 0.970060i
\(335\) −494.975 + 70.7107i −1.47754 + 0.211077i
\(336\) 216.569 + 103.431i 0.644549 + 0.307832i
\(337\) −251.000 + 251.000i −0.744807 + 0.744807i −0.973499 0.228692i \(-0.926555\pi\)
0.228692 + 0.973499i \(0.426555\pi\)
\(338\) 478.004i 1.41421i
\(339\) 56.5685 20.0000i 0.166869 0.0589971i
\(340\) −304.000 228.000i −0.894118 0.670588i
\(341\) 239.002i 0.700886i
\(342\) 787.578 + 83.5778i 2.30286 + 0.244379i
\(343\) 365.000i 1.06414i
\(344\) 0 0
\(345\) 145.945 + 279.151i 0.423028 + 0.809133i
\(346\) 496.000 + 496.000i 1.43353 + 1.43353i
\(347\) 99.7021 99.7021i 0.287326 0.287326i −0.548696 0.836022i \(-0.684876\pi\)
0.836022 + 0.548696i \(0.184876\pi\)
\(348\) 197.470 413.470i 0.567443 1.18813i
\(349\) 354.000 354.000i 1.01433 1.01433i 0.0144308 0.999896i \(-0.495406\pi\)
0.999896 0.0144308i \(-0.00459362\pi\)
\(350\) 339.411 98.9949i 0.969746 0.282843i
\(351\) 81.4249 + 341.425i 0.231980 + 0.972721i
\(352\) −416.000 416.000i −1.18182 1.18182i
\(353\) 504.874 1.43024 0.715119 0.699002i \(-0.246372\pi\)
0.715119 + 0.699002i \(0.246372\pi\)
\(354\) 192.333 + 544.000i 0.543314 + 1.53672i
\(355\) −212.000 159.000i −0.597183 0.447887i
\(356\) 19.7990 + 19.7990i 0.0556151 + 0.0556151i
\(357\) −95.0000 268.701i −0.266106 0.752663i
\(358\) −236.000 −0.659218
\(359\) −213.546 213.546i −0.594836 0.594836i 0.344098 0.938934i \(-0.388185\pi\)
−0.938934 + 0.344098i \(0.888185\pi\)
\(360\) 0 0
\(361\) 607.000i 1.68144i
\(362\) −36.7696 −0.101573
\(363\) −129.941 62.0589i −0.357965 0.170961i
\(364\) 260.000 0.714286
\(365\) −376.181 + 53.7401i −1.03063 + 0.147233i
\(366\) 513.009 + 245.009i 1.40166 + 0.669424i
\(367\) 218.000 + 218.000i 0.594005 + 0.594005i 0.938711 0.344705i \(-0.112021\pi\)
−0.344705 + 0.938711i \(0.612021\pi\)
\(368\) 237.588 237.588i 0.645619 0.645619i
\(369\) 33.2412 313.241i 0.0900844 0.848892i
\(370\) 210.000 30.0000i 0.567568 0.0810811i
\(371\) −45.9619 + 45.9619i −0.123887 + 0.123887i
\(372\) −73.5391 208.000i −0.197686 0.559140i
\(373\) 171.000 171.000i 0.458445 0.458445i −0.439700 0.898145i \(-0.644915\pi\)
0.898145 + 0.439700i \(0.144915\pi\)
\(374\) 698.621i 1.86797i
\(375\) 7.45079 374.926i 0.0198688 0.999803i
\(376\) 0 0
\(377\) 496.389i 1.31668i
\(378\) −371.421 + 88.5786i −0.982596 + 0.234335i
\(379\) −103.000 103.000i −0.271768 0.271768i 0.558044 0.829812i \(-0.311552\pi\)
−0.829812 + 0.558044i \(0.811552\pi\)
\(380\) −497.803 373.352i −1.31001 0.982506i
\(381\) 220.617 + 624.000i 0.579048 + 1.63780i
\(382\) 164.000 0.429319
\(383\) −492.146 −1.28498 −0.642489 0.766295i \(-0.722098\pi\)
−0.642489 + 0.766295i \(0.722098\pi\)
\(384\) 0 0
\(385\) −260.000 195.000i −0.675325 0.506494i
\(386\) 280.014i 0.725426i
\(387\) 22.8335 215.167i 0.0590012 0.555986i
\(388\) 100.000 0.257732
\(389\) 123.037i 0.316289i 0.987416 + 0.158145i \(0.0505512\pi\)
−0.987416 + 0.158145i \(0.949449\pi\)
\(390\) 164.922 526.309i 0.422876 1.34951i
\(391\) −399.000 −1.02046
\(392\) 0 0
\(393\) 191.421 + 91.4214i 0.487077 + 0.232624i
\(394\) −264.000 −0.670051
\(395\) −62.9325 440.528i −0.159323 1.11526i
\(396\) 465.387 + 49.3869i 1.17522 + 0.124714i
\(397\) 191.000i 0.481108i −0.970636 0.240554i \(-0.922671\pi\)
0.970636 0.240554i \(-0.0773292\pi\)
\(398\) 554.372i 1.39289i
\(399\) −155.563 440.000i −0.389883 1.10276i
\(400\) −384.000 + 112.000i −0.960000 + 0.280000i
\(401\) 400.222 400.222i 0.998061 0.998061i −0.00193718 0.999998i \(-0.500617\pi\)
0.999998 + 0.00193718i \(0.000616624\pi\)
\(402\) −765.685 365.685i −1.90469 0.909665i
\(403\) 169.000 + 169.000i 0.419355 + 0.419355i
\(404\) 33.9411 0.0840127
\(405\) −28.1457 + 404.021i −0.0694956 + 0.997582i
\(406\) −540.000 −1.33005
\(407\) −137.886 137.886i −0.338786 0.338786i
\(408\) 0 0
\(409\) 494.000 + 494.000i 1.20782 + 1.20782i 0.971730 + 0.236094i \(0.0758672\pi\)
0.236094 + 0.971730i \(0.424133\pi\)
\(410\) −296.985 + 395.980i −0.724353 + 0.965804i
\(411\) −73.1371 + 153.137i −0.177949 + 0.372596i
\(412\) −4.00000 4.00000i −0.00970874 0.00970874i
\(413\) 240.416 240.416i 0.582122 0.582122i
\(414\) −56.4121 + 531.588i −0.136261 + 1.28403i
\(415\) −462.000 + 66.0000i −1.11325 + 0.159036i
\(416\) −588.313 −1.41421
\(417\) 603.685 + 288.315i 1.44769 + 0.691403i
\(418\) 1144.00i 2.73684i
\(419\) −541.644 −1.29271 −0.646353 0.763039i \(-0.723707\pi\)
−0.646353 + 0.763039i \(0.723707\pi\)
\(420\) 286.274 + 89.7056i 0.681605 + 0.213585i
\(421\) −38.0000 + 38.0000i −0.0902613 + 0.0902613i −0.750796 0.660534i \(-0.770330\pi\)
0.660534 + 0.750796i \(0.270330\pi\)
\(422\) 45.2548i 0.107239i
\(423\) 408.000 + 504.874i 0.964539 + 1.19356i
\(424\) 0 0
\(425\) 416.486 + 228.395i 0.979967 + 0.537401i
\(426\) −149.907 424.000i −0.351894 0.995305i
\(427\) 335.000i 0.784543i
\(428\) −166.877 + 166.877i −0.389900 + 0.389900i
\(429\) −478.004 + 169.000i −1.11423 + 0.393939i
\(430\) −204.000 + 272.000i −0.474419 + 0.632558i
\(431\) −370.524 370.524i −0.859684 0.859684i 0.131616 0.991301i \(-0.457983\pi\)
−0.991301 + 0.131616i \(0.957983\pi\)
\(432\) 420.215 100.215i 0.972721 0.231980i
\(433\) −238.000 238.000i −0.549654 0.549654i 0.376687 0.926341i \(-0.377063\pi\)
−0.926341 + 0.376687i \(0.877063\pi\)
\(434\) −183.848 + 183.848i −0.423612 + 0.423612i
\(435\) −171.265 + 546.551i −0.393712 + 1.25644i
\(436\) −396.000 396.000i −0.908257 0.908257i
\(437\) −653.367 −1.49512
\(438\) −581.921 277.921i −1.32859 0.634523i
\(439\) 333.000 0.758542 0.379271 0.925286i \(-0.376175\pi\)
0.379271 + 0.925286i \(0.376175\pi\)
\(440\) 0 0
\(441\) −135.765 168.000i −0.307856 0.380952i
\(442\) 494.000 + 494.000i 1.11765 + 1.11765i
\(443\) −304.763 304.763i −0.687953 0.687953i 0.273826 0.961779i \(-0.411711\pi\)
−0.961779 + 0.273826i \(0.911711\pi\)
\(444\) 162.426 + 77.5736i 0.365825 + 0.174715i
\(445\) −28.0000 21.0000i −0.0629213 0.0471910i
\(446\) 226.274 0.507341
\(447\) −75.0000 212.132i −0.167785 0.474568i
\(448\) 320.000i 0.714286i
\(449\) 48.7904 + 48.7904i 0.108665 + 0.108665i 0.759349 0.650684i \(-0.225518\pi\)
−0.650684 + 0.759349i \(0.725518\pi\)
\(450\) 363.176 522.593i 0.807057 1.16132i
\(451\) 455.000 1.00887
\(452\) −56.5685 56.5685i −0.125152 0.125152i
\(453\) 88.0000 31.1127i 0.194260 0.0686815i
\(454\) 360.000 0.792952
\(455\) −321.734 + 45.9619i −0.707107 + 0.101015i
\(456\) 0 0
\(457\) 413.000 0.903720 0.451860 0.892089i \(-0.350761\pi\)
0.451860 + 0.892089i \(0.350761\pi\)
\(458\) 135.765 + 135.765i 0.296429 + 0.296429i
\(459\) −437.000 268.701i −0.952070 0.585404i
\(460\) 252.000 336.000i 0.547826 0.730435i
\(461\) −225.567 225.567i −0.489299 0.489299i 0.418786 0.908085i \(-0.362456\pi\)
−0.908085 + 0.418786i \(0.862456\pi\)
\(462\) −183.848 520.000i −0.397939 1.12554i
\(463\) 153.000 0.330454 0.165227 0.986256i \(-0.447164\pi\)
0.165227 + 0.986256i \(0.447164\pi\)
\(464\) 610.940 1.31668
\(465\) 127.770 + 244.387i 0.274773 + 0.525563i
\(466\) −86.0000 86.0000i −0.184549 0.184549i
\(467\) 396.687 + 396.687i 0.849437 + 0.849437i 0.990063 0.140626i \(-0.0449116\pi\)
−0.140626 + 0.990063i \(0.544912\pi\)
\(468\) 364.000 294.156i 0.777778 0.628539i
\(469\) 500.000i 1.06610i
\(470\) −144.250 1009.75i −0.306914 2.14840i
\(471\) 424.000 149.907i 0.900212 0.318273i
\(472\) 0 0
\(473\) 312.541 0.660764
\(474\) 325.460 681.460i 0.686625 1.43768i
\(475\) 682.000 + 374.000i 1.43579 + 0.787368i
\(476\) −268.701 + 268.701i −0.564497 + 0.564497i
\(477\) −12.3467 + 116.347i −0.0258841 + 0.243913i
\(478\) 90.0000 + 90.0000i 0.188285 + 0.188285i
\(479\) −229.810 229.810i −0.479770 0.479770i 0.425288 0.905058i \(-0.360173\pi\)
−0.905058 + 0.425288i \(0.860173\pi\)
\(480\) −647.765 202.981i −1.34951 0.422876i
\(481\) −195.000 −0.405405
\(482\) 511.945 511.945i 1.06213 1.06213i
\(483\) 296.985 105.000i 0.614875 0.217391i
\(484\) 192.000i 0.396694i
\(485\) −123.744 + 17.6777i −0.255142 + 0.0364488i
\(486\) −419.775 + 544.225i −0.863734 + 1.11981i
\(487\) −65.0000 −0.133470 −0.0667351 0.997771i \(-0.521258\pi\)
−0.0667351 + 0.997771i \(0.521258\pi\)
\(488\) 0 0
\(489\) 350.374 733.626i 0.716511 1.50026i
\(490\) 48.0000 + 336.000i 0.0979592 + 0.685714i
\(491\) −69.2965 −0.141133 −0.0705667 0.997507i \(-0.522481\pi\)
−0.0705667 + 0.997507i \(0.522481\pi\)
\(492\) −395.980 + 140.000i −0.804837 + 0.284553i
\(493\) −513.000 513.000i −1.04057 1.04057i
\(494\) 808.930 + 808.930i 1.63751 + 1.63751i
\(495\) −584.617 + 21.1564i −1.18105 + 0.0427402i
\(496\) 208.000 208.000i 0.419355 0.419355i
\(497\) −187.383 + 187.383i −0.377029 + 0.377029i
\(498\) −714.676 341.324i −1.43509 0.685389i
\(499\) −111.000 111.000i −0.222445 0.222445i 0.587082 0.809527i \(-0.300276\pi\)
−0.809527 + 0.587082i \(0.800276\pi\)
\(500\) −455.377 + 206.475i −0.910754 + 0.412950i
\(501\) −148.103 + 310.103i −0.295614 + 0.618967i
\(502\) 952.000i 1.89641i
\(503\) 373.352 + 373.352i 0.742251 + 0.742251i 0.973011 0.230760i \(-0.0741211\pi\)
−0.230760 + 0.973011i \(0.574121\pi\)
\(504\) 0 0
\(505\) −42.0000 + 6.00000i −0.0831683 + 0.0118812i
\(506\) −772.161 −1.52601
\(507\) −218.499 + 457.501i −0.430964 + 0.902369i
\(508\) 624.000 624.000i 1.22835 1.22835i
\(509\) −569.221 + 569.221i −1.11831 + 1.11831i −0.126323 + 0.991989i \(0.540318\pi\)
−0.991989 + 0.126323i \(0.959682\pi\)
\(510\) 373.480 + 714.362i 0.732314 + 1.40071i
\(511\) 380.000i 0.743640i
\(512\) 724.077i 1.41421i
\(513\) −715.592 440.000i −1.39492 0.857700i
\(514\) −416.000 + 416.000i −0.809339 + 0.809339i
\(515\) 5.65685 + 4.24264i 0.0109842 + 0.00823814i
\(516\) −272.000 + 96.1665i −0.527132 + 0.186369i
\(517\) −663.000 + 663.000i −1.28240 + 1.28240i
\(518\) 212.132i 0.409521i
\(519\) −248.000 701.450i −0.477842 1.35154i
\(520\) 0 0
\(521\) 439.820i 0.844185i −0.906553 0.422093i \(-0.861296\pi\)
0.906553 0.422093i \(-0.138704\pi\)
\(522\) −756.000 + 610.940i −1.44828 + 1.17038i
\(523\) 30.0000 30.0000i 0.0573614 0.0573614i −0.677844 0.735206i \(-0.737086\pi\)
0.735206 + 0.677844i \(0.237086\pi\)
\(524\) 282.843i 0.539776i
\(525\) −370.104 60.3984i −0.704960 0.115045i
\(526\) 544.000 544.000i 1.03422 1.03422i
\(527\) −349.311 −0.662829
\(528\) 208.000 + 588.313i 0.393939 + 1.11423i
\(529\) 88.0000i 0.166352i
\(530\) 110.309 147.078i 0.208130 0.277506i
\(531\) 64.5828 608.583i 0.121625 1.14611i
\(532\) −440.000 + 440.000i −0.827068 + 0.827068i
\(533\) 321.734 321.734i 0.603628 0.603628i
\(534\) −19.7990 56.0000i −0.0370768 0.104869i
\(535\) 177.000 236.000i 0.330841 0.441121i
\(536\) 0 0
\(537\) 225.877 + 107.877i 0.420628 + 0.200889i
\(538\) 492.000i 0.914498i
\(539\) 220.617 220.617i 0.409309 0.409309i
\(540\) 502.274 198.294i 0.930137 0.367212i
\(541\) −198.000 198.000i −0.365989 0.365989i 0.500023 0.866012i \(-0.333325\pi\)
−0.866012 + 0.500023i \(0.833325\pi\)
\(542\) 814.587 814.587i 1.50293 1.50293i
\(543\) 35.1924 + 16.8076i 0.0648110 + 0.0309532i
\(544\) 608.000 608.000i 1.11765 1.11765i
\(545\) 560.029 + 420.021i 1.02758 + 0.770682i
\(546\) −497.696 237.696i −0.911530 0.435340i
\(547\) 57.0000 + 57.0000i 0.104205 + 0.104205i 0.757287 0.653082i \(-0.226524\pi\)
−0.653082 + 0.757287i \(0.726524\pi\)
\(548\) 226.274 0.412909
\(549\) −379.009 469.000i −0.690363 0.854281i
\(550\) 806.000 + 442.000i 1.46545 + 0.803636i
\(551\) −840.043 840.043i −1.52458 1.52458i
\(552\) 0 0
\(553\) −445.000 −0.804702
\(554\) −500.632 500.632i −0.903667 0.903667i
\(555\) −214.706 67.2792i −0.386857 0.121224i
\(556\) 892.000i 1.60432i
\(557\) −649.124 −1.16539 −0.582697 0.812690i \(-0.698002\pi\)
−0.582697 + 0.812690i \(0.698002\pi\)
\(558\) −49.3869 + 465.387i −0.0885069 + 0.834027i
\(559\) 221.000 221.000i 0.395349 0.395349i
\(560\) 56.5685 + 395.980i 0.101015 + 0.707107i
\(561\) 319.345 668.655i 0.569242 1.19190i
\(562\) 376.000 + 376.000i 0.669039 + 0.669039i
\(563\) 396.687 396.687i 0.704595 0.704595i −0.260798 0.965393i \(-0.583986\pi\)
0.965393 + 0.260798i \(0.0839858\pi\)
\(564\) 372.999 780.999i 0.661346 1.38475i
\(565\) 80.0000 + 60.0000i 0.141593 + 0.106195i
\(566\) 458.205 458.205i 0.809550 0.809550i
\(567\) 395.980 + 85.0000i 0.698377 + 0.149912i
\(568\) 0 0
\(569\) 878.227i 1.54346i −0.635953 0.771728i \(-0.719393\pi\)
0.635953 0.771728i \(-0.280607\pi\)
\(570\) 611.578 + 1169.77i 1.07294 + 2.05224i
\(571\) 753.000i 1.31874i −0.751819 0.659370i \(-0.770823\pi\)
0.751819 0.659370i \(-0.229177\pi\)
\(572\) 478.004 + 478.004i 0.835672 + 0.835672i
\(573\) −156.966 74.9655i −0.273936 0.130830i
\(574\) 350.000 + 350.000i 0.609756 + 0.609756i
\(575\) −252.437 + 460.327i −0.439021 + 0.800568i
\(576\) −362.039 448.000i −0.628539 0.777778i
\(577\) −287.000 −0.497400 −0.248700 0.968581i \(-0.580003\pi\)
−0.248700 + 0.968581i \(0.580003\pi\)
\(578\) −203.647 −0.352330
\(579\) −127.996 + 268.004i −0.221065 + 0.462873i
\(580\) 756.000 108.000i 1.30345 0.186207i
\(581\) 466.690i 0.803254i
\(582\) −191.421 91.4214i −0.328903 0.157081i
\(583\) −169.000 −0.289880
\(584\) 0 0
\(585\) −398.427 + 428.347i −0.681072 + 0.732217i
\(586\) 708.000 1.20819
\(587\) 972.979i 1.65755i 0.559586 + 0.828773i \(0.310960\pi\)
−0.559586 + 0.828773i \(0.689040\pi\)
\(588\) −124.118 + 259.882i −0.211085 + 0.441977i
\(589\) −572.000 −0.971138
\(590\) −576.999 + 769.332i −0.977965 + 1.30395i
\(591\) 252.676 + 120.676i 0.427540 + 0.204190i
\(592\) 240.000i 0.405405i
\(593\) 363.453i 0.612905i 0.951886 + 0.306453i \(0.0991421\pi\)
−0.951886 + 0.306453i \(0.900858\pi\)
\(594\) −845.700 520.000i −1.42374 0.875421i
\(595\) 285.000 380.000i 0.478992 0.638655i
\(596\) −212.132 + 212.132i −0.355926 + 0.355926i
\(597\) 253.407 530.593i 0.424467 0.888765i
\(598\) −546.000 + 546.000i −0.913043 + 0.913043i
\(599\) 72.1249 0.120409 0.0602044 0.998186i \(-0.480825\pi\)
0.0602044 + 0.998186i \(0.480825\pi\)
\(600\) 0 0
\(601\) −677.000 −1.12646 −0.563228 0.826302i \(-0.690441\pi\)
−0.563228 + 0.826302i \(0.690441\pi\)
\(602\) 240.416 + 240.416i 0.399363 + 0.399363i
\(603\) 565.685 + 700.000i 0.938118 + 1.16086i
\(604\) −88.0000 88.0000i −0.145695 0.145695i
\(605\) −33.9411 237.588i −0.0561010 0.392707i
\(606\) −64.9706 31.0294i −0.107212 0.0512037i
\(607\) −256.000 256.000i −0.421746 0.421746i 0.464058 0.885805i \(-0.346393\pi\)
−0.885805 + 0.464058i \(0.846393\pi\)
\(608\) 995.606 995.606i 1.63751 1.63751i
\(609\) 516.838 + 246.838i 0.848666 + 0.405316i
\(610\) 134.000 + 938.000i 0.219672 + 1.53770i
\(611\) 937.624i 1.53457i
\(612\) −72.1808 + 680.181i −0.117942 + 1.11141i
\(613\) 221.000i 0.360522i 0.983619 + 0.180261i \(0.0576942\pi\)
−0.983619 + 0.180261i \(0.942306\pi\)
\(614\) 1586.75 2.58428
\(615\) 465.251 243.241i 0.756506 0.395514i
\(616\) 0 0
\(617\) 770.746i 1.24918i −0.780951 0.624592i \(-0.785265\pi\)
0.780951 0.624592i \(-0.214735\pi\)
\(618\) 4.00000 + 11.3137i 0.00647249 + 0.0183070i
\(619\) −644.000 + 644.000i −1.04039 + 1.04039i −0.0412384 + 0.999149i \(0.513130\pi\)
−0.999149 + 0.0412384i \(0.986870\pi\)
\(620\) 220.617 294.156i 0.355834 0.474446i
\(621\) 296.985 483.000i 0.478236 0.777778i
\(622\) 708.000i 1.13826i
\(623\) −24.7487 + 24.7487i −0.0397251 + 0.0397251i
\(624\) 563.078 + 268.922i 0.902369 + 0.430964i
\(625\) 527.000 336.000i 0.843200 0.537600i
\(626\) 967.322 + 967.322i 1.54524 + 1.54524i
\(627\) 522.930 1094.93i 0.834019 1.74630i
\(628\) −424.000 424.000i −0.675159 0.675159i
\(629\) 201.525 201.525i 0.320390 0.320390i
\(630\) −465.980 433.431i −0.739650 0.687986i
\(631\) 719.000 + 719.000i 1.13946 + 1.13946i 0.988547 + 0.150914i \(0.0482218\pi\)
0.150914 + 0.988547i \(0.451778\pi\)
\(632\) 0 0
\(633\) 20.6863 43.3137i 0.0326798 0.0684261i
\(634\) −524.000 −0.826498
\(635\) −661.852 + 882.469i −1.04229 + 1.38972i
\(636\) 147.078 52.0000i 0.231255 0.0817610i
\(637\) 312.000i 0.489796i
\(638\) −992.778 992.778i −1.55608 1.55608i
\(639\) −50.3366 + 474.337i −0.0787740 + 0.742311i
\(640\) 0 0
\(641\) −831.558 −1.29728 −0.648641 0.761095i \(-0.724662\pi\)
−0.648641 + 0.761095i \(0.724662\pi\)
\(642\) 472.000 166.877i 0.735202 0.259933i
\(643\) 1039.00i 1.61586i 0.589276 + 0.807932i \(0.299413\pi\)
−0.589276 + 0.807932i \(0.700587\pi\)
\(644\) −296.985 296.985i −0.461157 0.461157i
\(645\) 319.583 167.083i 0.495477 0.259044i
\(646\) −1672.00 −2.58824
\(647\) 632.861 + 632.861i 0.978146 + 0.978146i 0.999766 0.0216201i \(-0.00688243\pi\)
−0.0216201 + 0.999766i \(0.506882\pi\)
\(648\) 0 0
\(649\) 884.000 1.36210
\(650\) 882.469 257.387i 1.35765 0.395980i
\(651\) 260.000 91.9239i 0.399386 0.141204i
\(652\) −1084.00 −1.66258
\(653\) 325.269 + 325.269i 0.498115 + 0.498115i 0.910851 0.412736i \(-0.135427\pi\)
−0.412736 + 0.910851i \(0.635427\pi\)
\(654\) 396.000 + 1120.06i 0.605505 + 1.71263i
\(655\) 50.0000 + 350.000i 0.0763359 + 0.534351i
\(656\) −395.980 395.980i −0.603628 0.603628i
\(657\) 429.921 + 532.000i 0.654370 + 0.809741i
\(658\) −1020.00 −1.55015
\(659\) −1129.96 −1.71465 −0.857327 0.514773i \(-0.827876\pi\)
−0.857327 + 0.514773i \(0.827876\pi\)
\(660\) 361.387 + 691.230i 0.547556 + 1.04732i
\(661\) −97.0000 97.0000i −0.146747 0.146747i 0.629916 0.776663i \(-0.283089\pi\)
−0.776663 + 0.629916i \(0.783089\pi\)
\(662\) −441.235 441.235i −0.666518 0.666518i
\(663\) −247.000 698.621i −0.372549 1.05373i
\(664\) 0 0
\(665\) 466.690 622.254i 0.701790 0.935720i
\(666\) −240.000 296.985i −0.360360 0.445923i
\(667\) 567.000 567.000i 0.850075 0.850075i
\(668\) 458.205 0.685936
\(669\) −216.569 103.431i −0.323720 0.154606i
\(670\) −200.000 1400.00i −0.298507 2.08955i
\(671\) 615.890 615.890i 0.917869 0.917869i
\(672\) −292.548 + 612.548i −0.435340 + 0.911530i
\(673\) 813.000 + 813.000i 1.20802 + 1.20802i 0.971666 + 0.236358i \(0.0759537\pi\)
0.236358 + 0.971666i \(0.424046\pi\)
\(674\) −709.935 709.935i −1.05332 1.05332i
\(675\) −586.479 + 334.167i −0.868857 + 0.495062i
\(676\) 676.000 1.00000
\(677\) 716.299 716.299i 1.05805 1.05805i 0.0598411 0.998208i \(-0.480941\pi\)
0.998208 0.0598411i \(-0.0190594\pi\)
\(678\) 56.5685 + 160.000i 0.0834344 + 0.235988i
\(679\) 125.000i 0.184094i
\(680\) 0 0
\(681\) −344.558 164.558i −0.505960 0.241642i
\(682\) −676.000 −0.991202
\(683\) 873.984i 1.27963i −0.768531 0.639813i \(-0.779012\pi\)
0.768531 0.639813i \(-0.220988\pi\)
\(684\) −118.197 + 1113.80i −0.172802 + 1.62837i
\(685\) −280.000 + 40.0000i −0.408759 + 0.0583942i
\(686\) 1032.38 1.50492
\(687\) −67.8823 192.000i −0.0988097 0.279476i
\(688\) −272.000 272.000i −0.395349 0.395349i
\(689\) −119.501 + 119.501i −0.173441 + 0.173441i
\(690\) −789.558 + 412.794i −1.14429 + 0.598252i
\(691\) −396.000 + 396.000i −0.573082 + 0.573082i −0.932989 0.359906i \(-0.882809\pi\)
0.359906 + 0.932989i \(0.382809\pi\)
\(692\) −701.450 + 701.450i −1.01366 + 1.01366i
\(693\) −61.7336 + 581.734i −0.0890817 + 0.839442i
\(694\) 282.000 + 282.000i 0.406340 + 0.406340i
\(695\) 157.685 + 1103.79i 0.226885 + 1.58819i
\(696\) 0 0
\(697\) 665.000i 0.954089i
\(698\) 1001.26 + 1001.26i 1.43447 + 1.43447i
\(699\) 43.0000 + 121.622i 0.0615165 + 0.173995i
\(700\) 140.000 + 480.000i 0.200000 + 0.685714i
\(701\) 1154.00 1.64622 0.823109 0.567884i \(-0.192238\pi\)
0.823109 + 0.567884i \(0.192238\pi\)
\(702\) −965.696 + 230.304i −1.37563 + 0.328069i
\(703\) 330.000 330.000i 0.469417 0.469417i
\(704\) 588.313 588.313i 0.835672 0.835672i
\(705\) −323.500 + 1032.37i −0.458866 + 1.46436i
\(706\) 1428.00i 2.02266i
\(707\) 42.4264i 0.0600091i
\(708\) −769.332 + 272.000i −1.08663 + 0.384181i
\(709\) 656.000 656.000i 0.925247 0.925247i −0.0721472 0.997394i \(-0.522985\pi\)
0.997394 + 0.0721472i \(0.0229851\pi\)
\(710\) 449.720 599.627i 0.633408 0.844544i
\(711\) −623.000 + 503.460i −0.876231 + 0.708101i
\(712\) 0 0
\(713\) 386.080i 0.541487i
\(714\) 760.000 268.701i 1.06443 0.376331i
\(715\) −676.000 507.000i −0.945455 0.709091i
\(716\) 333.754i 0.466137i
\(717\) −45.0000 127.279i −0.0627615 0.177516i
\(718\) 604.000 604.000i 0.841226 0.841226i
\(719\) 359.210i 0.499597i 0.968298 + 0.249799i \(0.0803644\pi\)
−0.968298 + 0.249799i \(0.919636\pi\)
\(720\) 527.196 + 490.372i 0.732217 + 0.681072i
\(721\) 5.00000 5.00000i 0.00693481 0.00693481i
\(722\) −1716.86 −2.37792
\(723\) −724.000 + 255.973i −1.00138 + 0.354042i
\(724\) 52.0000i 0.0718232i
\(725\) −916.410 + 267.286i −1.26401 + 0.368671i
\(726\) 175.529 367.529i 0.241775 0.506238i
\(727\) 217.000 217.000i 0.298487 0.298487i −0.541934 0.840421i \(-0.682308\pi\)
0.840421 + 0.541934i \(0.182308\pi\)
\(728\) 0 0
\(729\) 650.538 329.000i 0.892371 0.451303i
\(730\) −152.000 1064.00i −0.208219 1.45753i
\(731\) 456.791i 0.624885i
\(732\) −346.495 + 725.505i −0.473354 + 0.991127i
\(733\) 1049.00i 1.43111i −0.698559 0.715553i \(-0.746175\pi\)
0.698559 0.715553i \(-0.253825\pi\)
\(734\) −616.597 + 616.597i −0.840051 + 0.840051i
\(735\) 107.647 343.529i 0.146458 0.467386i
\(736\) 672.000 + 672.000i 0.913043 + 0.913043i
\(737\) −919.239 + 919.239i −1.24727 + 1.24727i
\(738\) 885.980 + 94.0202i 1.20051 + 0.127399i
\(739\) 609.000 609.000i 0.824087 0.824087i −0.162605 0.986691i \(-0.551990\pi\)
0.986691 + 0.162605i \(0.0519895\pi\)
\(740\) 42.4264 + 296.985i 0.0573330 + 0.401331i
\(741\) −404.465 1144.00i −0.545837 1.54386i
\(742\) −130.000 130.000i −0.175202 0.175202i
\(743\) 562.857 0.757546 0.378773 0.925490i \(-0.376346\pi\)
0.378773 + 0.925490i \(0.376346\pi\)
\(744\) 0 0
\(745\) 225.000 300.000i 0.302013 0.402685i
\(746\) 483.661 + 483.661i 0.648339 + 0.648339i
\(747\) 528.000 + 653.367i 0.706827 + 0.874654i
\(748\) −988.000 −1.32086
\(749\) −208.597 208.597i −0.278500 0.278500i
\(750\) 1060.45 + 21.0740i 1.41393 + 0.0280987i
\(751\) 185.000i 0.246338i −0.992386 0.123169i \(-0.960694\pi\)
0.992386 0.123169i \(-0.0393058\pi\)
\(752\) 1154.00 1.53457
\(753\) −435.166 + 911.166i −0.577909 + 1.21005i
\(754\) −1404.00 −1.86207
\(755\) 124.451 + 93.3381i 0.164835 + 0.123627i
\(756\) −125.269 525.269i −0.165700 0.694800i
\(757\) 493.000 + 493.000i 0.651255 + 0.651255i 0.953295 0.302040i \(-0.0976677\pi\)
−0.302040 + 0.953295i \(0.597668\pi\)
\(758\) 291.328 291.328i 0.384338 0.384338i
\(759\) 739.040 + 352.960i 0.973702 + 0.465033i
\(760\) 0 0
\(761\) 618.011 618.011i 0.812104 0.812104i −0.172845 0.984949i \(-0.555296\pi\)
0.984949 + 0.172845i \(0.0552959\pi\)
\(762\) −1764.94 + 624.000i −2.31619 + 0.818898i
\(763\) 495.000 495.000i 0.648755 0.648755i
\(764\) 231.931i 0.303575i
\(765\) −30.9209 854.441i −0.0404195 1.11692i
\(766\) 1392.00i 1.81723i
\(767\) 625.082 625.082i 0.814971 0.814971i
\(768\) 330.981 693.019i 0.430964 0.902369i
\(769\) −897.000 897.000i −1.16645 1.16645i −0.983036 0.183414<