Properties

Label 195.3.j.c.122.1
Level $195$
Weight $3$
Character 195.122
Analytic conductor $5.313$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,3,Mod(8,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.8");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 195.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31336515503\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 122.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 195.122
Dual form 195.3.j.c.8.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843i q^{2} +(2.70711 - 1.29289i) q^{3} -4.00000 q^{4} +(-4.94975 + 0.707107i) q^{5} +(-3.65685 - 7.65685i) q^{6} -5.00000i q^{7} +(5.65685 - 7.00000i) q^{9} +O(q^{10})\) \(q-2.82843i q^{2} +(2.70711 - 1.29289i) q^{3} -4.00000 q^{4} +(-4.94975 + 0.707107i) q^{5} +(-3.65685 - 7.65685i) q^{6} -5.00000i q^{7} +(5.65685 - 7.00000i) q^{9} +(2.00000 + 14.0000i) q^{10} +(-9.19239 + 9.19239i) q^{11} +(-10.8284 + 5.17157i) q^{12} -13.0000i q^{13} -14.1421 q^{14} +(-12.4853 + 8.31371i) q^{15} -16.0000 q^{16} +(-13.4350 - 13.4350i) q^{17} +(-19.7990 - 16.0000i) q^{18} +(22.0000 + 22.0000i) q^{19} +(19.7990 - 2.82843i) q^{20} +(-6.46447 - 13.5355i) q^{21} +(26.0000 + 26.0000i) q^{22} +(14.8492 - 14.8492i) q^{23} +(24.0000 - 7.00000i) q^{25} -36.7696 q^{26} +(6.26346 - 26.2635i) q^{27} +20.0000i q^{28} +38.1838 q^{29} +(23.5147 + 35.3137i) q^{30} +(-13.0000 + 13.0000i) q^{31} +45.2548i q^{32} +(-13.0000 + 36.7696i) q^{33} +(-38.0000 + 38.0000i) q^{34} +(3.53553 + 24.7487i) q^{35} +(-22.6274 + 28.0000i) q^{36} -15.0000i q^{37} +(62.2254 - 62.2254i) q^{38} +(-16.8076 - 35.1924i) q^{39} +(-24.7487 - 24.7487i) q^{41} +(-38.2843 + 18.2843i) q^{42} +(17.0000 + 17.0000i) q^{43} +(36.7696 - 36.7696i) q^{44} +(-23.0503 + 38.6482i) q^{45} +(-42.0000 - 42.0000i) q^{46} +72.1249 q^{47} +(-43.3137 + 20.6863i) q^{48} +24.0000 q^{49} +(-19.7990 - 67.8823i) q^{50} +(-53.7401 - 19.0000i) q^{51} +52.0000i q^{52} +(9.19239 + 9.19239i) q^{53} +(-74.2843 - 17.7157i) q^{54} +(39.0000 - 52.0000i) q^{55} +(88.0000 + 31.1127i) q^{57} -108.000i q^{58} +(-48.0833 - 48.0833i) q^{59} +(49.9411 - 33.2548i) q^{60} +67.0000 q^{61} +(36.7696 + 36.7696i) q^{62} +(-35.0000 - 28.2843i) q^{63} +64.0000 q^{64} +(9.19239 + 64.3467i) q^{65} +(104.000 + 36.7696i) q^{66} -100.000 q^{67} +(53.7401 + 53.7401i) q^{68} +(21.0000 - 59.3970i) q^{69} +(70.0000 - 10.0000i) q^{70} +(37.4767 + 37.4767i) q^{71} -76.0000 q^{73} -42.4264 q^{74} +(55.9203 - 49.9792i) q^{75} +(-88.0000 - 88.0000i) q^{76} +(45.9619 + 45.9619i) q^{77} +(-99.5391 + 47.5391i) q^{78} -89.0000i q^{79} +(79.1960 - 11.3137i) q^{80} +(-17.0000 - 79.1960i) q^{81} +(-70.0000 + 70.0000i) q^{82} +93.3381 q^{83} +(25.8579 + 54.1421i) q^{84} +(76.0000 + 57.0000i) q^{85} +(48.0833 - 48.0833i) q^{86} +(103.368 - 49.3675i) q^{87} +(4.94975 + 4.94975i) q^{89} +(109.314 + 65.1960i) q^{90} -65.0000 q^{91} +(-59.3970 + 59.3970i) q^{92} +(-18.3848 + 52.0000i) q^{93} -204.000i q^{94} +(-124.451 - 93.3381i) q^{95} +(58.5097 + 122.510i) q^{96} -25.0000 q^{97} -67.8823i q^{98} +(12.3467 + 116.347i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{3} - 16 q^{4} + 8 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{3} - 16 q^{4} + 8 q^{6} + 8 q^{10} - 32 q^{12} - 16 q^{15} - 64 q^{16} + 88 q^{19} - 40 q^{21} + 104 q^{22} + 96 q^{25} - 40 q^{27} + 128 q^{30} - 52 q^{31} - 52 q^{33} - 152 q^{34} - 104 q^{39} - 40 q^{42} + 68 q^{43} - 112 q^{45} - 168 q^{46} - 128 q^{48} + 96 q^{49} - 184 q^{54} + 156 q^{55} + 352 q^{57} + 64 q^{60} + 268 q^{61} - 140 q^{63} + 256 q^{64} + 416 q^{66} - 400 q^{67} + 84 q^{69} + 280 q^{70} - 304 q^{73} + 136 q^{75} - 352 q^{76} - 104 q^{78} - 68 q^{81} - 280 q^{82} + 160 q^{84} + 304 q^{85} + 108 q^{87} + 392 q^{90} - 260 q^{91} - 128 q^{96} - 100 q^{97} - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) 2.70711 1.29289i 0.902369 0.430964i
\(4\) −4.00000 −1.00000
\(5\) −4.94975 + 0.707107i −0.989949 + 0.141421i
\(6\) −3.65685 7.65685i −0.609476 1.27614i
\(7\) 5.00000i 0.714286i −0.934050 0.357143i \(-0.883751\pi\)
0.934050 0.357143i \(-0.116249\pi\)
\(8\) 0 0
\(9\) 5.65685 7.00000i 0.628539 0.777778i
\(10\) 2.00000 + 14.0000i 0.200000 + 1.40000i
\(11\) −9.19239 + 9.19239i −0.835672 + 0.835672i −0.988286 0.152614i \(-0.951231\pi\)
0.152614 + 0.988286i \(0.451231\pi\)
\(12\) −10.8284 + 5.17157i −0.902369 + 0.430964i
\(13\) 13.0000i 1.00000i
\(14\) −14.1421 −1.01015
\(15\) −12.4853 + 8.31371i −0.832352 + 0.554247i
\(16\) −16.0000 −1.00000
\(17\) −13.4350 13.4350i −0.790296 0.790296i 0.191246 0.981542i \(-0.438747\pi\)
−0.981542 + 0.191246i \(0.938747\pi\)
\(18\) −19.7990 16.0000i −1.09994 0.888889i
\(19\) 22.0000 + 22.0000i 1.15789 + 1.15789i 0.984928 + 0.172967i \(0.0553354\pi\)
0.172967 + 0.984928i \(0.444665\pi\)
\(20\) 19.7990 2.82843i 0.989949 0.141421i
\(21\) −6.46447 13.5355i −0.307832 0.644549i
\(22\) 26.0000 + 26.0000i 1.18182 + 1.18182i
\(23\) 14.8492 14.8492i 0.645619 0.645619i −0.306312 0.951931i \(-0.599095\pi\)
0.951931 + 0.306312i \(0.0990951\pi\)
\(24\) 0 0
\(25\) 24.0000 7.00000i 0.960000 0.280000i
\(26\) −36.7696 −1.41421
\(27\) 6.26346 26.2635i 0.231980 0.972721i
\(28\) 20.0000i 0.714286i
\(29\) 38.1838 1.31668 0.658341 0.752720i \(-0.271259\pi\)
0.658341 + 0.752720i \(0.271259\pi\)
\(30\) 23.5147 + 35.3137i 0.783824 + 1.17712i
\(31\) −13.0000 + 13.0000i −0.419355 + 0.419355i −0.884981 0.465626i \(-0.845829\pi\)
0.465626 + 0.884981i \(0.345829\pi\)
\(32\) 45.2548i 1.41421i
\(33\) −13.0000 + 36.7696i −0.393939 + 1.11423i
\(34\) −38.0000 + 38.0000i −1.11765 + 1.11765i
\(35\) 3.53553 + 24.7487i 0.101015 + 0.707107i
\(36\) −22.6274 + 28.0000i −0.628539 + 0.777778i
\(37\) 15.0000i 0.405405i −0.979240 0.202703i \(-0.935027\pi\)
0.979240 0.202703i \(-0.0649725\pi\)
\(38\) 62.2254 62.2254i 1.63751 1.63751i
\(39\) −16.8076 35.1924i −0.430964 0.902369i
\(40\) 0 0
\(41\) −24.7487 24.7487i −0.603628 0.603628i 0.337646 0.941273i \(-0.390369\pi\)
−0.941273 + 0.337646i \(0.890369\pi\)
\(42\) −38.2843 + 18.2843i −0.911530 + 0.435340i
\(43\) 17.0000 + 17.0000i 0.395349 + 0.395349i 0.876589 0.481240i \(-0.159813\pi\)
−0.481240 + 0.876589i \(0.659813\pi\)
\(44\) 36.7696 36.7696i 0.835672 0.835672i
\(45\) −23.0503 + 38.6482i −0.512228 + 0.858850i
\(46\) −42.0000 42.0000i −0.913043 0.913043i
\(47\) 72.1249 1.53457 0.767286 0.641305i \(-0.221607\pi\)
0.767286 + 0.641305i \(0.221607\pi\)
\(48\) −43.3137 + 20.6863i −0.902369 + 0.430964i
\(49\) 24.0000 0.489796
\(50\) −19.7990 67.8823i −0.395980 1.35765i
\(51\) −53.7401 19.0000i −1.05373 0.372549i
\(52\) 52.0000i 1.00000i
\(53\) 9.19239 + 9.19239i 0.173441 + 0.173441i 0.788490 0.615048i \(-0.210863\pi\)
−0.615048 + 0.788490i \(0.710863\pi\)
\(54\) −74.2843 17.7157i −1.37563 0.328069i
\(55\) 39.0000 52.0000i 0.709091 0.945455i
\(56\) 0 0
\(57\) 88.0000 + 31.1127i 1.54386 + 0.545837i
\(58\) 108.000i 1.86207i
\(59\) −48.0833 48.0833i −0.814971 0.814971i 0.170404 0.985374i \(-0.445493\pi\)
−0.985374 + 0.170404i \(0.945493\pi\)
\(60\) 49.9411 33.2548i 0.832352 0.554247i
\(61\) 67.0000 1.09836 0.549180 0.835704i \(-0.314940\pi\)
0.549180 + 0.835704i \(0.314940\pi\)
\(62\) 36.7696 + 36.7696i 0.593057 + 0.593057i
\(63\) −35.0000 28.2843i −0.555556 0.448957i
\(64\) 64.0000 1.00000
\(65\) 9.19239 + 64.3467i 0.141421 + 0.989949i
\(66\) 104.000 + 36.7696i 1.57576 + 0.557114i
\(67\) −100.000 −1.49254 −0.746269 0.665645i \(-0.768157\pi\)
−0.746269 + 0.665645i \(0.768157\pi\)
\(68\) 53.7401 + 53.7401i 0.790296 + 0.790296i
\(69\) 21.0000 59.3970i 0.304348 0.860826i
\(70\) 70.0000 10.0000i 1.00000 0.142857i
\(71\) 37.4767 + 37.4767i 0.527840 + 0.527840i 0.919928 0.392088i \(-0.128247\pi\)
−0.392088 + 0.919928i \(0.628247\pi\)
\(72\) 0 0
\(73\) −76.0000 −1.04110 −0.520548 0.853832i \(-0.674272\pi\)
−0.520548 + 0.853832i \(0.674272\pi\)
\(74\) −42.4264 −0.573330
\(75\) 55.9203 49.9792i 0.745604 0.666389i
\(76\) −88.0000 88.0000i −1.15789 1.15789i
\(77\) 45.9619 + 45.9619i 0.596908 + 0.596908i
\(78\) −99.5391 + 47.5391i −1.27614 + 0.609476i
\(79\) 89.0000i 1.12658i −0.826258 0.563291i \(-0.809535\pi\)
0.826258 0.563291i \(-0.190465\pi\)
\(80\) 79.1960 11.3137i 0.989949 0.141421i
\(81\) −17.0000 79.1960i −0.209877 0.977728i
\(82\) −70.0000 + 70.0000i −0.853659 + 0.853659i
\(83\) 93.3381 1.12456 0.562278 0.826948i \(-0.309925\pi\)
0.562278 + 0.826948i \(0.309925\pi\)
\(84\) 25.8579 + 54.1421i 0.307832 + 0.644549i
\(85\) 76.0000 + 57.0000i 0.894118 + 0.670588i
\(86\) 48.0833 48.0833i 0.559108 0.559108i
\(87\) 103.368 49.3675i 1.18813 0.567443i
\(88\) 0 0
\(89\) 4.94975 + 4.94975i 0.0556151 + 0.0556151i 0.734367 0.678752i \(-0.237479\pi\)
−0.678752 + 0.734367i \(0.737479\pi\)
\(90\) 109.314 + 65.1960i 1.21460 + 0.724400i
\(91\) −65.0000 −0.714286
\(92\) −59.3970 + 59.3970i −0.645619 + 0.645619i
\(93\) −18.3848 + 52.0000i −0.197686 + 0.559140i
\(94\) 204.000i 2.17021i
\(95\) −124.451 93.3381i −1.31001 0.982506i
\(96\) 58.5097 + 122.510i 0.609476 + 1.27614i
\(97\) −25.0000 −0.257732 −0.128866 0.991662i \(-0.541134\pi\)
−0.128866 + 0.991662i \(0.541134\pi\)
\(98\) 67.8823i 0.692676i
\(99\) 12.3467 + 116.347i 0.124714 + 1.17522i
\(100\) −96.0000 + 28.0000i −0.960000 + 0.280000i
\(101\) 8.48528 0.0840127 0.0420063 0.999117i \(-0.486625\pi\)
0.0420063 + 0.999117i \(0.486625\pi\)
\(102\) −53.7401 + 152.000i −0.526864 + 1.49020i
\(103\) 1.00000 + 1.00000i 0.00970874 + 0.00970874i 0.711944 0.702236i \(-0.247815\pi\)
−0.702236 + 0.711944i \(0.747815\pi\)
\(104\) 0 0
\(105\) 41.5685 + 62.4264i 0.395891 + 0.594537i
\(106\) 26.0000 26.0000i 0.245283 0.245283i
\(107\) −41.7193 + 41.7193i −0.389900 + 0.389900i −0.874652 0.484752i \(-0.838910\pi\)
0.484752 + 0.874652i \(0.338910\pi\)
\(108\) −25.0538 + 105.054i −0.231980 + 0.972721i
\(109\) 99.0000 + 99.0000i 0.908257 + 0.908257i 0.996132 0.0878747i \(-0.0280075\pi\)
−0.0878747 + 0.996132i \(0.528007\pi\)
\(110\) −147.078 110.309i −1.33707 1.00281i
\(111\) −19.3934 40.6066i −0.174715 0.365825i
\(112\) 80.0000i 0.714286i
\(113\) −14.1421 14.1421i −0.125152 0.125152i 0.641757 0.766908i \(-0.278206\pi\)
−0.766908 + 0.641757i \(0.778206\pi\)
\(114\) 88.0000 248.902i 0.771930 2.18335i
\(115\) −63.0000 + 84.0000i −0.547826 + 0.730435i
\(116\) −152.735 −1.31668
\(117\) −91.0000 73.5391i −0.777778 0.628539i
\(118\) −136.000 + 136.000i −1.15254 + 1.15254i
\(119\) −67.1751 + 67.1751i −0.564497 + 0.564497i
\(120\) 0 0
\(121\) 48.0000i 0.396694i
\(122\) 189.505i 1.55332i
\(123\) −98.9949 35.0000i −0.804837 0.284553i
\(124\) 52.0000 52.0000i 0.419355 0.419355i
\(125\) −113.844 + 51.6188i −0.910754 + 0.412950i
\(126\) −80.0000 + 98.9949i −0.634921 + 0.785674i
\(127\) −156.000 + 156.000i −1.22835 + 1.22835i −0.263757 + 0.964589i \(0.584962\pi\)
−0.964589 + 0.263757i \(0.915038\pi\)
\(128\) 0 0
\(129\) 68.0000 + 24.0416i 0.527132 + 0.186369i
\(130\) 182.000 26.0000i 1.40000 0.200000i
\(131\) 70.7107i 0.539776i −0.962892 0.269888i \(-0.913013\pi\)
0.962892 0.269888i \(-0.0869867\pi\)
\(132\) 52.0000 147.078i 0.393939 1.11423i
\(133\) 110.000 110.000i 0.827068 0.827068i
\(134\) 282.843i 2.11077i
\(135\) −12.4315 + 134.426i −0.0920849 + 0.995751i
\(136\) 0 0
\(137\) 56.5685 0.412909 0.206455 0.978456i \(-0.433807\pi\)
0.206455 + 0.978456i \(0.433807\pi\)
\(138\) −168.000 59.3970i −1.21739 0.430413i
\(139\) 223.000i 1.60432i 0.597111 + 0.802158i \(0.296315\pi\)
−0.597111 + 0.802158i \(0.703685\pi\)
\(140\) −14.1421 98.9949i −0.101015 0.707107i
\(141\) 195.250 93.2498i 1.38475 0.661346i
\(142\) 106.000 106.000i 0.746479 0.746479i
\(143\) 119.501 + 119.501i 0.835672 + 0.835672i
\(144\) −90.5097 + 112.000i −0.628539 + 0.777778i
\(145\) −189.000 + 27.0000i −1.30345 + 0.186207i
\(146\) 214.960i 1.47233i
\(147\) 64.9706 31.0294i 0.441977 0.211085i
\(148\) 60.0000i 0.405405i
\(149\) −53.0330 + 53.0330i −0.355926 + 0.355926i −0.862309 0.506383i \(-0.830982\pi\)
0.506383 + 0.862309i \(0.330982\pi\)
\(150\) −141.362 158.167i −0.942417 1.05444i
\(151\) 22.0000 + 22.0000i 0.145695 + 0.145695i 0.776192 0.630497i \(-0.217149\pi\)
−0.630497 + 0.776192i \(0.717149\pi\)
\(152\) 0 0
\(153\) −170.045 + 18.0452i −1.11141 + 0.117942i
\(154\) 130.000 130.000i 0.844156 0.844156i
\(155\) 55.1543 73.5391i 0.355834 0.474446i
\(156\) 67.2304 + 140.770i 0.430964 + 0.902369i
\(157\) 106.000 + 106.000i 0.675159 + 0.675159i 0.958901 0.283742i \(-0.0915758\pi\)
−0.283742 + 0.958901i \(0.591576\pi\)
\(158\) −251.730 −1.59323
\(159\) 36.7696 + 13.0000i 0.231255 + 0.0817610i
\(160\) −32.0000 224.000i −0.200000 1.40000i
\(161\) −74.2462 74.2462i −0.461157 0.461157i
\(162\) −224.000 + 48.0833i −1.38272 + 0.296810i
\(163\) 271.000 1.66258 0.831288 0.555841i \(-0.187604\pi\)
0.831288 + 0.555841i \(0.187604\pi\)
\(164\) 98.9949 + 98.9949i 0.603628 + 0.603628i
\(165\) 38.3467 191.192i 0.232404 1.15874i
\(166\) 264.000i 1.59036i
\(167\) 114.551 0.685936 0.342968 0.939347i \(-0.388568\pi\)
0.342968 + 0.939347i \(0.388568\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 161.220 214.960i 0.948355 1.26447i
\(171\) 278.451 29.5492i 1.62837 0.172802i
\(172\) −68.0000 68.0000i −0.395349 0.395349i
\(173\) −175.362 + 175.362i −1.01366 + 1.01366i −0.0137505 + 0.999905i \(0.504377\pi\)
−0.999905 + 0.0137505i \(0.995623\pi\)
\(174\) −139.632 292.368i −0.802485 1.68027i
\(175\) −35.0000 120.000i −0.200000 0.685714i
\(176\) 147.078 147.078i 0.835672 0.835672i
\(177\) −192.333 68.0000i −1.08663 0.384181i
\(178\) 14.0000 14.0000i 0.0786517 0.0786517i
\(179\) 83.4386i 0.466137i −0.972460 0.233069i \(-0.925123\pi\)
0.972460 0.233069i \(-0.0748767\pi\)
\(180\) 92.2010 154.593i 0.512228 0.858850i
\(181\) 13.0000i 0.0718232i 0.999355 + 0.0359116i \(0.0114335\pi\)
−0.999355 + 0.0359116i \(0.988567\pi\)
\(182\) 183.848i 1.01015i
\(183\) 181.376 86.6238i 0.991127 0.473354i
\(184\) 0 0
\(185\) 10.6066 + 74.2462i 0.0573330 + 0.401331i
\(186\) 147.078 + 52.0000i 0.790743 + 0.279570i
\(187\) 247.000 1.32086
\(188\) −288.500 −1.53457
\(189\) −131.317 31.3173i −0.694800 0.165700i
\(190\) −264.000 + 352.000i −1.38947 + 1.85263i
\(191\) 57.9828i 0.303575i 0.988413 + 0.151787i \(0.0485029\pi\)
−0.988413 + 0.151787i \(0.951497\pi\)
\(192\) 173.255 82.7452i 0.902369 0.430964i
\(193\) −99.0000 −0.512953 −0.256477 0.966550i \(-0.582562\pi\)
−0.256477 + 0.966550i \(0.582562\pi\)
\(194\) 70.7107i 0.364488i
\(195\) 108.078 + 162.309i 0.554247 + 0.832352i
\(196\) −96.0000 −0.489796
\(197\) 93.3381i 0.473797i −0.971534 0.236899i \(-0.923869\pi\)
0.971534 0.236899i \(-0.0761310\pi\)
\(198\) 329.078 34.9218i 1.66201 0.176373i
\(199\) 196.000 0.984925 0.492462 0.870334i \(-0.336097\pi\)
0.492462 + 0.870334i \(0.336097\pi\)
\(200\) 0 0
\(201\) −270.711 + 129.289i −1.34682 + 0.643230i
\(202\) 24.0000i 0.118812i
\(203\) 190.919i 0.940487i
\(204\) 214.960 + 76.0000i 1.05373 + 0.372549i
\(205\) 140.000 + 105.000i 0.682927 + 0.512195i
\(206\) 2.82843 2.82843i 0.0137302 0.0137302i
\(207\) −19.9447 187.945i −0.0963512 0.907945i
\(208\) 208.000i 1.00000i
\(209\) −404.465 −1.93524
\(210\) 176.569 117.574i 0.840803 0.559874i
\(211\) 16.0000 0.0758294 0.0379147 0.999281i \(-0.487928\pi\)
0.0379147 + 0.999281i \(0.487928\pi\)
\(212\) −36.7696 36.7696i −0.173441 0.173441i
\(213\) 149.907 + 53.0000i 0.703787 + 0.248826i
\(214\) 118.000 + 118.000i 0.551402 + 0.551402i
\(215\) −96.1665 72.1249i −0.447286 0.335465i
\(216\) 0 0
\(217\) 65.0000 + 65.0000i 0.299539 + 0.299539i
\(218\) 280.014 280.014i 1.28447 1.28447i
\(219\) −205.740 + 98.2599i −0.939453 + 0.448675i
\(220\) −156.000 + 208.000i −0.709091 + 0.945455i
\(221\) −174.655 + 174.655i −0.790296 + 0.790296i
\(222\) −114.853 + 54.8528i −0.517355 + 0.247085i
\(223\) 80.0000i 0.358744i −0.983781 0.179372i \(-0.942593\pi\)
0.983781 0.179372i \(-0.0574066\pi\)
\(224\) 226.274 1.01015
\(225\) 86.7645 207.598i 0.385620 0.922658i
\(226\) −40.0000 + 40.0000i −0.176991 + 0.176991i
\(227\) 127.279i 0.560701i 0.959898 + 0.280351i \(0.0904508\pi\)
−0.959898 + 0.280351i \(0.909549\pi\)
\(228\) −352.000 124.451i −1.54386 0.545837i
\(229\) 48.0000 48.0000i 0.209607 0.209607i −0.594493 0.804100i \(-0.702647\pi\)
0.804100 + 0.594493i \(0.202647\pi\)
\(230\) 237.588 + 178.191i 1.03299 + 0.774743i
\(231\) 183.848 + 65.0000i 0.795878 + 0.281385i
\(232\) 0 0
\(233\) 30.4056 30.4056i 0.130496 0.130496i −0.638842 0.769338i \(-0.720586\pi\)
0.769338 + 0.638842i \(0.220586\pi\)
\(234\) −208.000 + 257.387i −0.888889 + 1.09994i
\(235\) −357.000 + 51.0000i −1.51915 + 0.217021i
\(236\) 192.333 + 192.333i 0.814971 + 0.814971i
\(237\) −115.067 240.933i −0.485517 1.01659i
\(238\) 190.000 + 190.000i 0.798319 + 0.798319i
\(239\) −31.8198 + 31.8198i −0.133137 + 0.133137i −0.770535 0.637398i \(-0.780011\pi\)
0.637398 + 0.770535i \(0.280011\pi\)
\(240\) 199.765 133.019i 0.832352 0.554247i
\(241\) −181.000 181.000i −0.751037 0.751037i 0.223636 0.974673i \(-0.428207\pi\)
−0.974673 + 0.223636i \(0.928207\pi\)
\(242\) −135.765 −0.561010
\(243\) −148.413 192.413i −0.610752 0.791822i
\(244\) −268.000 −1.09836
\(245\) −118.794 + 16.9706i −0.484873 + 0.0692676i
\(246\) −98.9949 + 280.000i −0.402418 + 1.13821i
\(247\) 286.000 286.000i 1.15789 1.15789i
\(248\) 0 0
\(249\) 252.676 120.676i 1.01476 0.484643i
\(250\) 146.000 + 322.000i 0.584000 + 1.28800i
\(251\) 336.583 1.34097 0.670484 0.741924i \(-0.266087\pi\)
0.670484 + 0.741924i \(0.266087\pi\)
\(252\) 140.000 + 113.137i 0.555556 + 0.448957i
\(253\) 273.000i 1.07905i
\(254\) 441.235 + 441.235i 1.73714 + 1.73714i
\(255\) 279.435 + 56.0452i 1.09582 + 0.219785i
\(256\) 256.000 1.00000
\(257\) −147.078 147.078i −0.572289 0.572289i 0.360479 0.932767i \(-0.382613\pi\)
−0.932767 + 0.360479i \(0.882613\pi\)
\(258\) 68.0000 192.333i 0.263566 0.745477i
\(259\) −75.0000 −0.289575
\(260\) −36.7696 257.387i −0.141421 0.989949i
\(261\) 216.000 267.286i 0.827586 1.02409i
\(262\) −200.000 −0.763359
\(263\) 192.333 + 192.333i 0.731304 + 0.731304i 0.970878 0.239574i \(-0.0770077\pi\)
−0.239574 + 0.970878i \(0.577008\pi\)
\(264\) 0 0
\(265\) −52.0000 39.0000i −0.196226 0.147170i
\(266\) −311.127 311.127i −1.16965 1.16965i
\(267\) 19.7990 + 7.00000i 0.0741535 + 0.0262172i
\(268\) 400.000 1.49254
\(269\) −173.948 −0.646648 −0.323324 0.946288i \(-0.604800\pi\)
−0.323324 + 0.946288i \(0.604800\pi\)
\(270\) 380.215 + 35.1615i 1.40820 + 0.130228i
\(271\) −288.000 288.000i −1.06273 1.06273i −0.997896 0.0648346i \(-0.979348\pi\)
−0.0648346 0.997896i \(-0.520652\pi\)
\(272\) 214.960 + 214.960i 0.790296 + 0.790296i
\(273\) −175.962 + 84.0381i −0.644549 + 0.307832i
\(274\) 160.000i 0.583942i
\(275\) −156.271 + 284.964i −0.568257 + 1.03623i
\(276\) −84.0000 + 237.588i −0.304348 + 0.860826i
\(277\) −177.000 + 177.000i −0.638989 + 0.638989i −0.950306 0.311317i \(-0.899230\pi\)
0.311317 + 0.950306i \(0.399230\pi\)
\(278\) 630.739 2.26885
\(279\) 17.4609 + 164.539i 0.0625839 + 0.589746i
\(280\) 0 0
\(281\) −132.936 + 132.936i −0.473082 + 0.473082i −0.902911 0.429828i \(-0.858574\pi\)
0.429828 + 0.902911i \(0.358574\pi\)
\(282\) −263.750 552.250i −0.935284 1.95833i
\(283\) −162.000 162.000i −0.572438 0.572438i 0.360371 0.932809i \(-0.382650\pi\)
−0.932809 + 0.360371i \(0.882650\pi\)
\(284\) −149.907 149.907i −0.527840 0.527840i
\(285\) −457.578 91.7746i −1.60554 0.322016i
\(286\) 338.000 338.000i 1.18182 1.18182i
\(287\) −123.744 + 123.744i −0.431163 + 0.431163i
\(288\) 316.784 + 256.000i 1.09994 + 0.888889i
\(289\) 72.0000i 0.249135i
\(290\) 76.3675 + 534.573i 0.263336 + 1.84335i
\(291\) −67.6777 + 32.3223i −0.232569 + 0.111073i
\(292\) 304.000 1.04110
\(293\) 250.316i 0.854320i 0.904176 + 0.427160i \(0.140486\pi\)
−0.904176 + 0.427160i \(0.859514\pi\)
\(294\) −87.7645 183.765i −0.298519 0.625049i
\(295\) 272.000 + 204.000i 0.922034 + 0.691525i
\(296\) 0 0
\(297\) 183.848 + 299.000i 0.619016 + 1.00673i
\(298\) 150.000 + 150.000i 0.503356 + 0.503356i
\(299\) −193.040 193.040i −0.645619 0.645619i
\(300\) −223.681 + 199.917i −0.745604 + 0.666389i
\(301\) 85.0000 85.0000i 0.282392 0.282392i
\(302\) 62.2254 62.2254i 0.206044 0.206044i
\(303\) 22.9706 10.9706i 0.0758104 0.0362065i
\(304\) −352.000 352.000i −1.15789 1.15789i
\(305\) −331.633 + 47.3762i −1.08732 + 0.155332i
\(306\) 51.0395 + 480.960i 0.166796 + 1.57177i
\(307\) 561.000i 1.82736i −0.406433 0.913681i \(-0.633227\pi\)
0.406433 0.913681i \(-0.366773\pi\)
\(308\) −183.848 183.848i −0.596908 0.596908i
\(309\) 4.00000 + 1.41421i 0.0129450 + 0.00457674i
\(310\) −208.000 156.000i −0.670968 0.503226i
\(311\) −250.316 −0.804874 −0.402437 0.915448i \(-0.631837\pi\)
−0.402437 + 0.915448i \(0.631837\pi\)
\(312\) 0 0
\(313\) 342.000 342.000i 1.09265 1.09265i 0.0974071 0.995245i \(-0.468945\pi\)
0.995245 0.0974071i \(-0.0310549\pi\)
\(314\) 299.813 299.813i 0.954819 0.954819i
\(315\) 193.241 + 115.251i 0.613464 + 0.365877i
\(316\) 356.000i 1.12658i
\(317\) 185.262i 0.584423i −0.956354 0.292211i \(-0.905609\pi\)
0.956354 0.292211i \(-0.0943911\pi\)
\(318\) 36.7696 104.000i 0.115628 0.327044i
\(319\) −351.000 + 351.000i −1.10031 + 1.10031i
\(320\) −316.784 + 45.2548i −0.989949 + 0.141421i
\(321\) −59.0000 + 166.877i −0.183801 + 0.519867i
\(322\) −210.000 + 210.000i −0.652174 + 0.652174i
\(323\) 591.141i 1.83016i
\(324\) 68.0000 + 316.784i 0.209877 + 0.977728i
\(325\) −91.0000 312.000i −0.280000 0.960000i
\(326\) 766.504i 2.35124i
\(327\) 396.000 + 140.007i 1.21101 + 0.428156i
\(328\) 0 0
\(329\) 360.624i 1.09612i
\(330\) −540.774 108.461i −1.63871 0.328669i
\(331\) −156.000 + 156.000i −0.471299 + 0.471299i −0.902335 0.431036i \(-0.858148\pi\)
0.431036 + 0.902335i \(0.358148\pi\)
\(332\) −373.352 −1.12456
\(333\) −105.000 84.8528i −0.315315 0.254813i
\(334\) 324.000i 0.970060i
\(335\) 494.975 70.7107i 1.47754 0.211077i
\(336\) 103.431 + 216.569i 0.307832 + 0.644549i
\(337\) −251.000 + 251.000i −0.744807 + 0.744807i −0.973499 0.228692i \(-0.926555\pi\)
0.228692 + 0.973499i \(0.426555\pi\)
\(338\) 478.004i 1.41421i
\(339\) −56.5685 20.0000i −0.166869 0.0589971i
\(340\) −304.000 228.000i −0.894118 0.670588i
\(341\) 239.002i 0.700886i
\(342\) −83.5778 787.578i −0.244379 2.30286i
\(343\) 365.000i 1.06414i
\(344\) 0 0
\(345\) −61.9447 + 308.849i −0.179550 + 0.895215i
\(346\) 496.000 + 496.000i 1.43353 + 1.43353i
\(347\) −99.7021 + 99.7021i −0.287326 + 0.287326i −0.836022 0.548696i \(-0.815124\pi\)
0.548696 + 0.836022i \(0.315124\pi\)
\(348\) −413.470 + 197.470i −1.18813 + 0.567443i
\(349\) 354.000 354.000i 1.01433 1.01433i 0.0144308 0.999896i \(-0.495406\pi\)
0.999896 0.0144308i \(-0.00459362\pi\)
\(350\) −339.411 + 98.9949i −0.969746 + 0.282843i
\(351\) −341.425 81.4249i −0.972721 0.231980i
\(352\) −416.000 416.000i −1.18182 1.18182i
\(353\) −504.874 −1.43024 −0.715119 0.699002i \(-0.753628\pi\)
−0.715119 + 0.699002i \(0.753628\pi\)
\(354\) −192.333 + 544.000i −0.543314 + 1.53672i
\(355\) −212.000 159.000i −0.597183 0.447887i
\(356\) −19.7990 19.7990i −0.0556151 0.0556151i
\(357\) −95.0000 + 268.701i −0.266106 + 0.752663i
\(358\) −236.000 −0.659218
\(359\) 213.546 + 213.546i 0.594836 + 0.594836i 0.938934 0.344098i \(-0.111815\pi\)
−0.344098 + 0.938934i \(0.611815\pi\)
\(360\) 0 0
\(361\) 607.000i 1.68144i
\(362\) 36.7696 0.101573
\(363\) −62.0589 129.941i −0.170961 0.357965i
\(364\) 260.000 0.714286
\(365\) 376.181 53.7401i 1.03063 0.147233i
\(366\) −245.009 513.009i −0.669424 1.40166i
\(367\) 218.000 + 218.000i 0.594005 + 0.594005i 0.938711 0.344705i \(-0.112021\pi\)
−0.344705 + 0.938711i \(0.612021\pi\)
\(368\) −237.588 + 237.588i −0.645619 + 0.645619i
\(369\) −313.241 + 33.2412i −0.848892 + 0.0900844i
\(370\) 210.000 30.0000i 0.567568 0.0810811i
\(371\) 45.9619 45.9619i 0.123887 0.123887i
\(372\) 73.5391 208.000i 0.197686 0.559140i
\(373\) 171.000 171.000i 0.458445 0.458445i −0.439700 0.898145i \(-0.644915\pi\)
0.898145 + 0.439700i \(0.144915\pi\)
\(374\) 698.621i 1.86797i
\(375\) −241.451 + 286.926i −0.643869 + 0.765136i
\(376\) 0 0
\(377\) 496.389i 1.31668i
\(378\) −88.5786 + 371.421i −0.234335 + 0.982596i
\(379\) −103.000 103.000i −0.271768 0.271768i 0.558044 0.829812i \(-0.311552\pi\)
−0.829812 + 0.558044i \(0.811552\pi\)
\(380\) 497.803 + 373.352i 1.31001 + 0.982506i
\(381\) −220.617 + 624.000i −0.579048 + 1.63780i
\(382\) 164.000 0.429319
\(383\) 492.146 1.28498 0.642489 0.766295i \(-0.277902\pi\)
0.642489 + 0.766295i \(0.277902\pi\)
\(384\) 0 0
\(385\) −260.000 195.000i −0.675325 0.506494i
\(386\) 280.014i 0.725426i
\(387\) 215.167 22.8335i 0.555986 0.0590012i
\(388\) 100.000 0.257732
\(389\) 123.037i 0.316289i −0.987416 0.158145i \(-0.949449\pi\)
0.987416 0.158145i \(-0.0505512\pi\)
\(390\) 459.078 305.691i 1.17712 0.783824i
\(391\) −399.000 −1.02046
\(392\) 0 0
\(393\) −91.4214 191.421i −0.232624 0.487077i
\(394\) −264.000 −0.670051
\(395\) 62.9325 + 440.528i 0.159323 + 1.11526i
\(396\) −49.3869 465.387i −0.124714 1.17522i
\(397\) 191.000i 0.481108i −0.970636 0.240554i \(-0.922671\pi\)
0.970636 0.240554i \(-0.0773292\pi\)
\(398\) 554.372i 1.39289i
\(399\) 155.563 440.000i 0.389883 1.10276i
\(400\) −384.000 + 112.000i −0.960000 + 0.280000i
\(401\) −400.222 + 400.222i −0.998061 + 0.998061i −0.999998 0.00193718i \(-0.999383\pi\)
0.00193718 + 0.999998i \(0.499383\pi\)
\(402\) 365.685 + 765.685i 0.909665 + 1.90469i
\(403\) 169.000 + 169.000i 0.419355 + 0.419355i
\(404\) −33.9411 −0.0840127
\(405\) 140.146 + 379.979i 0.346039 + 0.938220i
\(406\) −540.000 −1.33005
\(407\) 137.886 + 137.886i 0.338786 + 0.338786i
\(408\) 0 0
\(409\) 494.000 + 494.000i 1.20782 + 1.20782i 0.971730 + 0.236094i \(0.0758672\pi\)
0.236094 + 0.971730i \(0.424133\pi\)
\(410\) 296.985 395.980i 0.724353 0.965804i
\(411\) 153.137 73.1371i 0.372596 0.177949i
\(412\) −4.00000 4.00000i −0.00970874 0.00970874i
\(413\) −240.416 + 240.416i −0.582122 + 0.582122i
\(414\) −531.588 + 56.4121i −1.28403 + 0.136261i
\(415\) −462.000 + 66.0000i −1.11325 + 0.159036i
\(416\) 588.313 1.41421
\(417\) 288.315 + 603.685i 0.691403 + 1.44769i
\(418\) 1144.00i 2.73684i
\(419\) 541.644 1.29271 0.646353 0.763039i \(-0.276293\pi\)
0.646353 + 0.763039i \(0.276293\pi\)
\(420\) −166.274 249.706i −0.395891 0.594537i
\(421\) −38.0000 + 38.0000i −0.0902613 + 0.0902613i −0.750796 0.660534i \(-0.770330\pi\)
0.660534 + 0.750796i \(0.270330\pi\)
\(422\) 45.2548i 0.107239i
\(423\) 408.000 504.874i 0.964539 1.19356i
\(424\) 0 0
\(425\) −416.486 228.395i −0.979967 0.537401i
\(426\) 149.907 424.000i 0.351894 0.995305i
\(427\) 335.000i 0.784543i
\(428\) 166.877 166.877i 0.389900 0.389900i
\(429\) 478.004 + 169.000i 1.11423 + 0.393939i
\(430\) −204.000 + 272.000i −0.474419 + 0.632558i
\(431\) 370.524 + 370.524i 0.859684 + 0.859684i 0.991301 0.131616i \(-0.0420167\pi\)
−0.131616 + 0.991301i \(0.542017\pi\)
\(432\) −100.215 + 420.215i −0.231980 + 0.972721i
\(433\) −238.000 238.000i −0.549654 0.549654i 0.376687 0.926341i \(-0.377063\pi\)
−0.926341 + 0.376687i \(0.877063\pi\)
\(434\) 183.848 183.848i 0.423612 0.423612i
\(435\) −476.735 + 317.449i −1.09594 + 0.729767i
\(436\) −396.000 396.000i −0.908257 0.908257i
\(437\) 653.367 1.49512
\(438\) 277.921 + 581.921i 0.634523 + 1.32859i
\(439\) 333.000 0.758542 0.379271 0.925286i \(-0.376175\pi\)
0.379271 + 0.925286i \(0.376175\pi\)
\(440\) 0 0
\(441\) 135.765 168.000i 0.307856 0.380952i
\(442\) 494.000 + 494.000i 1.11765 + 1.11765i
\(443\) 304.763 + 304.763i 0.687953 + 0.687953i 0.961779 0.273826i \(-0.0882894\pi\)
−0.273826 + 0.961779i \(0.588289\pi\)
\(444\) 77.5736 + 162.426i 0.174715 + 0.365825i
\(445\) −28.0000 21.0000i −0.0629213 0.0471910i
\(446\) −226.274 −0.507341
\(447\) −75.0000 + 212.132i −0.167785 + 0.474568i
\(448\) 320.000i 0.714286i
\(449\) −48.7904 48.7904i −0.108665 0.108665i 0.650684 0.759349i \(-0.274482\pi\)
−0.759349 + 0.650684i \(0.774482\pi\)
\(450\) −587.176 245.407i −1.30484 0.545349i
\(451\) 455.000 1.00887
\(452\) 56.5685 + 56.5685i 0.125152 + 0.125152i
\(453\) 88.0000 + 31.1127i 0.194260 + 0.0686815i
\(454\) 360.000 0.792952
\(455\) 321.734 45.9619i 0.707107 0.101015i
\(456\) 0 0
\(457\) 413.000 0.903720 0.451860 0.892089i \(-0.350761\pi\)
0.451860 + 0.892089i \(0.350761\pi\)
\(458\) −135.765 135.765i −0.296429 0.296429i
\(459\) −437.000 + 268.701i −0.952070 + 0.585404i
\(460\) 252.000 336.000i 0.547826 0.730435i
\(461\) 225.567 + 225.567i 0.489299 + 0.489299i 0.908085 0.418786i \(-0.137544\pi\)
−0.418786 + 0.908085i \(0.637544\pi\)
\(462\) 183.848 520.000i 0.397939 1.12554i
\(463\) 153.000 0.330454 0.165227 0.986256i \(-0.447164\pi\)
0.165227 + 0.986256i \(0.447164\pi\)
\(464\) −610.940 −1.31668
\(465\) 54.2304 270.387i 0.116625 0.581477i
\(466\) −86.0000 86.0000i −0.184549 0.184549i
\(467\) −396.687 396.687i −0.849437 0.849437i 0.140626 0.990063i \(-0.455088\pi\)
−0.990063 + 0.140626i \(0.955088\pi\)
\(468\) 364.000 + 294.156i 0.777778 + 0.628539i
\(469\) 500.000i 1.06610i
\(470\) 144.250 + 1009.75i 0.306914 + 2.14840i
\(471\) 424.000 + 149.907i 0.900212 + 0.318273i
\(472\) 0 0
\(473\) −312.541 −0.660764
\(474\) −681.460 + 325.460i −1.43768 + 0.686625i
\(475\) 682.000 + 374.000i 1.43579 + 0.787368i
\(476\) 268.701 268.701i 0.564497 0.564497i
\(477\) 116.347 12.3467i 0.243913 0.0258841i
\(478\) 90.0000 + 90.0000i 0.188285 + 0.188285i
\(479\) 229.810 + 229.810i 0.479770 + 0.479770i 0.905058 0.425288i \(-0.139827\pi\)
−0.425288 + 0.905058i \(0.639827\pi\)
\(480\) −376.235 565.019i −0.783824 1.17712i
\(481\) −195.000 −0.405405
\(482\) −511.945 + 511.945i −1.06213 + 1.06213i
\(483\) −296.985 105.000i −0.614875 0.217391i
\(484\) 192.000i 0.396694i
\(485\) 123.744 17.6777i 0.255142 0.0364488i
\(486\) −544.225 + 419.775i −1.11981 + 0.863734i
\(487\) −65.0000 −0.133470 −0.0667351 0.997771i \(-0.521258\pi\)
−0.0667351 + 0.997771i \(0.521258\pi\)
\(488\) 0 0
\(489\) 733.626 350.374i 1.50026 0.716511i
\(490\) 48.0000 + 336.000i 0.0979592 + 0.685714i
\(491\) 69.2965 0.141133 0.0705667 0.997507i \(-0.477519\pi\)
0.0705667 + 0.997507i \(0.477519\pi\)
\(492\) 395.980 + 140.000i 0.804837 + 0.284553i
\(493\) −513.000 513.000i −1.04057 1.04057i
\(494\) −808.930 808.930i −1.63751 1.63751i
\(495\) −143.383 567.156i −0.289662 1.14577i
\(496\) 208.000 208.000i 0.419355 0.419355i
\(497\) 187.383 187.383i 0.377029 0.377029i
\(498\) −341.324 714.676i −0.685389 1.43509i
\(499\) −111.000 111.000i −0.222445 0.222445i 0.587082 0.809527i \(-0.300276\pi\)
−0.809527 + 0.587082i \(0.800276\pi\)
\(500\) 455.377 206.475i 0.910754 0.412950i
\(501\) 310.103 148.103i 0.618967 0.295614i
\(502\) 952.000i 1.89641i
\(503\) −373.352 373.352i −0.742251 0.742251i 0.230760 0.973011i \(-0.425879\pi\)
−0.973011 + 0.230760i \(0.925879\pi\)
\(504\) 0 0
\(505\) −42.0000 + 6.00000i −0.0831683 + 0.0118812i
\(506\) 772.161 1.52601
\(507\) −457.501 + 218.499i −0.902369 + 0.430964i
\(508\) 624.000 624.000i 1.22835 1.22835i
\(509\) 569.221 569.221i 1.11831 1.11831i 0.126323 0.991989i \(-0.459682\pi\)
0.991989 0.126323i \(-0.0403176\pi\)
\(510\) 158.520 790.362i 0.310823 1.54973i
\(511\) 380.000i 0.743640i
\(512\) 724.077i 1.41421i
\(513\) 715.592 440.000i 1.39492 0.857700i
\(514\) −416.000 + 416.000i −0.809339 + 0.809339i
\(515\) −5.65685 4.24264i −0.0109842 0.00823814i
\(516\) −272.000 96.1665i −0.527132 0.186369i
\(517\) −663.000 + 663.000i −1.28240 + 1.28240i
\(518\) 212.132i 0.409521i
\(519\) −248.000 + 701.450i −0.477842 + 1.35154i
\(520\) 0 0
\(521\) 439.820i 0.844185i 0.906553 + 0.422093i \(0.138704\pi\)
−0.906553 + 0.422093i \(0.861296\pi\)
\(522\) −756.000 610.940i −1.44828 1.17038i
\(523\) 30.0000 30.0000i 0.0573614 0.0573614i −0.677844 0.735206i \(-0.737086\pi\)
0.735206 + 0.677844i \(0.237086\pi\)
\(524\) 282.843i 0.539776i
\(525\) −249.896 279.602i −0.475992 0.532574i
\(526\) 544.000 544.000i 1.03422 1.03422i
\(527\) 349.311 0.662829
\(528\) 208.000 588.313i 0.393939 1.11423i
\(529\) 88.0000i 0.166352i
\(530\) −110.309 + 147.078i −0.208130 + 0.277506i
\(531\) −608.583 + 64.5828i −1.14611 + 0.121625i
\(532\) −440.000 + 440.000i −0.827068 + 0.827068i
\(533\) −321.734 + 321.734i −0.603628 + 0.603628i
\(534\) 19.7990 56.0000i 0.0370768 0.104869i
\(535\) 177.000 236.000i 0.330841 0.441121i
\(536\) 0 0
\(537\) −107.877 225.877i −0.200889 0.420628i
\(538\) 492.000i 0.914498i
\(539\) −220.617 + 220.617i −0.409309 + 0.409309i
\(540\) 49.7258 537.706i 0.0920849 0.995751i
\(541\) −198.000 198.000i −0.365989 0.365989i 0.500023 0.866012i \(-0.333325\pi\)
−0.866012 + 0.500023i \(0.833325\pi\)
\(542\) −814.587 + 814.587i −1.50293 + 1.50293i
\(543\) 16.8076 + 35.1924i 0.0309532 + 0.0648110i
\(544\) 608.000 608.000i 1.11765 1.11765i
\(545\) −560.029 420.021i −1.02758 0.770682i
\(546\) 237.696 + 497.696i 0.435340 + 0.911530i
\(547\) 57.0000 + 57.0000i 0.104205 + 0.104205i 0.757287 0.653082i \(-0.226524\pi\)
−0.653082 + 0.757287i \(0.726524\pi\)
\(548\) −226.274 −0.412909
\(549\) 379.009 469.000i 0.690363 0.854281i
\(550\) 806.000 + 442.000i 1.46545 + 0.803636i
\(551\) 840.043 + 840.043i 1.52458 + 1.52458i
\(552\) 0 0
\(553\) −445.000 −0.804702
\(554\) 500.632 + 500.632i 0.903667 + 0.903667i
\(555\) 124.706 + 187.279i 0.224695 + 0.337440i
\(556\) 892.000i 1.60432i
\(557\) 649.124 1.16539 0.582697 0.812690i \(-0.301998\pi\)
0.582697 + 0.812690i \(0.301998\pi\)
\(558\) 465.387 49.3869i 0.834027 0.0885069i
\(559\) 221.000 221.000i 0.395349 0.395349i
\(560\) −56.5685 395.980i −0.101015 0.707107i
\(561\) 668.655 319.345i 1.19190 0.569242i
\(562\) 376.000 + 376.000i 0.669039 + 0.669039i
\(563\) −396.687 + 396.687i −0.704595 + 0.704595i −0.965393 0.260798i \(-0.916014\pi\)
0.260798 + 0.965393i \(0.416014\pi\)
\(564\) −780.999 + 372.999i −1.38475 + 0.661346i
\(565\) 80.0000 + 60.0000i 0.141593 + 0.106195i
\(566\) −458.205 + 458.205i −0.809550 + 0.809550i
\(567\) −395.980 + 85.0000i −0.698377 + 0.149912i
\(568\) 0 0
\(569\) 878.227i 1.54346i 0.635953 + 0.771728i \(0.280607\pi\)
−0.635953 + 0.771728i \(0.719393\pi\)
\(570\) −259.578 + 1294.23i −0.455400 + 2.27057i
\(571\) 753.000i 1.31874i −0.751819 0.659370i \(-0.770823\pi\)
0.751819 0.659370i \(-0.229177\pi\)
\(572\) −478.004 478.004i −0.835672 0.835672i
\(573\) 74.9655 + 156.966i 0.130830 + 0.273936i
\(574\) 350.000 + 350.000i 0.609756 + 0.609756i
\(575\) 252.437 460.327i 0.439021 0.800568i
\(576\) 362.039 448.000i 0.628539 0.777778i
\(577\) −287.000 −0.497400 −0.248700 0.968581i \(-0.580003\pi\)
−0.248700 + 0.968581i \(0.580003\pi\)
\(578\) 203.647 0.352330
\(579\) −268.004 + 127.996i −0.462873 + 0.221065i
\(580\) 756.000 108.000i 1.30345 0.186207i
\(581\) 466.690i 0.803254i
\(582\) 91.4214 + 191.421i 0.157081 + 0.328903i
\(583\) −169.000 −0.289880
\(584\) 0 0
\(585\) 502.427 + 299.653i 0.858850 + 0.512228i
\(586\) 708.000 1.20819
\(587\) 972.979i 1.65755i −0.559586 0.828773i \(-0.689040\pi\)
0.559586 0.828773i \(-0.310960\pi\)
\(588\) −259.882 + 124.118i −0.441977 + 0.211085i
\(589\) −572.000 −0.971138
\(590\) 576.999 769.332i 0.977965 1.30395i
\(591\) −120.676 252.676i −0.204190 0.427540i
\(592\) 240.000i 0.405405i
\(593\) 363.453i 0.612905i −0.951886 0.306453i \(-0.900858\pi\)
0.951886 0.306453i \(-0.0991421\pi\)
\(594\) 845.700 520.000i 1.42374 0.875421i
\(595\) 285.000 380.000i 0.478992 0.638655i
\(596\) 212.132 212.132i 0.355926 0.355926i
\(597\) 530.593 253.407i 0.888765 0.424467i
\(598\) −546.000 + 546.000i −0.913043 + 0.913043i
\(599\) −72.1249 −0.120409 −0.0602044 0.998186i \(-0.519175\pi\)
−0.0602044 + 0.998186i \(0.519175\pi\)
\(600\) 0 0
\(601\) −677.000 −1.12646 −0.563228 0.826302i \(-0.690441\pi\)
−0.563228 + 0.826302i \(0.690441\pi\)
\(602\) −240.416 240.416i −0.399363 0.399363i
\(603\) −565.685 + 700.000i −0.938118 + 1.16086i
\(604\) −88.0000 88.0000i −0.145695 0.145695i
\(605\) 33.9411 + 237.588i 0.0561010 + 0.392707i
\(606\) −31.0294 64.9706i −0.0512037 0.107212i
\(607\) −256.000 256.000i −0.421746 0.421746i 0.464058 0.885805i \(-0.346393\pi\)
−0.885805 + 0.464058i \(0.846393\pi\)
\(608\) −995.606 + 995.606i −1.63751 + 1.63751i
\(609\) −246.838 516.838i −0.405316 0.848666i
\(610\) 134.000 + 938.000i 0.219672 + 1.53770i
\(611\) 937.624i 1.53457i
\(612\) 680.181 72.1808i 1.11141 0.117942i
\(613\) 221.000i 0.360522i 0.983619 + 0.180261i \(0.0576942\pi\)
−0.983619 + 0.180261i \(0.942306\pi\)
\(614\) −1586.75 −2.58428
\(615\) 514.749 + 103.241i 0.836990 + 0.167872i
\(616\) 0 0
\(617\) 770.746i 1.24918i 0.780951 + 0.624592i \(0.214735\pi\)
−0.780951 + 0.624592i \(0.785265\pi\)
\(618\) 4.00000 11.3137i 0.00647249 0.0183070i
\(619\) −644.000 + 644.000i −1.04039 + 1.04039i −0.0412384 + 0.999149i \(0.513130\pi\)
−0.999149 + 0.0412384i \(0.986870\pi\)
\(620\) −220.617 + 294.156i −0.355834 + 0.474446i
\(621\) −296.985 483.000i −0.478236 0.777778i
\(622\) 708.000i 1.13826i
\(623\) 24.7487 24.7487i 0.0397251 0.0397251i
\(624\) 268.922 + 563.078i 0.430964 + 0.902369i
\(625\) 527.000 336.000i 0.843200 0.537600i
\(626\) −967.322 967.322i −1.54524 1.54524i
\(627\) −1094.93 + 522.930i −1.74630 + 0.834019i
\(628\) −424.000 424.000i −0.675159 0.675159i
\(629\) −201.525 + 201.525i −0.320390 + 0.320390i
\(630\) 325.980 546.569i 0.517428 0.867569i
\(631\) 719.000 + 719.000i 1.13946 + 1.13946i 0.988547 + 0.150914i \(0.0482218\pi\)
0.150914 + 0.988547i \(0.451778\pi\)
\(632\) 0 0
\(633\) 43.3137 20.6863i 0.0684261 0.0326798i
\(634\) −524.000 −0.826498
\(635\) 661.852 882.469i 1.04229 1.38972i
\(636\) −147.078 52.0000i −0.231255 0.0817610i
\(637\) 312.000i 0.489796i
\(638\) 992.778 + 992.778i 1.55608 + 1.55608i
\(639\) 474.337 50.3366i 0.742311 0.0787740i
\(640\) 0 0
\(641\) 831.558 1.29728 0.648641 0.761095i \(-0.275338\pi\)
0.648641 + 0.761095i \(0.275338\pi\)
\(642\) 472.000 + 166.877i 0.735202 + 0.259933i
\(643\) 1039.00i 1.61586i 0.589276 + 0.807932i \(0.299413\pi\)
−0.589276 + 0.807932i \(0.700587\pi\)
\(644\) 296.985 + 296.985i 0.461157 + 0.461157i
\(645\) −353.583 70.9167i −0.548190 0.109948i
\(646\) −1672.00 −2.58824
\(647\) −632.861 632.861i −0.978146 0.978146i 0.0216201 0.999766i \(-0.493118\pi\)
−0.999766 + 0.0216201i \(0.993118\pi\)
\(648\) 0 0
\(649\) 884.000 1.36210
\(650\) −882.469 + 257.387i −1.35765 + 0.395980i
\(651\) 260.000 + 91.9239i 0.399386 + 0.141204i
\(652\) −1084.00 −1.66258
\(653\) −325.269 325.269i −0.498115 0.498115i 0.412736 0.910851i \(-0.364573\pi\)
−0.910851 + 0.412736i \(0.864573\pi\)
\(654\) 396.000 1120.06i 0.605505 1.71263i
\(655\) 50.0000 + 350.000i 0.0763359 + 0.534351i
\(656\) 395.980 + 395.980i 0.603628 + 0.603628i
\(657\) −429.921 + 532.000i −0.654370 + 0.809741i
\(658\) −1020.00 −1.55015
\(659\) 1129.96 1.71465 0.857327 0.514773i \(-0.172124\pi\)
0.857327 + 0.514773i \(0.172124\pi\)
\(660\) −153.387 + 764.770i −0.232404 + 1.15874i
\(661\) −97.0000 97.0000i −0.146747 0.146747i 0.629916 0.776663i \(-0.283089\pi\)
−0.776663 + 0.629916i \(0.783089\pi\)
\(662\) 441.235 + 441.235i 0.666518 + 0.666518i
\(663\) −247.000 + 698.621i −0.372549 + 1.05373i
\(664\) 0 0
\(665\) −466.690 + 622.254i −0.701790 + 0.935720i
\(666\) −240.000 + 296.985i −0.360360 + 0.445923i
\(667\) 567.000 567.000i 0.850075 0.850075i
\(668\) −458.205 −0.685936
\(669\) −103.431 216.569i −0.154606 0.323720i
\(670\) −200.000 1400.00i −0.298507 2.08955i
\(671\) −615.890 + 615.890i −0.917869 + 0.917869i
\(672\) 612.548 292.548i 0.911530 0.435340i
\(673\) 813.000 + 813.000i 1.20802 + 1.20802i 0.971666 + 0.236358i \(0.0759537\pi\)
0.236358 + 0.971666i \(0.424046\pi\)
\(674\) 709.935 + 709.935i 1.05332 + 1.05332i
\(675\) −33.5212 674.167i −0.0496611 0.998766i
\(676\) 676.000 1.00000
\(677\) −716.299 + 716.299i −1.05805 + 1.05805i −0.0598411 + 0.998208i \(0.519059\pi\)
−0.998208 + 0.0598411i \(0.980941\pi\)
\(678\) −56.5685 + 160.000i −0.0834344 + 0.235988i
\(679\) 125.000i 0.184094i
\(680\) 0 0
\(681\) 164.558 + 344.558i 0.241642 + 0.505960i
\(682\) −676.000 −0.991202
\(683\) 873.984i 1.27963i 0.768531 + 0.639813i \(0.220988\pi\)
−0.768531 + 0.639813i \(0.779012\pi\)
\(684\) −1113.80 + 118.197i −1.62837 + 0.172802i
\(685\) −280.000 + 40.0000i −0.408759 + 0.0583942i
\(686\) −1032.38 −1.50492
\(687\) 67.8823 192.000i 0.0988097 0.279476i
\(688\) −272.000 272.000i −0.395349 0.395349i
\(689\) 119.501 119.501i 0.173441 0.173441i
\(690\) 873.558 + 175.206i 1.26603 + 0.253922i
\(691\) −396.000 + 396.000i −0.573082 + 0.573082i −0.932989 0.359906i \(-0.882809\pi\)
0.359906 + 0.932989i \(0.382809\pi\)
\(692\) 701.450 701.450i 1.01366 1.01366i
\(693\) 581.734 61.7336i 0.839442 0.0890817i
\(694\) 282.000 + 282.000i 0.406340 + 0.406340i
\(695\) −157.685 1103.79i −0.226885 1.58819i
\(696\) 0 0
\(697\) 665.000i 0.954089i
\(698\) −1001.26 1001.26i −1.43447 1.43447i
\(699\) 43.0000 121.622i 0.0615165 0.173995i
\(700\) 140.000 + 480.000i 0.200000 + 0.685714i
\(701\) −1154.00 −1.64622 −0.823109 0.567884i \(-0.807762\pi\)
−0.823109 + 0.567884i \(0.807762\pi\)
\(702\) −230.304 + 965.696i −0.328069 + 1.37563i
\(703\) 330.000 330.000i 0.469417 0.469417i
\(704\) −588.313 + 588.313i −0.835672 + 0.835672i
\(705\) −900.500 + 599.625i −1.27730 + 0.850532i
\(706\) 1428.00i 2.02266i
\(707\) 42.4264i 0.0600091i
\(708\) 769.332 + 272.000i 1.08663 + 0.384181i
\(709\) 656.000 656.000i 0.925247 0.925247i −0.0721472 0.997394i \(-0.522985\pi\)
0.997394 + 0.0721472i \(0.0229851\pi\)
\(710\) −449.720 + 599.627i −0.633408 + 0.844544i
\(711\) −623.000 503.460i −0.876231 0.708101i
\(712\) 0 0
\(713\) 386.080i 0.541487i
\(714\) 760.000 + 268.701i 1.06443 + 0.376331i
\(715\) −676.000 507.000i −0.945455 0.709091i
\(716\) 333.754i 0.466137i
\(717\) −45.0000 + 127.279i −0.0627615 + 0.177516i
\(718\) 604.000 604.000i 0.841226 0.841226i
\(719\) 359.210i 0.499597i −0.968298 0.249799i \(-0.919636\pi\)
0.968298 0.249799i \(-0.0803644\pi\)
\(720\) 368.804 618.372i 0.512228 0.858850i
\(721\) 5.00000 5.00000i 0.00693481 0.00693481i
\(722\) 1716.86 2.37792
\(723\) −724.000 255.973i −1.00138 0.354042i
\(724\) 52.0000i 0.0718232i
\(725\) 916.410 267.286i 1.26401 0.368671i
\(726\) −367.529 + 175.529i −0.506238 + 0.241775i
\(727\) 217.000 217.000i 0.298487 0.298487i −0.541934 0.840421i \(-0.682308\pi\)
0.840421 + 0.541934i \(0.182308\pi\)
\(728\) 0 0
\(729\) −650.538 329.000i −0.892371 0.451303i
\(730\) −152.000 1064.00i −0.208219 1.45753i
\(731\) 456.791i 0.624885i
\(732\) −725.505 + 346.495i −0.991127 + 0.473354i
\(733\) 1049.00i 1.43111i −0.698559 0.715553i \(-0.746175\pi\)
0.698559 0.715553i \(-0.253825\pi\)
\(734\) 616.597 616.597i 0.840051 0.840051i
\(735\) −299.647 + 199.529i −0.407683 + 0.271468i
\(736\) 672.000 + 672.000i 0.913043 + 0.913043i
\(737\) 919.239 919.239i 1.24727 1.24727i
\(738\) 94.0202 + 885.980i 0.127399 + 1.20051i
\(739\) 609.000 609.000i 0.824087 0.824087i −0.162605 0.986691i \(-0.551990\pi\)
0.986691 + 0.162605i \(0.0519895\pi\)
\(740\) −42.4264 296.985i −0.0573330 0.401331i
\(741\) 404.465 1144.00i 0.545837 1.54386i
\(742\) −130.000 130.000i −0.175202 0.175202i
\(743\) −562.857 −0.757546 −0.378773 0.925490i \(-0.623654\pi\)
−0.378773 + 0.925490i \(0.623654\pi\)
\(744\) 0 0
\(745\) 225.000 300.000i 0.302013 0.402685i
\(746\) −483.661 483.661i −0.648339 0.648339i
\(747\) 528.000 653.367i 0.706827 0.874654i
\(748\) −988.000 −1.32086
\(749\) 208.597 + 208.597i 0.278500 + 0.278500i
\(750\) 811.549 + 682.926i 1.08207 + 0.910568i
\(751\) 185.000i 0.246338i −0.992386 0.123169i \(-0.960694\pi\)
0.992386 0.123169i \(-0.0393058\pi\)
\(752\) −1154.00 −1.53457
\(753\) 911.166 435.166i 1.21005 0.577909i
\(754\) −1404.00 −1.86207
\(755\) −124.451 93.3381i −0.164835 0.123627i
\(756\) 525.269 + 125.269i 0.694800 + 0.165700i
\(757\) 493.000 + 493.000i 0.651255 + 0.651255i 0.953295 0.302040i \(-0.0976677\pi\)
−0.302040 + 0.953295i \(0.597668\pi\)
\(758\) −291.328 + 291.328i −0.384338 + 0.384338i
\(759\) 352.960 + 739.040i 0.465033 + 0.973702i
\(760\) 0 0
\(761\) −618.011 + 618.011i −0.812104 + 0.812104i −0.984949 0.172845i \(-0.944704\pi\)
0.172845 + 0.984949i \(0.444704\pi\)
\(762\) 1764.94 + 624.000i 2.31619 + 0.818898i
\(763\) 495.000 495.000i 0.648755 0.648755i
\(764\) 231.931i 0.303575i
\(765\) 828.921 209.559i 1.08356 0.273934i
\(766\) 1392.00i 1.81723i
\(767\) −625.082 + 625.082i −0.814971 + 0.814971i
\(768\) 693.019 330.981i 0.902369 0.430964i
\(769\) −897.000 897.000i −1.16645 1.16645i −0.983036 0.1