Newspace parameters
| Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 195.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.31336515503\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 116.1 | −3.63232 | −0.915357 | − | 2.85694i | 9.19378 | −2.23607 | 3.32487 | + | 10.3773i | − | 1.01658i | −18.8655 | −7.32424 | + | 5.23025i | 8.12212 | |||||||||||
| 116.2 | −3.63232 | −0.915357 | + | 2.85694i | 9.19378 | −2.23607 | 3.32487 | − | 10.3773i | 1.01658i | −18.8655 | −7.32424 | − | 5.23025i | 8.12212 | ||||||||||||
| 116.3 | −3.47844 | 2.42404 | − | 1.76750i | 8.09957 | 2.23607 | −8.43187 | + | 6.14814i | − | 11.0436i | −14.2601 | 2.75190 | − | 8.56896i | −7.77804 | |||||||||||
| 116.4 | −3.47844 | 2.42404 | + | 1.76750i | 8.09957 | 2.23607 | −8.43187 | − | 6.14814i | 11.0436i | −14.2601 | 2.75190 | + | 8.56896i | −7.77804 | ||||||||||||
| 116.5 | −3.05978 | 0.201191 | − | 2.99325i | 5.36224 | 2.23607 | −0.615600 | + | 9.15867i | 7.98562i | −4.16816 | −8.91904 | − | 1.20443i | −6.84187 | ||||||||||||
| 116.6 | −3.05978 | 0.201191 | + | 2.99325i | 5.36224 | 2.23607 | −0.615600 | − | 9.15867i | − | 7.98562i | −4.16816 | −8.91904 | + | 1.20443i | −6.84187 | |||||||||||
| 116.7 | −2.70715 | 2.48198 | − | 1.68517i | 3.32869 | −2.23607 | −6.71910 | + | 4.56201i | 2.05642i | 1.81735 | 3.32042 | − | 8.36509i | 6.05338 | ||||||||||||
| 116.8 | −2.70715 | 2.48198 | + | 1.68517i | 3.32869 | −2.23607 | −6.71910 | − | 4.56201i | − | 2.05642i | 1.81735 | 3.32042 | + | 8.36509i | 6.05338 | |||||||||||
| 116.9 | −2.02265 | −2.16015 | − | 2.08177i | 0.0911301 | 2.23607 | 4.36923 | + | 4.21070i | 3.72274i | 7.90629 | 0.332473 | + | 8.99386i | −4.52279 | ||||||||||||
| 116.10 | −2.02265 | −2.16015 | + | 2.08177i | 0.0911301 | 2.23607 | 4.36923 | − | 4.21070i | − | 3.72274i | 7.90629 | 0.332473 | − | 8.99386i | −4.52279 | |||||||||||
| 116.11 | −0.701634 | 0.839006 | − | 2.88029i | −3.50771 | −2.23607 | −0.588675 | + | 2.02091i | 6.32373i | 5.26766 | −7.59214 | − | 4.83316i | 1.56890 | ||||||||||||
| 116.12 | −0.701634 | 0.839006 | + | 2.88029i | −3.50771 | −2.23607 | −0.588675 | − | 2.02091i | − | 6.32373i | 5.26766 | −7.59214 | + | 4.83316i | 1.56890 | |||||||||||
| 116.13 | −0.654592 | 2.58526 | − | 1.52199i | −3.57151 | 2.23607 | −1.69229 | + | 0.996279i | 8.93572i | 4.95625 | 4.36712 | − | 7.86945i | −1.46371 | ||||||||||||
| 116.14 | −0.654592 | 2.58526 | + | 1.52199i | −3.57151 | 2.23607 | −1.69229 | − | 0.996279i | − | 8.93572i | 4.95625 | 4.36712 | + | 7.86945i | −1.46371 | |||||||||||
| 116.15 | −0.0617129 | −2.45596 | − | 1.72286i | −3.99619 | 2.23607 | 0.151565 | + | 0.106323i | − | 4.03865i | 0.493468 | 3.06351 | + | 8.46256i | −0.137994 | |||||||||||
| 116.16 | −0.0617129 | −2.45596 | + | 1.72286i | −3.99619 | 2.23607 | 0.151565 | − | 0.106323i | 4.03865i | 0.493468 | 3.06351 | − | 8.46256i | −0.137994 | ||||||||||||
| 116.17 | 0.0617129 | −2.45596 | − | 1.72286i | −3.99619 | −2.23607 | −0.151565 | − | 0.106323i | 4.03865i | −0.493468 | 3.06351 | + | 8.46256i | −0.137994 | ||||||||||||
| 116.18 | 0.0617129 | −2.45596 | + | 1.72286i | −3.99619 | −2.23607 | −0.151565 | + | 0.106323i | − | 4.03865i | −0.493468 | 3.06351 | − | 8.46256i | −0.137994 | |||||||||||
| 116.19 | 0.654592 | 2.58526 | − | 1.52199i | −3.57151 | −2.23607 | 1.69229 | − | 0.996279i | − | 8.93572i | −4.95625 | 4.36712 | − | 7.86945i | −1.46371 | |||||||||||
| 116.20 | 0.654592 | 2.58526 | + | 1.52199i | −3.57151 | −2.23607 | 1.69229 | + | 0.996279i | 8.93572i | −4.95625 | 4.36712 | + | 7.86945i | −1.46371 | ||||||||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 13.b | even | 2 | 1 | inner |
| 39.d | odd | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 195.3.g.b | ✓ | 32 |
| 3.b | odd | 2 | 1 | inner | 195.3.g.b | ✓ | 32 |
| 13.b | even | 2 | 1 | inner | 195.3.g.b | ✓ | 32 |
| 39.d | odd | 2 | 1 | inner | 195.3.g.b | ✓ | 32 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 195.3.g.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
| 195.3.g.b | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
| 195.3.g.b | ✓ | 32 | 13.b | even | 2 | 1 | inner |
| 195.3.g.b | ✓ | 32 | 39.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} - 47T_{2}^{14} + 865T_{2}^{12} - 7831T_{2}^{10} + 35659T_{2}^{8} - 73097T_{2}^{6} + 47647T_{2}^{4} - 9633T_{2}^{2} + 36 \)
acting on \(S_{3}^{\mathrm{new}}(195, [\chi])\).