Newspace parameters
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.31336515503\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 6x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{6}\cdot 5 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 6x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( 2\nu^{3} + 16\nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + 3 \)
|
\(\beta_{3}\) | \(=\) |
\( -10\nu^{3} - 40\nu \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + 5\beta_1 ) / 40 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -2\beta_{3} - 5\beta_1 ) / 10 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).
\(n\) | \(106\) | \(131\) | \(157\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
116.1 |
|
−2.23607 | −3.00000 | 1.00000 | −2.23607 | 6.70820 | − | 12.6491i | 6.70820 | 9.00000 | 5.00000 | |||||||||||||||||||||||||||||
116.2 | −2.23607 | −3.00000 | 1.00000 | −2.23607 | 6.70820 | 12.6491i | 6.70820 | 9.00000 | 5.00000 | |||||||||||||||||||||||||||||||
116.3 | 2.23607 | −3.00000 | 1.00000 | 2.23607 | −6.70820 | − | 12.6491i | −6.70820 | 9.00000 | 5.00000 | ||||||||||||||||||||||||||||||
116.4 | 2.23607 | −3.00000 | 1.00000 | 2.23607 | −6.70820 | 12.6491i | −6.70820 | 9.00000 | 5.00000 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
39.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 195.3.g.a | ✓ | 4 |
3.b | odd | 2 | 1 | inner | 195.3.g.a | ✓ | 4 |
13.b | even | 2 | 1 | inner | 195.3.g.a | ✓ | 4 |
39.d | odd | 2 | 1 | inner | 195.3.g.a | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.3.g.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
195.3.g.a | ✓ | 4 | 3.b | odd | 2 | 1 | inner |
195.3.g.a | ✓ | 4 | 13.b | even | 2 | 1 | inner |
195.3.g.a | ✓ | 4 | 39.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 5 \)
acting on \(S_{3}^{\mathrm{new}}(195, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 5)^{2} \)
$3$
\( (T + 3)^{4} \)
$5$
\( (T^{2} - 5)^{2} \)
$7$
\( (T^{2} + 160)^{2} \)
$11$
\( (T^{2} - 180)^{2} \)
$13$
\( (T^{2} + 6 T + 169)^{2} \)
$17$
\( (T^{2} + 800)^{2} \)
$19$
\( (T^{2} + 160)^{2} \)
$23$
\( (T^{2} + 800)^{2} \)
$29$
\( (T^{2} + 800)^{2} \)
$31$
\( (T^{2} + 640)^{2} \)
$37$
\( (T^{2} + 640)^{2} \)
$41$
\( (T^{2} - 20)^{2} \)
$43$
\( (T - 26)^{4} \)
$47$
\( (T^{2} - 980)^{2} \)
$53$
\( T^{4} \)
$59$
\( (T^{2} - 180)^{2} \)
$61$
\( (T - 58)^{4} \)
$67$
\( (T^{2} + 5760)^{2} \)
$71$
\( (T^{2} - 5780)^{2} \)
$73$
\( (T^{2} + 160)^{2} \)
$79$
\( (T - 82)^{4} \)
$83$
\( (T^{2} - 14580)^{2} \)
$89$
\( (T^{2} - 4500)^{2} \)
$97$
\( (T^{2} + 160)^{2} \)
show more
show less