Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [195,2,Mod(44,195)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(195, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("195.44");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.n (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.55708283941\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
44.1 | −1.72658 | + | 1.72658i | 1.24653 | − | 1.20257i | − | 3.96217i | −2.19956 | − | 0.402404i | −0.0759004 | + | 4.22856i | −0.495582 | + | 0.495582i | 3.38784 | + | 3.38784i | 0.107662 | − | 2.99807i | 4.49251 | − | 3.10294i | |
44.2 | −1.72658 | + | 1.72658i | 1.24653 | + | 1.20257i | − | 3.96217i | 0.402404 | + | 2.19956i | −4.22856 | + | 0.0759004i | 0.495582 | − | 0.495582i | 3.38784 | + | 3.38784i | 0.107662 | + | 2.99807i | −4.49251 | − | 3.10294i | |
44.3 | −1.69452 | + | 1.69452i | −1.14037 | − | 1.30367i | − | 3.74279i | 0.990671 | − | 2.00464i | 4.14147 | + | 0.276713i | −2.57529 | + | 2.57529i | 2.95318 | + | 2.95318i | −0.399109 | + | 2.97333i | 1.71818 | + | 5.07561i | |
44.4 | −1.69452 | + | 1.69452i | −1.14037 | + | 1.30367i | − | 3.74279i | 2.00464 | − | 0.990671i | −0.276713 | − | 4.14147i | 2.57529 | − | 2.57529i | 2.95318 | + | 2.95318i | −0.399109 | − | 2.97333i | −1.71818 | + | 5.07561i | |
44.5 | −1.26780 | + | 1.26780i | 0.428519 | − | 1.67820i | − | 1.21464i | 1.71852 | + | 1.43063i | 1.58435 | + | 2.67091i | 1.40105 | − | 1.40105i | −0.995685 | − | 0.995685i | −2.63274 | − | 1.43829i | −3.99249 | + | 0.364987i | |
44.6 | −1.26780 | + | 1.26780i | 0.428519 | + | 1.67820i | − | 1.21464i | −1.43063 | − | 1.71852i | −2.67091 | − | 1.58435i | −1.40105 | + | 1.40105i | −0.995685 | − | 0.995685i | −2.63274 | + | 1.43829i | 3.99249 | + | 0.364987i | |
44.7 | −0.800574 | + | 0.800574i | 1.71512 | − | 0.241578i | 0.718163i | 0.0148595 | − | 2.23602i | −1.17968 | + | 1.56648i | 3.41858 | − | 3.41858i | −2.17609 | − | 2.17609i | 2.88328 | − | 0.828672i | 1.77820 | + | 1.80199i | ||
44.8 | −0.800574 | + | 0.800574i | 1.71512 | + | 0.241578i | 0.718163i | 2.23602 | − | 0.0148595i | −1.56648 | + | 1.17968i | −3.41858 | + | 3.41858i | −2.17609 | − | 2.17609i | 2.88328 | + | 0.828672i | −1.77820 | + | 1.80199i | ||
44.9 | −0.590281 | + | 0.590281i | −0.502466 | − | 1.65757i | 1.30314i | −2.08713 | + | 0.802426i | 1.27503 | + | 0.681834i | −0.315643 | + | 0.315643i | −1.94978 | − | 1.94978i | −2.49506 | + | 1.66574i | 0.758337 | − | 1.70565i | ||
44.10 | −0.590281 | + | 0.590281i | −0.502466 | + | 1.65757i | 1.30314i | −0.802426 | + | 2.08713i | −0.681834 | − | 1.27503i | 0.315643 | − | 0.315643i | −1.94978 | − | 1.94978i | −2.49506 | − | 1.66574i | −0.758337 | − | 1.70565i | ||
44.11 | −0.225510 | + | 0.225510i | −1.50598 | − | 0.855580i | 1.89829i | 0.293103 | − | 2.21677i | 0.532556 | − | 0.146672i | 0.934339 | − | 0.934339i | −0.879103 | − | 0.879103i | 1.53596 | + | 2.57698i | 0.433807 | + | 0.566002i | ||
44.12 | −0.225510 | + | 0.225510i | −1.50598 | + | 0.855580i | 1.89829i | 2.21677 | − | 0.293103i | 0.146672 | − | 0.532556i | −0.934339 | + | 0.934339i | −0.879103 | − | 0.879103i | 1.53596 | − | 2.57698i | −0.433807 | + | 0.566002i | ||
44.13 | 0.225510 | − | 0.225510i | 1.50598 | − | 0.855580i | 1.89829i | −0.293103 | + | 2.21677i | 0.146672 | − | 0.532556i | 0.934339 | − | 0.934339i | 0.879103 | + | 0.879103i | 1.53596 | − | 2.57698i | 0.433807 | + | 0.566002i | ||
44.14 | 0.225510 | − | 0.225510i | 1.50598 | + | 0.855580i | 1.89829i | −2.21677 | + | 0.293103i | 0.532556 | − | 0.146672i | −0.934339 | + | 0.934339i | 0.879103 | + | 0.879103i | 1.53596 | + | 2.57698i | −0.433807 | + | 0.566002i | ||
44.15 | 0.590281 | − | 0.590281i | 0.502466 | − | 1.65757i | 1.30314i | 2.08713 | − | 0.802426i | −0.681834 | − | 1.27503i | −0.315643 | + | 0.315643i | 1.94978 | + | 1.94978i | −2.49506 | − | 1.66574i | 0.758337 | − | 1.70565i | ||
44.16 | 0.590281 | − | 0.590281i | 0.502466 | + | 1.65757i | 1.30314i | 0.802426 | − | 2.08713i | 1.27503 | + | 0.681834i | 0.315643 | − | 0.315643i | 1.94978 | + | 1.94978i | −2.49506 | + | 1.66574i | −0.758337 | − | 1.70565i | ||
44.17 | 0.800574 | − | 0.800574i | −1.71512 | − | 0.241578i | 0.718163i | −0.0148595 | + | 2.23602i | −1.56648 | + | 1.17968i | 3.41858 | − | 3.41858i | 2.17609 | + | 2.17609i | 2.88328 | + | 0.828672i | 1.77820 | + | 1.80199i | ||
44.18 | 0.800574 | − | 0.800574i | −1.71512 | + | 0.241578i | 0.718163i | −2.23602 | + | 0.0148595i | −1.17968 | + | 1.56648i | −3.41858 | + | 3.41858i | 2.17609 | + | 2.17609i | 2.88328 | − | 0.828672i | −1.77820 | + | 1.80199i | ||
44.19 | 1.26780 | − | 1.26780i | −0.428519 | − | 1.67820i | − | 1.21464i | −1.71852 | − | 1.43063i | −2.67091 | − | 1.58435i | 1.40105 | − | 1.40105i | 0.995685 | + | 0.995685i | −2.63274 | + | 1.43829i | −3.99249 | + | 0.364987i | |
44.20 | 1.26780 | − | 1.26780i | −0.428519 | + | 1.67820i | − | 1.21464i | 1.43063 | + | 1.71852i | 1.58435 | + | 2.67091i | −1.40105 | + | 1.40105i | 0.995685 | + | 0.995685i | −2.63274 | − | 1.43829i | 3.99249 | + | 0.364987i | |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
15.d | odd | 2 | 1 | inner |
39.f | even | 4 | 1 | inner |
65.g | odd | 4 | 1 | inner |
195.n | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 195.2.n.a | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 195.2.n.a | ✓ | 48 |
5.b | even | 2 | 1 | inner | 195.2.n.a | ✓ | 48 |
5.c | odd | 4 | 2 | 975.2.o.q | 48 | ||
13.d | odd | 4 | 1 | inner | 195.2.n.a | ✓ | 48 |
15.d | odd | 2 | 1 | inner | 195.2.n.a | ✓ | 48 |
15.e | even | 4 | 2 | 975.2.o.q | 48 | ||
39.f | even | 4 | 1 | inner | 195.2.n.a | ✓ | 48 |
65.f | even | 4 | 1 | 975.2.o.q | 48 | ||
65.g | odd | 4 | 1 | inner | 195.2.n.a | ✓ | 48 |
65.k | even | 4 | 1 | 975.2.o.q | 48 | ||
195.j | odd | 4 | 1 | 975.2.o.q | 48 | ||
195.n | even | 4 | 1 | inner | 195.2.n.a | ✓ | 48 |
195.u | odd | 4 | 1 | 975.2.o.q | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.2.n.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
195.2.n.a | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
195.2.n.a | ✓ | 48 | 5.b | even | 2 | 1 | inner |
195.2.n.a | ✓ | 48 | 13.d | odd | 4 | 1 | inner |
195.2.n.a | ✓ | 48 | 15.d | odd | 2 | 1 | inner |
195.2.n.a | ✓ | 48 | 39.f | even | 4 | 1 | inner |
195.2.n.a | ✓ | 48 | 65.g | odd | 4 | 1 | inner |
195.2.n.a | ✓ | 48 | 195.n | even | 4 | 1 | inner |
975.2.o.q | 48 | 5.c | odd | 4 | 2 | ||
975.2.o.q | 48 | 15.e | even | 4 | 2 | ||
975.2.o.q | 48 | 65.f | even | 4 | 1 | ||
975.2.o.q | 48 | 65.k | even | 4 | 1 | ||
975.2.o.q | 48 | 195.j | odd | 4 | 1 | ||
975.2.o.q | 48 | 195.u | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(195, [\chi])\).