Properties

Label 195.2.i.d.61.2
Level $195$
Weight $2$
Character 195.61
Analytic conductor $1.557$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,2,Mod(16,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1714608.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 12x^{4} - 19x^{3} + 30x^{2} - 21x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 61.2
Root \(0.500000 - 1.75780i\) of defining polynomial
Character \(\chi\) \(=\) 195.61
Dual form 195.2.i.d.16.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.169938 - 0.294342i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.942242 + 1.63201i) q^{4} +1.00000 q^{5} +(-0.169938 - 0.294342i) q^{6} +(-0.330062 - 0.571683i) q^{7} +1.32025 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.169938 - 0.294342i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.942242 + 1.63201i) q^{4} +1.00000 q^{5} +(-0.169938 - 0.294342i) q^{6} +(-0.330062 - 0.571683i) q^{7} +1.32025 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.169938 - 0.294342i) q^{10} +(-0.339877 + 0.588684i) q^{11} +1.88448 q^{12} +(1.93243 + 3.04397i) q^{13} -0.224361 q^{14} +(0.500000 - 0.866025i) q^{15} +(-1.66012 + 2.87542i) q^{16} +(-3.71455 - 6.43378i) q^{17} -0.339877 q^{18} +(-0.0577581 - 0.100040i) q^{19} +(0.942242 + 1.63201i) q^{20} -0.660123 q^{21} +(0.115516 + 0.200080i) q^{22} +(3.88448 - 6.72812i) q^{23} +(0.660123 - 1.14337i) q^{24} +1.00000 q^{25} +(1.22436 - 0.0515075i) q^{26} -1.00000 q^{27} +(0.621996 - 1.07733i) q^{28} +(-2.77230 + 4.80177i) q^{29} +(-0.169938 - 0.294342i) q^{30} -9.97370 q^{31} +(1.88448 + 3.26402i) q^{32} +(0.339877 + 0.588684i) q^{33} -2.52498 q^{34} +(-0.330062 - 0.571683i) q^{35} +(0.942242 - 1.63201i) q^{36} +(-4.88448 + 8.46017i) q^{37} -0.0392613 q^{38} +(3.60236 - 0.151548i) q^{39} +1.32025 q^{40} +(-2.11218 + 3.65840i) q^{41} +(-0.112180 + 0.194302i) q^{42} +(0.272303 + 0.471643i) q^{43} -1.28098 q^{44} +(-0.500000 - 0.866025i) q^{45} +(-1.32025 - 2.28673i) q^{46} -5.01963 q^{47} +(1.66012 + 2.87542i) q^{48} +(3.28212 - 5.68480i) q^{49} +(0.169938 - 0.294342i) q^{50} -7.42909 q^{51} +(-3.14697 + 6.02189i) q^{52} +0.679754 q^{53} +(-0.169938 + 0.294342i) q^{54} +(-0.339877 + 0.588684i) q^{55} +(-0.435763 - 0.754763i) q^{56} -0.115516 q^{57} +(0.942242 + 1.63201i) q^{58} +(-1.11218 - 1.92635i) q^{59} +1.88448 q^{60} +(2.10236 + 3.64140i) q^{61} +(-1.69491 + 2.93568i) q^{62} +(-0.330062 + 0.571683i) q^{63} -5.35951 q^{64} +(1.93243 + 3.04397i) q^{65} +0.231033 q^{66} +(3.81691 - 6.61108i) q^{67} +(7.00000 - 12.1244i) q^{68} +(-3.88448 - 6.72812i) q^{69} -0.224361 q^{70} +(-3.65679 - 6.33374i) q^{71} +(-0.660123 - 1.14337i) q^{72} +8.01963 q^{73} +(1.66012 + 2.87542i) q^{74} +(0.500000 - 0.866025i) q^{75} +(0.108844 - 0.188524i) q^{76} +0.448721 q^{77} +(0.567573 - 1.08608i) q^{78} +9.97370 q^{79} +(-1.66012 + 2.87542i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(0.717881 + 1.24341i) q^{82} +1.76897 q^{83} +(-0.621996 - 1.07733i) q^{84} +(-3.71455 - 6.43378i) q^{85} +0.185099 q^{86} +(2.77230 + 4.80177i) q^{87} +(-0.448721 + 0.777208i) q^{88} +(-6.77230 + 11.7300i) q^{89} -0.339877 q^{90} +(1.10236 - 2.10943i) q^{91} +14.6405 q^{92} +(-4.98685 + 8.63748i) q^{93} +(-0.853028 + 1.47749i) q^{94} +(-0.0577581 - 0.100040i) q^{95} +3.76897 q^{96} +(-4.95206 - 8.57721i) q^{97} +(-1.11552 - 1.93213i) q^{98} +0.679754 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 6 q^{4} + 6 q^{5} - 3 q^{7} + 12 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{3} - 6 q^{4} + 6 q^{5} - 3 q^{7} + 12 q^{8} - 3 q^{9} - 12 q^{12} + 3 q^{13} + 24 q^{14} + 3 q^{15} - 12 q^{16} - 12 q^{19} - 6 q^{20} - 6 q^{21} + 24 q^{22} + 6 q^{24} + 6 q^{25} - 18 q^{26} - 6 q^{27} - 12 q^{28} - 6 q^{29} + 6 q^{31} - 12 q^{32} - 3 q^{35} - 6 q^{36} - 6 q^{37} + 12 q^{38} + 12 q^{39} + 12 q^{40} + 12 q^{42} - 9 q^{43} - 24 q^{44} - 3 q^{45} - 12 q^{46} - 24 q^{47} + 12 q^{48} + 6 q^{49} + 12 q^{52} - 30 q^{56} - 24 q^{57} - 6 q^{58} + 6 q^{59} - 12 q^{60} + 3 q^{61} + 6 q^{62} - 3 q^{63} - 24 q^{64} + 3 q^{65} + 48 q^{66} - 9 q^{67} + 42 q^{68} + 24 q^{70} + 12 q^{71} - 6 q^{72} + 42 q^{73} + 12 q^{74} + 3 q^{75} - 48 q^{76} - 48 q^{77} + 12 q^{78} - 6 q^{79} - 12 q^{80} - 3 q^{81} + 18 q^{82} - 36 q^{83} + 12 q^{84} - 12 q^{86} + 6 q^{87} + 48 q^{88} - 30 q^{89} - 3 q^{91} + 96 q^{92} + 3 q^{93} - 36 q^{94} - 12 q^{95} - 24 q^{96} - 15 q^{97} - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.169938 0.294342i 0.120165 0.208131i −0.799668 0.600443i \(-0.794991\pi\)
0.919832 + 0.392311i \(0.128324\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.942242 + 1.63201i 0.471121 + 0.816005i
\(5\) 1.00000 0.447214
\(6\) −0.169938 0.294342i −0.0693771 0.120165i
\(7\) −0.330062 0.571683i −0.124752 0.216076i 0.796884 0.604132i \(-0.206480\pi\)
−0.921636 + 0.388056i \(0.873147\pi\)
\(8\) 1.32025 0.466778
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.169938 0.294342i 0.0537393 0.0930791i
\(11\) −0.339877 + 0.588684i −0.102477 + 0.177495i −0.912704 0.408620i \(-0.866010\pi\)
0.810228 + 0.586115i \(0.199343\pi\)
\(12\) 1.88448 0.544004
\(13\) 1.93243 + 3.04397i 0.535959 + 0.844244i
\(14\) −0.224361 −0.0599629
\(15\) 0.500000 0.866025i 0.129099 0.223607i
\(16\) −1.66012 + 2.87542i −0.415031 + 0.718854i
\(17\) −3.71455 6.43378i −0.900910 1.56042i −0.826316 0.563207i \(-0.809567\pi\)
−0.0745938 0.997214i \(-0.523766\pi\)
\(18\) −0.339877 −0.0801098
\(19\) −0.0577581 0.100040i −0.0132506 0.0229508i 0.859324 0.511431i \(-0.170885\pi\)
−0.872575 + 0.488481i \(0.837551\pi\)
\(20\) 0.942242 + 1.63201i 0.210692 + 0.364929i
\(21\) −0.660123 −0.144051
\(22\) 0.115516 + 0.200080i 0.0246282 + 0.0426572i
\(23\) 3.88448 6.72812i 0.809971 1.40291i −0.102913 0.994690i \(-0.532816\pi\)
0.912883 0.408220i \(-0.133850\pi\)
\(24\) 0.660123 1.14337i 0.134747 0.233389i
\(25\) 1.00000 0.200000
\(26\) 1.22436 0.0515075i 0.240117 0.0101015i
\(27\) −1.00000 −0.192450
\(28\) 0.621996 1.07733i 0.117546 0.203596i
\(29\) −2.77230 + 4.80177i −0.514804 + 0.891666i 0.485049 + 0.874487i \(0.338802\pi\)
−0.999852 + 0.0171792i \(0.994531\pi\)
\(30\) −0.169938 0.294342i −0.0310264 0.0537393i
\(31\) −9.97370 −1.79133 −0.895664 0.444730i \(-0.853299\pi\)
−0.895664 + 0.444730i \(0.853299\pi\)
\(32\) 1.88448 + 3.26402i 0.333133 + 0.577003i
\(33\) 0.339877 + 0.588684i 0.0591650 + 0.102477i
\(34\) −2.52498 −0.433030
\(35\) −0.330062 0.571683i −0.0557906 0.0966321i
\(36\) 0.942242 1.63201i 0.157040 0.272002i
\(37\) −4.88448 + 8.46017i −0.803004 + 1.39084i 0.114626 + 0.993409i \(0.463433\pi\)
−0.917630 + 0.397435i \(0.869900\pi\)
\(38\) −0.0392613 −0.00636903
\(39\) 3.60236 0.151548i 0.576840 0.0242670i
\(40\) 1.32025 0.208749
\(41\) −2.11218 + 3.65840i −0.329867 + 0.571347i −0.982485 0.186340i \(-0.940337\pi\)
0.652618 + 0.757687i \(0.273671\pi\)
\(42\) −0.112180 + 0.194302i −0.0173098 + 0.0299814i
\(43\) 0.272303 + 0.471643i 0.0415259 + 0.0719249i 0.886041 0.463606i \(-0.153445\pi\)
−0.844515 + 0.535531i \(0.820111\pi\)
\(44\) −1.28098 −0.193116
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) −1.32025 2.28673i −0.194660 0.337160i
\(47\) −5.01963 −0.732188 −0.366094 0.930578i \(-0.619305\pi\)
−0.366094 + 0.930578i \(0.619305\pi\)
\(48\) 1.66012 + 2.87542i 0.239618 + 0.415031i
\(49\) 3.28212 5.68480i 0.468874 0.812114i
\(50\) 0.169938 0.294342i 0.0240329 0.0416262i
\(51\) −7.42909 −1.04028
\(52\) −3.14697 + 6.02189i −0.436406 + 0.835086i
\(53\) 0.679754 0.0933714 0.0466857 0.998910i \(-0.485134\pi\)
0.0466857 + 0.998910i \(0.485134\pi\)
\(54\) −0.169938 + 0.294342i −0.0231257 + 0.0400549i
\(55\) −0.339877 + 0.588684i −0.0458290 + 0.0793781i
\(56\) −0.435763 0.754763i −0.0582312 0.100859i
\(57\) −0.115516 −0.0153005
\(58\) 0.942242 + 1.63201i 0.123722 + 0.214294i
\(59\) −1.11218 1.92635i −0.144794 0.250790i 0.784502 0.620126i \(-0.212918\pi\)
−0.929296 + 0.369336i \(0.879585\pi\)
\(60\) 1.88448 0.243286
\(61\) 2.10236 + 3.64140i 0.269180 + 0.466234i 0.968650 0.248428i \(-0.0799139\pi\)
−0.699470 + 0.714662i \(0.746581\pi\)
\(62\) −1.69491 + 2.93568i −0.215254 + 0.372832i
\(63\) −0.330062 + 0.571683i −0.0415838 + 0.0720253i
\(64\) −5.35951 −0.669938
\(65\) 1.93243 + 3.04397i 0.239688 + 0.377557i
\(66\) 0.231033 0.0284381
\(67\) 3.81691 6.61108i 0.466310 0.807672i −0.532950 0.846147i \(-0.678917\pi\)
0.999260 + 0.0384746i \(0.0122499\pi\)
\(68\) 7.00000 12.1244i 0.848875 1.47029i
\(69\) −3.88448 6.72812i −0.467637 0.809971i
\(70\) −0.224361 −0.0268162
\(71\) −3.65679 6.33374i −0.433981 0.751677i 0.563231 0.826299i \(-0.309558\pi\)
−0.997212 + 0.0746227i \(0.976225\pi\)
\(72\) −0.660123 1.14337i −0.0777963 0.134747i
\(73\) 8.01963 0.938627 0.469313 0.883032i \(-0.344501\pi\)
0.469313 + 0.883032i \(0.344501\pi\)
\(74\) 1.66012 + 2.87542i 0.192985 + 0.334261i
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0.108844 0.188524i 0.0124853 0.0216252i
\(77\) 0.448721 0.0511365
\(78\) 0.567573 1.08608i 0.0642650 0.122974i
\(79\) 9.97370 1.12213 0.561064 0.827772i \(-0.310392\pi\)
0.561064 + 0.827772i \(0.310392\pi\)
\(80\) −1.66012 + 2.87542i −0.185607 + 0.321481i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0.717881 + 1.24341i 0.0792767 + 0.137311i
\(83\) 1.76897 0.194169 0.0970847 0.995276i \(-0.469048\pi\)
0.0970847 + 0.995276i \(0.469048\pi\)
\(84\) −0.621996 1.07733i −0.0678653 0.117546i
\(85\) −3.71455 6.43378i −0.402899 0.697842i
\(86\) 0.185099 0.0199598
\(87\) 2.77230 + 4.80177i 0.297222 + 0.514804i
\(88\) −0.448721 + 0.777208i −0.0478338 + 0.0828506i
\(89\) −6.77230 + 11.7300i −0.717863 + 1.24337i 0.243982 + 0.969780i \(0.421546\pi\)
−0.961845 + 0.273595i \(0.911787\pi\)
\(90\) −0.339877 −0.0358262
\(91\) 1.10236 2.10943i 0.115559 0.221129i
\(92\) 14.6405 1.52638
\(93\) −4.98685 + 8.63748i −0.517112 + 0.895664i
\(94\) −0.853028 + 1.47749i −0.0879831 + 0.152391i
\(95\) −0.0577581 0.100040i −0.00592586 0.0102639i
\(96\) 3.76897 0.384669
\(97\) −4.95206 8.57721i −0.502805 0.870884i −0.999995 0.00324223i \(-0.998968\pi\)
0.497190 0.867642i \(-0.334365\pi\)
\(98\) −1.11552 1.93213i −0.112684 0.195175i
\(99\) 0.679754 0.0683178
\(100\) 0.942242 + 1.63201i 0.0942242 + 0.163201i
\(101\) 4.67975 8.10557i 0.465653 0.806534i −0.533578 0.845751i \(-0.679153\pi\)
0.999231 + 0.0392165i \(0.0124862\pi\)
\(102\) −1.26249 + 2.18669i −0.125005 + 0.216515i
\(103\) 4.50535 0.443925 0.221962 0.975055i \(-0.428754\pi\)
0.221962 + 0.975055i \(0.428754\pi\)
\(104\) 2.55128 + 4.01878i 0.250173 + 0.394074i
\(105\) −0.660123 −0.0644214
\(106\) 0.115516 0.200080i 0.0112199 0.0194335i
\(107\) −0.285455 + 0.494422i −0.0275960 + 0.0477976i −0.879494 0.475911i \(-0.842119\pi\)
0.851898 + 0.523708i \(0.175452\pi\)
\(108\) −0.942242 1.63201i −0.0906673 0.157040i
\(109\) 15.4095 1.47596 0.737979 0.674823i \(-0.235780\pi\)
0.737979 + 0.674823i \(0.235780\pi\)
\(110\) 0.115516 + 0.200080i 0.0110140 + 0.0190769i
\(111\) 4.88448 + 8.46017i 0.463615 + 0.803004i
\(112\) 2.19177 0.207103
\(113\) 2.66012 + 4.60747i 0.250243 + 0.433434i 0.963593 0.267374i \(-0.0861560\pi\)
−0.713349 + 0.700809i \(0.752823\pi\)
\(114\) −0.0196307 + 0.0340013i −0.00183858 + 0.00318451i
\(115\) 3.88448 6.72812i 0.362230 0.627401i
\(116\) −10.4487 −0.970139
\(117\) 1.66994 3.19551i 0.154386 0.295425i
\(118\) −0.756009 −0.0695962
\(119\) −2.45206 + 4.24709i −0.224780 + 0.389330i
\(120\) 0.660123 1.14337i 0.0602607 0.104375i
\(121\) 5.26897 + 9.12612i 0.478997 + 0.829647i
\(122\) 1.42909 0.129384
\(123\) 2.11218 + 3.65840i 0.190449 + 0.329867i
\(124\) −9.39764 16.2772i −0.843933 1.46173i
\(125\) 1.00000 0.0894427
\(126\) 0.112180 + 0.194302i 0.00999381 + 0.0173098i
\(127\) 6.00982 10.4093i 0.533285 0.923676i −0.465959 0.884806i \(-0.654291\pi\)
0.999244 0.0388704i \(-0.0123759\pi\)
\(128\) −4.67975 + 8.10557i −0.413636 + 0.716438i
\(129\) 0.544607 0.0479500
\(130\) 1.22436 0.0515075i 0.107384 0.00451751i
\(131\) 10.9041 0.952697 0.476348 0.879257i \(-0.341960\pi\)
0.476348 + 0.879257i \(0.341960\pi\)
\(132\) −0.640492 + 1.10937i −0.0557477 + 0.0965579i
\(133\) −0.0381275 + 0.0660387i −0.00330607 + 0.00572629i
\(134\) −1.29728 2.24695i −0.112068 0.194107i
\(135\) −1.00000 −0.0860663
\(136\) −4.90411 8.49418i −0.420524 0.728370i
\(137\) −1.69491 2.93568i −0.144806 0.250812i 0.784494 0.620136i \(-0.212923\pi\)
−0.929301 + 0.369324i \(0.879589\pi\)
\(138\) −2.64049 −0.224774
\(139\) −7.40411 12.8243i −0.628009 1.08774i −0.987951 0.154768i \(-0.950537\pi\)
0.359942 0.932975i \(-0.382796\pi\)
\(140\) 0.621996 1.07733i 0.0525682 0.0910508i
\(141\) −2.50982 + 4.34713i −0.211365 + 0.366094i
\(142\) −2.48571 −0.208597
\(143\) −2.44872 + 0.103015i −0.204772 + 0.00861455i
\(144\) 3.32025 0.276687
\(145\) −2.77230 + 4.80177i −0.230227 + 0.398765i
\(146\) 1.36284 2.36051i 0.112790 0.195358i
\(147\) −3.28212 5.68480i −0.270705 0.468874i
\(148\) −18.4095 −1.51325
\(149\) 8.54461 + 14.7997i 0.700001 + 1.21244i 0.968465 + 0.249148i \(0.0801507\pi\)
−0.268464 + 0.963290i \(0.586516\pi\)
\(150\) −0.169938 0.294342i −0.0138754 0.0240329i
\(151\) 13.0130 1.05898 0.529490 0.848316i \(-0.322383\pi\)
0.529490 + 0.848316i \(0.322383\pi\)
\(152\) −0.0762550 0.132077i −0.00618510 0.0107129i
\(153\) −3.71455 + 6.43378i −0.300303 + 0.520140i
\(154\) 0.0762550 0.132077i 0.00614480 0.0106431i
\(155\) −9.97370 −0.801107
\(156\) 3.64163 + 5.73630i 0.291563 + 0.459272i
\(157\) −0.775639 −0.0619028 −0.0309514 0.999521i \(-0.509854\pi\)
−0.0309514 + 0.999521i \(0.509854\pi\)
\(158\) 1.69491 2.93568i 0.134840 0.233550i
\(159\) 0.339877 0.588684i 0.0269540 0.0466857i
\(160\) 1.88448 + 3.26402i 0.148982 + 0.258044i
\(161\) −5.12847 −0.404180
\(162\) 0.169938 + 0.294342i 0.0133516 + 0.0231257i
\(163\) −6.09903 10.5638i −0.477713 0.827423i 0.521961 0.852969i \(-0.325201\pi\)
−0.999674 + 0.0255466i \(0.991867\pi\)
\(164\) −7.96074 −0.621629
\(165\) 0.339877 + 0.588684i 0.0264594 + 0.0458290i
\(166\) 0.300616 0.520681i 0.0233323 0.0404127i
\(167\) 0.795270 1.37745i 0.0615398 0.106590i −0.833614 0.552347i \(-0.813732\pi\)
0.895154 + 0.445757i \(0.147066\pi\)
\(168\) −0.871525 −0.0672396
\(169\) −5.53146 + 11.7645i −0.425497 + 0.904960i
\(170\) −2.52498 −0.193657
\(171\) −0.0577581 + 0.100040i −0.00441688 + 0.00765025i
\(172\) −0.513151 + 0.888804i −0.0391274 + 0.0677707i
\(173\) −6.37467 11.0412i −0.484657 0.839451i 0.515188 0.857077i \(-0.327722\pi\)
−0.999845 + 0.0176268i \(0.994389\pi\)
\(174\) 1.88448 0.142862
\(175\) −0.330062 0.571683i −0.0249503 0.0432152i
\(176\) −1.12847 1.95458i −0.0850620 0.147332i
\(177\) −2.22436 −0.167193
\(178\) 2.30175 + 3.98675i 0.172523 + 0.298819i
\(179\) −8.88115 + 15.3826i −0.663808 + 1.14975i 0.315799 + 0.948826i \(0.397728\pi\)
−0.979607 + 0.200923i \(0.935606\pi\)
\(180\) 0.942242 1.63201i 0.0702306 0.121643i
\(181\) 7.02630 0.522261 0.261130 0.965304i \(-0.415905\pi\)
0.261130 + 0.965304i \(0.415905\pi\)
\(182\) −0.433560 0.682946i −0.0321376 0.0506233i
\(183\) 4.20473 0.310823
\(184\) 5.12847 8.88278i 0.378076 0.654847i
\(185\) −4.88448 + 8.46017i −0.359114 + 0.622004i
\(186\) 1.69491 + 2.93568i 0.124277 + 0.215254i
\(187\) 5.04995 0.369289
\(188\) −4.72971 8.19209i −0.344949 0.597470i
\(189\) 0.330062 + 0.571683i 0.0240084 + 0.0415838i
\(190\) −0.0392613 −0.00284832
\(191\) 6.97703 + 12.0846i 0.504840 + 0.874409i 0.999984 + 0.00559828i \(0.00178200\pi\)
−0.495144 + 0.868811i \(0.664885\pi\)
\(192\) −2.67975 + 4.64147i −0.193395 + 0.334969i
\(193\) −11.8747 + 20.5675i −0.854757 + 1.48048i 0.0221126 + 0.999755i \(0.492961\pi\)
−0.876870 + 0.480728i \(0.840373\pi\)
\(194\) −3.36618 −0.241678
\(195\) 3.60236 0.151548i 0.257971 0.0108525i
\(196\) 12.3702 0.883586
\(197\) −7.90411 + 13.6903i −0.563145 + 0.975395i 0.434075 + 0.900877i \(0.357075\pi\)
−0.997220 + 0.0745186i \(0.976258\pi\)
\(198\) 0.115516 0.200080i 0.00820939 0.0142191i
\(199\) −4.38448 7.59415i −0.310808 0.538335i 0.667730 0.744404i \(-0.267266\pi\)
−0.978537 + 0.206069i \(0.933933\pi\)
\(200\) 1.32025 0.0933555
\(201\) −3.81691 6.61108i −0.269224 0.466310i
\(202\) −1.59054 2.75490i −0.111910 0.193834i
\(203\) 3.66012 0.256890
\(204\) −7.00000 12.1244i −0.490098 0.848875i
\(205\) −2.11218 + 3.65840i −0.147521 + 0.255514i
\(206\) 0.765631 1.32611i 0.0533441 0.0923946i
\(207\) −7.76897 −0.539981
\(208\) −11.9607 + 0.503175i −0.829328 + 0.0348889i
\(209\) 0.0785226 0.00543152
\(210\) −0.112180 + 0.194302i −0.00774118 + 0.0134081i
\(211\) −4.40411 + 7.62815i −0.303192 + 0.525143i −0.976857 0.213893i \(-0.931386\pi\)
0.673665 + 0.739037i \(0.264719\pi\)
\(212\) 0.640492 + 1.10937i 0.0439892 + 0.0761915i
\(213\) −7.31357 −0.501118
\(214\) 0.0970195 + 0.168043i 0.00663211 + 0.0114872i
\(215\) 0.272303 + 0.471643i 0.0185709 + 0.0321658i
\(216\) −1.32025 −0.0898314
\(217\) 3.29193 + 5.70180i 0.223471 + 0.387063i
\(218\) 2.61866 4.53565i 0.177358 0.307193i
\(219\) 4.00982 6.94520i 0.270958 0.469313i
\(220\) −1.28098 −0.0863640
\(221\) 12.4061 23.7398i 0.834526 1.59691i
\(222\) 3.32025 0.222840
\(223\) −5.01963 + 8.69426i −0.336139 + 0.582210i −0.983703 0.179801i \(-0.942455\pi\)
0.647564 + 0.762011i \(0.275788\pi\)
\(224\) 1.24399 2.15466i 0.0831177 0.143964i
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) 1.80823 0.120282
\(227\) −0.605701 1.04910i −0.0402018 0.0696315i 0.845224 0.534412i \(-0.179467\pi\)
−0.885426 + 0.464780i \(0.846133\pi\)
\(228\) −0.108844 0.188524i −0.00720839 0.0124853i
\(229\) 19.2440 1.27168 0.635839 0.771821i \(-0.280654\pi\)
0.635839 + 0.771821i \(0.280654\pi\)
\(230\) −1.32025 2.28673i −0.0870545 0.150783i
\(231\) 0.224361 0.388604i 0.0147618 0.0255683i
\(232\) −3.66012 + 6.33952i −0.240299 + 0.416210i
\(233\) −23.9081 −1.56627 −0.783137 0.621849i \(-0.786382\pi\)
−0.783137 + 0.621849i \(0.786382\pi\)
\(234\) −0.656787 1.03457i −0.0429355 0.0676322i
\(235\) −5.01963 −0.327445
\(236\) 2.09589 3.63018i 0.136431 0.236305i
\(237\) 4.98685 8.63748i 0.323931 0.561064i
\(238\) 0.833398 + 1.44349i 0.0540211 + 0.0935674i
\(239\) 18.6798 1.20829 0.604146 0.796873i \(-0.293514\pi\)
0.604146 + 0.796873i \(0.293514\pi\)
\(240\) 1.66012 + 2.87542i 0.107160 + 0.185607i
\(241\) −3.05776 5.29619i −0.196968 0.341158i 0.750576 0.660784i \(-0.229776\pi\)
−0.947544 + 0.319626i \(0.896443\pi\)
\(242\) 3.58160 0.230234
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −3.96187 + 6.86216i −0.253633 + 0.439305i
\(245\) 3.28212 5.68480i 0.209687 0.363188i
\(246\) 1.43576 0.0915409
\(247\) 0.192905 0.369134i 0.0122743 0.0234874i
\(248\) −13.1677 −0.836152
\(249\) 0.884484 1.53197i 0.0560519 0.0970847i
\(250\) 0.169938 0.294342i 0.0107479 0.0186158i
\(251\) −1.67975 2.90942i −0.106025 0.183641i 0.808131 0.589002i \(-0.200479\pi\)
−0.914157 + 0.405361i \(0.867146\pi\)
\(252\) −1.24399 −0.0783641
\(253\) 2.64049 + 4.57347i 0.166006 + 0.287531i
\(254\) −2.04260 3.53788i −0.128164 0.221986i
\(255\) −7.42909 −0.465228
\(256\) −3.76897 6.52804i −0.235560 0.408003i
\(257\) 5.05442 8.75452i 0.315286 0.546092i −0.664212 0.747544i \(-0.731233\pi\)
0.979498 + 0.201452i \(0.0645662\pi\)
\(258\) 0.0925496 0.160301i 0.00576189 0.00997988i
\(259\) 6.44872 0.400704
\(260\) −3.14697 + 6.02189i −0.195167 + 0.373462i
\(261\) 5.54461 0.343203
\(262\) 1.85303 3.20954i 0.114480 0.198286i
\(263\) 11.2592 19.5014i 0.694269 1.20251i −0.276157 0.961112i \(-0.589061\pi\)
0.970426 0.241397i \(-0.0776056\pi\)
\(264\) 0.448721 + 0.777208i 0.0276169 + 0.0478338i
\(265\) 0.679754 0.0417569
\(266\) 0.0129587 + 0.0224450i 0.000794546 + 0.00137619i
\(267\) 6.77230 + 11.7300i 0.414458 + 0.717863i
\(268\) 14.3858 0.878753
\(269\) −4.24733 7.35659i −0.258964 0.448539i 0.707001 0.707213i \(-0.250048\pi\)
−0.965965 + 0.258674i \(0.916714\pi\)
\(270\) −0.169938 + 0.294342i −0.0103421 + 0.0179131i
\(271\) −4.68510 + 8.11483i −0.284600 + 0.492941i −0.972512 0.232853i \(-0.925194\pi\)
0.687912 + 0.725794i \(0.258527\pi\)
\(272\) 24.6664 1.49562
\(273\) −1.27564 2.00939i −0.0772052 0.121614i
\(274\) −1.15212 −0.0696024
\(275\) −0.339877 + 0.588684i −0.0204953 + 0.0354990i
\(276\) 7.32025 12.6790i 0.440627 0.763188i
\(277\) −0.359508 0.622685i −0.0216007 0.0374135i 0.855023 0.518590i \(-0.173543\pi\)
−0.876624 + 0.481177i \(0.840210\pi\)
\(278\) −5.03297 −0.301858
\(279\) 4.98685 + 8.63748i 0.298555 + 0.517112i
\(280\) −0.435763 0.754763i −0.0260418 0.0451057i
\(281\) 1.54461 0.0921435 0.0460718 0.998938i \(-0.485330\pi\)
0.0460718 + 0.998938i \(0.485330\pi\)
\(282\) 0.853028 + 1.47749i 0.0507971 + 0.0879831i
\(283\) 9.05977 15.6920i 0.538547 0.932791i −0.460435 0.887693i \(-0.652307\pi\)
0.998983 0.0450980i \(-0.0143600\pi\)
\(284\) 6.89116 11.9358i 0.408915 0.708261i
\(285\) −0.115516 −0.00684259
\(286\) −0.385810 + 0.738268i −0.0228134 + 0.0436547i
\(287\) 2.78860 0.164606
\(288\) 1.88448 3.26402i 0.111044 0.192334i
\(289\) −19.0957 + 33.0747i −1.12328 + 1.94557i
\(290\) 0.942242 + 1.63201i 0.0553303 + 0.0958350i
\(291\) −9.90411 −0.580589
\(292\) 7.55643 + 13.0881i 0.442207 + 0.765924i
\(293\) 15.2525 + 26.4181i 0.891059 + 1.54336i 0.838607 + 0.544737i \(0.183370\pi\)
0.0524523 + 0.998623i \(0.483296\pi\)
\(294\) −2.23103 −0.130116
\(295\) −1.11218 1.92635i −0.0647536 0.112157i
\(296\) −6.44872 + 11.1695i −0.374824 + 0.649215i
\(297\) 0.339877 0.588684i 0.0197217 0.0341589i
\(298\) 5.80823 0.336462
\(299\) 27.9867 1.17737i 1.61851 0.0680890i
\(300\) 1.88448 0.108801
\(301\) 0.179754 0.311343i 0.0103608 0.0179455i
\(302\) 2.21140 3.83026i 0.127252 0.220407i
\(303\) −4.67975 8.10557i −0.268845 0.465653i
\(304\) 0.383543 0.0219977
\(305\) 2.10236 + 3.64140i 0.120381 + 0.208506i
\(306\) 1.26249 + 2.18669i 0.0721716 + 0.125005i
\(307\) −4.77564 −0.272560 −0.136280 0.990670i \(-0.543515\pi\)
−0.136280 + 0.990670i \(0.543515\pi\)
\(308\) 0.422804 + 0.732318i 0.0240915 + 0.0417277i
\(309\) 2.25267 3.90174i 0.128150 0.221962i
\(310\) −1.69491 + 2.93568i −0.0962647 + 0.166735i
\(311\) 30.5812 1.73410 0.867051 0.498220i \(-0.166013\pi\)
0.867051 + 0.498220i \(0.166013\pi\)
\(312\) 4.75601 0.200080i 0.269256 0.0113273i
\(313\) −26.7230 −1.51048 −0.755238 0.655451i \(-0.772479\pi\)
−0.755238 + 0.655451i \(0.772479\pi\)
\(314\) −0.131811 + 0.228303i −0.00743852 + 0.0128839i
\(315\) −0.330062 + 0.571683i −0.0185969 + 0.0322107i
\(316\) 9.39764 + 16.2772i 0.528658 + 0.915663i
\(317\) −20.6271 −1.15854 −0.579268 0.815137i \(-0.696662\pi\)
−0.579268 + 0.815137i \(0.696662\pi\)
\(318\) −0.115516 0.200080i −0.00647783 0.0112199i
\(319\) −1.88448 3.26402i −0.105511 0.182750i
\(320\) −5.35951 −0.299606
\(321\) 0.285455 + 0.494422i 0.0159325 + 0.0275960i
\(322\) −0.871525 + 1.50953i −0.0485682 + 0.0841226i
\(323\) −0.429091 + 0.743207i −0.0238752 + 0.0413531i
\(324\) −1.88448 −0.104694
\(325\) 1.93243 + 3.04397i 0.107192 + 0.168849i
\(326\) −4.14584 −0.229617
\(327\) 7.70473 13.3450i 0.426073 0.737979i
\(328\) −2.78860 + 4.82999i −0.153975 + 0.266692i
\(329\) 1.65679 + 2.86964i 0.0913416 + 0.158208i
\(330\) 0.231033 0.0127179
\(331\) −2.68510 4.65073i −0.147586 0.255627i 0.782749 0.622338i \(-0.213817\pi\)
−0.930335 + 0.366711i \(0.880484\pi\)
\(332\) 1.66680 + 2.88697i 0.0914773 + 0.158443i
\(333\) 9.76897 0.535336
\(334\) −0.270294 0.468163i −0.0147898 0.0256167i
\(335\) 3.81691 6.61108i 0.208540 0.361202i
\(336\) 1.09589 1.89813i 0.0597855 0.103551i
\(337\) 28.7623 1.56678 0.783391 0.621529i \(-0.213488\pi\)
0.783391 + 0.621529i \(0.213488\pi\)
\(338\) 2.52277 + 3.62738i 0.137221 + 0.197303i
\(339\) 5.32025 0.288956
\(340\) 7.00000 12.1244i 0.379628 0.657536i
\(341\) 3.38983 5.87136i 0.183570 0.317952i
\(342\) 0.0196307 + 0.0340013i 0.00106150 + 0.00183858i
\(343\) −8.95407 −0.483474
\(344\) 0.359508 + 0.622685i 0.0193833 + 0.0335729i
\(345\) −3.88448 6.72812i −0.209134 0.362230i
\(346\) −4.33320 −0.232955
\(347\) −11.1981 19.3956i −0.601143 1.04121i −0.992648 0.121035i \(-0.961379\pi\)
0.391505 0.920176i \(-0.371955\pi\)
\(348\) −5.22436 + 9.04886i −0.280055 + 0.485070i
\(349\) 5.98685 10.3695i 0.320469 0.555068i −0.660116 0.751164i \(-0.729493\pi\)
0.980585 + 0.196096i \(0.0628263\pi\)
\(350\) −0.224361 −0.0119926
\(351\) −1.93243 3.04397i −0.103145 0.162475i
\(352\) −2.56197 −0.136553
\(353\) 8.51830 14.7541i 0.453384 0.785283i −0.545210 0.838299i \(-0.683550\pi\)
0.998594 + 0.0530161i \(0.0168834\pi\)
\(354\) −0.378004 + 0.654723i −0.0200907 + 0.0347981i
\(355\) −3.65679 6.33374i −0.194082 0.336160i
\(356\) −25.5246 −1.35280
\(357\) 2.45206 + 4.24709i 0.129777 + 0.224780i
\(358\) 3.01850 + 5.22819i 0.159533 + 0.276318i
\(359\) −35.0825 −1.85159 −0.925793 0.378031i \(-0.876601\pi\)
−0.925793 + 0.378031i \(0.876601\pi\)
\(360\) −0.660123 1.14337i −0.0347915 0.0602607i
\(361\) 9.49333 16.4429i 0.499649 0.865417i
\(362\) 1.19404 2.06814i 0.0627573 0.108699i
\(363\) 10.5379 0.553098
\(364\) 4.48131 0.188524i 0.234884 0.00988133i
\(365\) 8.01963 0.419767
\(366\) 0.714545 1.23763i 0.0373499 0.0646919i
\(367\) −10.0413 + 17.3920i −0.524150 + 0.907855i 0.475455 + 0.879740i \(0.342284\pi\)
−0.999605 + 0.0281143i \(0.991050\pi\)
\(368\) 12.8974 + 22.3390i 0.672326 + 1.16450i
\(369\) 4.22436 0.219911
\(370\) 1.66012 + 2.87542i 0.0863057 + 0.149486i
\(371\) −0.224361 0.388604i −0.0116482 0.0201753i
\(372\) −18.7953 −0.974489
\(373\) 11.7395 + 20.3334i 0.607849 + 1.05283i 0.991594 + 0.129387i \(0.0413009\pi\)
−0.383745 + 0.923439i \(0.625366\pi\)
\(374\) 0.858181 1.48641i 0.0443755 0.0768606i
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) −6.62715 −0.341769
\(377\) −19.9737 + 0.840272i −1.02870 + 0.0432762i
\(378\) 0.224361 0.0115399
\(379\) −10.5707 + 18.3090i −0.542981 + 0.940471i 0.455750 + 0.890108i \(0.349371\pi\)
−0.998731 + 0.0503631i \(0.983962\pi\)
\(380\) 0.108844 0.188524i 0.00558359 0.00967107i
\(381\) −6.00982 10.4093i −0.307892 0.533285i
\(382\) 4.74266 0.242656
\(383\) −0.869323 1.50571i −0.0444203 0.0769383i 0.842960 0.537976i \(-0.180811\pi\)
−0.887381 + 0.461037i \(0.847477\pi\)
\(384\) 4.67975 + 8.10557i 0.238813 + 0.413636i
\(385\) 0.448721 0.0228689
\(386\) 4.03593 + 6.99043i 0.205423 + 0.355803i
\(387\) 0.272303 0.471643i 0.0138420 0.0239750i
\(388\) 9.33207 16.1636i 0.473764 0.820584i
\(389\) −26.6664 −1.35204 −0.676020 0.736883i \(-0.736297\pi\)
−0.676020 + 0.736883i \(0.736297\pi\)
\(390\) 0.567573 1.08608i 0.0287402 0.0549959i
\(391\) −57.7164 −2.91884
\(392\) 4.33320 7.50533i 0.218860 0.379076i
\(393\) 5.45206 9.44324i 0.275020 0.476348i
\(394\) 2.68643 + 4.65303i 0.135340 + 0.234416i
\(395\) 9.97370 0.501831
\(396\) 0.640492 + 1.10937i 0.0321860 + 0.0557477i
\(397\) −7.27230 12.5960i −0.364986 0.632175i 0.623788 0.781594i \(-0.285593\pi\)
−0.988774 + 0.149419i \(0.952260\pi\)
\(398\) −2.98037 −0.149392
\(399\) 0.0381275 + 0.0660387i 0.00190876 + 0.00330607i
\(400\) −1.66012 + 2.87542i −0.0830062 + 0.143771i
\(401\) 4.18510 7.24880i 0.208994 0.361988i −0.742404 0.669952i \(-0.766314\pi\)
0.951398 + 0.307964i \(0.0996478\pi\)
\(402\) −2.59456 −0.129405
\(403\) −19.2734 30.3596i −0.960078 1.51232i
\(404\) 17.6378 0.877515
\(405\) −0.500000 + 0.866025i −0.0248452 + 0.0430331i
\(406\) 0.621996 1.07733i 0.0308691 0.0534669i
\(407\) −3.32025 5.75084i −0.164578 0.285058i
\(408\) −9.80823 −0.485580
\(409\) −8.62734 14.9430i −0.426595 0.738883i 0.569973 0.821663i \(-0.306954\pi\)
−0.996568 + 0.0827798i \(0.973620\pi\)
\(410\) 0.717881 + 1.24341i 0.0354536 + 0.0614075i
\(411\) −3.38983 −0.167208
\(412\) 4.24513 + 7.35277i 0.209142 + 0.362245i
\(413\) −0.734176 + 1.27163i −0.0361264 + 0.0625728i
\(414\) −1.32025 + 2.28673i −0.0648866 + 0.112387i
\(415\) 1.76897 0.0868352
\(416\) −6.29394 + 12.0438i −0.308586 + 0.590495i
\(417\) −14.8082 −0.725162
\(418\) 0.0133440 0.0231125i 0.000652677 0.00113047i
\(419\) −6.43243 + 11.1413i −0.314245 + 0.544288i −0.979277 0.202527i \(-0.935085\pi\)
0.665032 + 0.746815i \(0.268418\pi\)
\(420\) −0.621996 1.07733i −0.0303503 0.0525682i
\(421\) 24.5616 1.19706 0.598529 0.801101i \(-0.295752\pi\)
0.598529 + 0.801101i \(0.295752\pi\)
\(422\) 1.49686 + 2.59263i 0.0728658 + 0.126207i
\(423\) 2.50982 + 4.34713i 0.122031 + 0.211365i
\(424\) 0.897442 0.0435837
\(425\) −3.71455 6.43378i −0.180182 0.312084i
\(426\) −1.24286 + 2.15269i −0.0602166 + 0.104298i
\(427\) 1.38782 2.40377i 0.0671613 0.116327i
\(428\) −1.07587 −0.0520041
\(429\) −1.13515 + 2.17216i −0.0548054 + 0.104873i
\(430\) 0.185099 0.00892628
\(431\) −12.3898 + 21.4598i −0.596797 + 1.03368i 0.396493 + 0.918038i \(0.370227\pi\)
−0.993291 + 0.115645i \(0.963106\pi\)
\(432\) 1.66012 2.87542i 0.0798727 0.138344i
\(433\) 7.02945 + 12.1754i 0.337814 + 0.585110i 0.984021 0.178051i \(-0.0569793\pi\)
−0.646208 + 0.763162i \(0.723646\pi\)
\(434\) 2.23770 0.107413
\(435\) 2.77230 + 4.80177i 0.132922 + 0.230227i
\(436\) 14.5194 + 25.1484i 0.695355 + 1.20439i
\(437\) −0.897442 −0.0429305
\(438\) −1.36284 2.36051i −0.0651192 0.112790i
\(439\) −10.4226 + 18.0525i −0.497444 + 0.861598i −0.999996 0.00294880i \(-0.999061\pi\)
0.502552 + 0.864547i \(0.332395\pi\)
\(440\) −0.448721 + 0.777208i −0.0213919 + 0.0370519i
\(441\) −6.56424 −0.312583
\(442\) −4.87933 7.68594i −0.232086 0.365583i
\(443\) −11.4291 −0.543012 −0.271506 0.962437i \(-0.587522\pi\)
−0.271506 + 0.962437i \(0.587522\pi\)
\(444\) −9.20473 + 15.9431i −0.436837 + 0.756624i
\(445\) −6.77230 + 11.7300i −0.321038 + 0.556054i
\(446\) 1.70606 + 2.95498i 0.0807841 + 0.139922i
\(447\) 17.0892 0.808292
\(448\) 1.76897 + 3.06394i 0.0835759 + 0.144758i
\(449\) −12.9541 22.4371i −0.611340 1.05887i −0.991015 0.133752i \(-0.957297\pi\)
0.379675 0.925120i \(-0.376036\pi\)
\(450\) −0.339877 −0.0160220
\(451\) −1.43576 2.48681i −0.0676074 0.117099i
\(452\) −5.01296 + 8.68270i −0.235790 + 0.408400i
\(453\) 6.50648 11.2696i 0.305701 0.529490i
\(454\) −0.411728 −0.0193233
\(455\) 1.10236 2.10943i 0.0516797 0.0988917i
\(456\) −0.152510 −0.00714193
\(457\) −2.95206 + 5.11311i −0.138091 + 0.239181i −0.926774 0.375619i \(-0.877430\pi\)
0.788683 + 0.614800i \(0.210763\pi\)
\(458\) 3.27029 5.66432i 0.152811 0.264676i
\(459\) 3.71455 + 6.43378i 0.173380 + 0.300303i
\(460\) 14.6405 0.682616
\(461\) 7.74600 + 13.4165i 0.360767 + 0.624867i 0.988087 0.153894i \(-0.0491815\pi\)
−0.627320 + 0.778762i \(0.715848\pi\)
\(462\) −0.0762550 0.132077i −0.00354770 0.00614480i
\(463\) 17.4420 0.810601 0.405300 0.914184i \(-0.367167\pi\)
0.405300 + 0.914184i \(0.367167\pi\)
\(464\) −9.20473 15.9431i −0.427319 0.740138i
\(465\) −4.98685 + 8.63748i −0.231260 + 0.400553i
\(466\) −4.06291 + 7.03717i −0.188211 + 0.325991i
\(467\) −20.4790 −0.947657 −0.473829 0.880617i \(-0.657128\pi\)
−0.473829 + 0.880617i \(0.657128\pi\)
\(468\) 6.78860 0.285589i 0.313803 0.0132014i
\(469\) −5.03926 −0.232691
\(470\) −0.853028 + 1.47749i −0.0393473 + 0.0681514i
\(471\) −0.387820 + 0.671723i −0.0178698 + 0.0309514i
\(472\) −1.46835 2.54326i −0.0675864 0.117063i
\(473\) −0.370199 −0.0170217
\(474\) −1.69491 2.93568i −0.0778500 0.134840i
\(475\) −0.0577581 0.100040i −0.00265013 0.00459015i
\(476\) −9.24172 −0.423594
\(477\) −0.339877 0.588684i −0.0155619 0.0269540i
\(478\) 3.17441 5.49824i 0.145194 0.251483i
\(479\) 20.4953 35.4990i 0.936456 1.62199i 0.164439 0.986387i \(-0.447419\pi\)
0.772017 0.635602i \(-0.219248\pi\)
\(480\) 3.76897 0.172029
\(481\) −35.1914 + 1.48046i −1.60459 + 0.0675033i
\(482\) −2.07852 −0.0946741
\(483\) −2.56424 + 4.44139i −0.116677 + 0.202090i
\(484\) −9.92928 + 17.1980i −0.451331 + 0.781728i
\(485\) −4.95206 8.57721i −0.224861 0.389471i
\(486\) 0.339877 0.0154171
\(487\) −12.0315 20.8391i −0.545197 0.944309i −0.998594 0.0530008i \(-0.983121\pi\)
0.453397 0.891309i \(-0.350212\pi\)
\(488\) 2.77564 + 4.80755i 0.125647 + 0.217627i
\(489\) −12.1981 −0.551615
\(490\) −1.11552 1.93213i −0.0503939 0.0872848i
\(491\) −18.3865 + 31.8463i −0.829771 + 1.43721i 0.0684471 + 0.997655i \(0.478196\pi\)
−0.898218 + 0.439550i \(0.855138\pi\)
\(492\) −3.98037 + 6.89420i −0.179449 + 0.310815i
\(493\) 41.1914 1.85517
\(494\) −0.0758696 0.119510i −0.00341354 0.00537701i
\(495\) 0.679754 0.0305527
\(496\) 16.5576 28.6785i 0.743457 1.28770i
\(497\) −2.41393 + 4.18105i −0.108280 + 0.187546i
\(498\) −0.300616 0.520681i −0.0134709 0.0233323i
\(499\) 34.8212 1.55881 0.779405 0.626520i \(-0.215521\pi\)
0.779405 + 0.626520i \(0.215521\pi\)
\(500\) 0.942242 + 1.63201i 0.0421383 + 0.0729857i
\(501\) −0.795270 1.37745i −0.0355300 0.0615398i
\(502\) −1.14182 −0.0509619
\(503\) 16.0130 + 27.7353i 0.713983 + 1.23665i 0.963351 + 0.268245i \(0.0864438\pi\)
−0.249368 + 0.968409i \(0.580223\pi\)
\(504\) −0.435763 + 0.754763i −0.0194104 + 0.0336198i
\(505\) 4.67975 8.10557i 0.208246 0.360693i
\(506\) 1.79488 0.0797924
\(507\) 7.42261 + 10.6726i 0.329650 + 0.473988i
\(508\) 22.6508 1.00497
\(509\) 20.6731 35.8068i 0.916318 1.58711i 0.111359 0.993780i \(-0.464480\pi\)
0.804960 0.593329i \(-0.202187\pi\)
\(510\) −1.26249 + 2.18669i −0.0559039 + 0.0968284i
\(511\) −2.64697 4.58469i −0.117095 0.202815i
\(512\) −21.2810 −0.940496
\(513\) 0.0577581 + 0.100040i 0.00255008 + 0.00441688i
\(514\) −1.71788 2.97546i −0.0757725 0.131242i
\(515\) 4.50535 0.198529
\(516\) 0.513151 + 0.888804i 0.0225902 + 0.0391274i
\(517\) 1.70606 2.95498i 0.0750323 0.129960i
\(518\) 1.09589 1.89813i 0.0481505 0.0833990i
\(519\) −12.7493 −0.559634
\(520\) 2.55128 + 4.01878i 0.111881 + 0.176235i
\(521\) 4.40279 0.192890 0.0964448 0.995338i \(-0.469253\pi\)
0.0964448 + 0.995338i \(0.469253\pi\)
\(522\) 0.942242 1.63201i 0.0412408 0.0714312i
\(523\) 16.2244 28.1014i 0.709442 1.22879i −0.255623 0.966777i \(-0.582280\pi\)
0.965064 0.262013i \(-0.0843862\pi\)
\(524\) 10.2743 + 17.7956i 0.448835 + 0.777406i
\(525\) −0.660123 −0.0288101
\(526\) −3.82673 6.62808i −0.166853 0.288998i
\(527\) 37.0478 + 64.1686i 1.61383 + 2.79523i
\(528\) −2.25695 −0.0982211
\(529\) −18.6784 32.3520i −0.812106 1.40661i
\(530\) 0.115516 0.200080i 0.00501771 0.00869092i
\(531\) −1.11218 + 1.92635i −0.0482645 + 0.0835966i
\(532\) −0.143701 −0.00623024
\(533\) −15.2177 + 0.640192i −0.659151 + 0.0277298i
\(534\) 4.60350 0.199213
\(535\) −0.285455 + 0.494422i −0.0123413 + 0.0213757i
\(536\) 5.03926 8.72826i 0.217663 0.377003i
\(537\) 8.88115 + 15.3826i 0.383250 + 0.663808i
\(538\) −2.88714 −0.124473
\(539\) 2.23103 + 3.86426i 0.0960974 + 0.166446i
\(540\) −0.942242 1.63201i −0.0405476 0.0702306i
\(541\) −8.57720 −0.368762 −0.184381 0.982855i \(-0.559028\pi\)
−0.184381 + 0.982855i \(0.559028\pi\)
\(542\) 1.59236 + 2.75804i 0.0683976 + 0.118468i
\(543\) 3.51315 6.08496i 0.150764 0.261130i
\(544\) 14.0000 24.2487i 0.600245 1.03965i
\(545\) 15.4095 0.660069
\(546\) −0.808229 + 0.0340013i −0.0345890 + 0.00145512i
\(547\) −32.4920 −1.38926 −0.694629 0.719368i \(-0.744431\pi\)
−0.694629 + 0.719368i \(0.744431\pi\)
\(548\) 3.19404 5.53224i 0.136443 0.236325i
\(549\) 2.10236 3.64140i 0.0897268 0.155411i
\(550\) 0.115516 + 0.200080i 0.00492563 + 0.00853144i
\(551\) 0.640492 0.0272859
\(552\) −5.12847 8.88278i −0.218282 0.378076i
\(553\) −3.29193 5.70180i −0.139987 0.242465i
\(554\) −0.244377 −0.0103826
\(555\) 4.88448 + 8.46017i 0.207335 + 0.359114i
\(556\) 13.9529 24.1672i 0.591736 1.02492i
\(557\) 20.6075 35.6933i 0.873169 1.51237i 0.0144676 0.999895i \(-0.495395\pi\)
0.858701 0.512477i \(-0.171272\pi\)
\(558\) 3.38983 0.143503
\(559\) −0.909460 + 1.74030i −0.0384661 + 0.0736068i
\(560\) 2.19177 0.0926192
\(561\) 2.52498 4.37339i 0.106605 0.184645i
\(562\) 0.262488 0.454643i 0.0110724 0.0191779i
\(563\) 6.08921 + 10.5468i 0.256630 + 0.444496i 0.965337 0.261007i \(-0.0840546\pi\)
−0.708707 + 0.705503i \(0.750721\pi\)
\(564\) −9.45941 −0.398313
\(565\) 2.66012 + 4.60747i 0.111912 + 0.193838i
\(566\) −3.07921 5.33334i −0.129429 0.224177i
\(567\) 0.660123 0.0277226
\(568\) −4.82786 8.36210i −0.202572 0.350866i
\(569\) −3.47169 + 6.01314i −0.145541 + 0.252084i −0.929575 0.368634i \(-0.879826\pi\)
0.784034 + 0.620718i \(0.213159\pi\)
\(570\) −0.0196307 + 0.0340013i −0.000822238 + 0.00142416i
\(571\) 3.51429 0.147068 0.0735341 0.997293i \(-0.476572\pi\)
0.0735341 + 0.997293i \(0.476572\pi\)
\(572\) −2.47541 3.89927i −0.103502 0.163037i
\(573\) 13.9541 0.582939
\(574\) 0.473890 0.820802i 0.0197798 0.0342596i
\(575\) 3.88448 6.72812i 0.161994 0.280582i
\(576\) 2.67975 + 4.64147i 0.111656 + 0.193395i
\(577\) 3.14182 0.130796 0.0653978 0.997859i \(-0.479168\pi\)
0.0653978 + 0.997859i \(0.479168\pi\)
\(578\) 6.49018 + 11.2413i 0.269956 + 0.467578i
\(579\) 11.8747 + 20.5675i 0.493494 + 0.854757i
\(580\) −10.4487 −0.433860
\(581\) −0.583868 1.01129i −0.0242229 0.0419553i
\(582\) −1.68309 + 2.91520i −0.0697663 + 0.120839i
\(583\) −0.231033 + 0.400160i −0.00956839 + 0.0165729i
\(584\) 10.5879 0.438130
\(585\) 1.66994 3.19551i 0.0690435 0.132118i
\(586\) 10.3679 0.428295
\(587\) −18.9889 + 32.8897i −0.783754 + 1.35750i 0.145987 + 0.989287i \(0.453364\pi\)
−0.929741 + 0.368215i \(0.879969\pi\)
\(588\) 6.18510 10.7129i 0.255069 0.441793i
\(589\) 0.576062 + 0.997769i 0.0237362 + 0.0411124i
\(590\) −0.756009 −0.0311244
\(591\) 7.90411 + 13.6903i 0.325132 + 0.563145i
\(592\) −16.2177 28.0899i −0.666543 1.15449i
\(593\) 10.4487 0.429078 0.214539 0.976715i \(-0.431175\pi\)
0.214539 + 0.976715i \(0.431175\pi\)
\(594\) −0.115516 0.200080i −0.00473969 0.00820939i
\(595\) −2.45206 + 4.24709i −0.100525 + 0.174114i
\(596\) −16.1022 + 27.8898i −0.659571 + 1.14241i
\(597\) −8.76897 −0.358890
\(598\) 4.40946 8.43773i 0.180316 0.345044i
\(599\) −45.5705 −1.86196 −0.930981 0.365069i \(-0.881045\pi\)
−0.930981 + 0.365069i \(0.881045\pi\)
\(600\) 0.660123 1.14337i 0.0269494 0.0466778i
\(601\) 7.39096 12.8015i 0.301484 0.522185i −0.674989 0.737828i \(-0.735851\pi\)
0.976472 + 0.215643i \(0.0691848\pi\)
\(602\) −0.0610942 0.105818i −0.00249001 0.00431283i
\(603\) −7.63382 −0.310873
\(604\) 12.2614 + 21.2373i 0.498907 + 0.864133i
\(605\) 5.26897 + 9.12612i 0.214214 + 0.371030i
\(606\) −3.18108 −0.129223
\(607\) 9.46722 + 16.3977i 0.384263 + 0.665562i 0.991667 0.128831i \(-0.0411224\pi\)
−0.607404 + 0.794393i \(0.707789\pi\)
\(608\) 0.217689 0.377048i 0.00882844 0.0152913i
\(609\) 1.83006 3.16976i 0.0741578 0.128445i
\(610\) 1.42909 0.0578622
\(611\) −9.70007 15.2796i −0.392423 0.618146i
\(612\) −14.0000 −0.565916
\(613\) 1.29193 2.23770i 0.0521807 0.0903797i −0.838755 0.544509i \(-0.816716\pi\)
0.890936 + 0.454129i \(0.150049\pi\)
\(614\) −0.811565 + 1.40567i −0.0327521 + 0.0567283i
\(615\) 2.11218 + 3.65840i 0.0851713 + 0.147521i
\(616\) 0.592422 0.0238694
\(617\) −7.01963 12.1584i −0.282600 0.489477i 0.689425 0.724357i \(-0.257863\pi\)
−0.972024 + 0.234880i \(0.924530\pi\)
\(618\) −0.765631 1.32611i −0.0307982 0.0533441i
\(619\) −17.8582 −0.717781 −0.358890 0.933380i \(-0.616845\pi\)
−0.358890 + 0.933380i \(0.616845\pi\)
\(620\) −9.39764 16.2772i −0.377418 0.653707i
\(621\) −3.88448 + 6.72812i −0.155879 + 0.269990i
\(622\) 5.19692 9.00134i 0.208378 0.360921i
\(623\) 8.94111 0.358218
\(624\) −5.54461 + 10.6099i −0.221962 + 0.424736i
\(625\) 1.00000 0.0400000
\(626\) −4.54127 + 7.86571i −0.181506 + 0.314377i
\(627\) 0.0392613 0.0680026i 0.00156795 0.00271576i
\(628\) −0.730840 1.26585i −0.0291637 0.0505130i
\(629\) 72.5745 2.89374
\(630\) 0.112180 + 0.194302i 0.00446937 + 0.00774118i
\(631\) 12.4815 + 21.6186i 0.496881 + 0.860623i 0.999994 0.00359801i \(-0.00114528\pi\)
−0.503113 + 0.864221i \(0.667812\pi\)
\(632\) 13.1677 0.523784
\(633\) 4.40411 + 7.62815i 0.175048 + 0.303192i
\(634\) −3.50535 + 6.07144i −0.139215 + 0.241128i
\(635\) 6.00982 10.4093i 0.238492 0.413081i
\(636\) 1.28098 0.0507944
\(637\) 23.6468 0.994794i 0.936920 0.0394152i
\(638\) −1.28098 −0.0507147
\(639\) −3.65679 + 6.33374i −0.144660 + 0.250559i
\(640\) −4.67975 + 8.10557i −0.184984 + 0.320401i
\(641\) −11.6535 20.1844i −0.460284 0.797235i 0.538691 0.842503i \(-0.318919\pi\)
−0.998975 + 0.0452686i \(0.985586\pi\)
\(642\) 0.194039 0.00765811
\(643\) −22.7395 39.3860i −0.896759 1.55323i −0.831612 0.555357i \(-0.812582\pi\)
−0.0651470 0.997876i \(-0.520752\pi\)
\(644\) −4.83226 8.36973i −0.190418 0.329813i
\(645\) 0.544607 0.0214439
\(646\) 0.145838 + 0.252599i 0.00573792 + 0.00993836i
\(647\) −3.20473 + 5.55076i −0.125991 + 0.218223i −0.922120 0.386904i \(-0.873544\pi\)
0.796129 + 0.605127i \(0.206878\pi\)
\(648\) −0.660123 + 1.14337i −0.0259321 + 0.0449157i
\(649\) 1.51202 0.0593519
\(650\) 1.22436 0.0515075i 0.0480234 0.00202029i
\(651\) 6.58387 0.258042
\(652\) 11.4935 19.9074i 0.450121 0.779632i
\(653\) −0.740848 + 1.28319i −0.0289916 + 0.0502150i −0.880157 0.474682i \(-0.842563\pi\)
0.851166 + 0.524897i \(0.175896\pi\)
\(654\) −2.61866 4.53565i −0.102398 0.177358i
\(655\) 10.9041 0.426059
\(656\) −7.01296 12.1468i −0.273810 0.474253i
\(657\) −4.00982 6.94520i −0.156438 0.270958i
\(658\) 1.12621 0.0439041
\(659\) 3.54461 + 6.13944i 0.138078 + 0.239159i 0.926769 0.375631i \(-0.122574\pi\)
−0.788691 + 0.614790i \(0.789241\pi\)
\(660\) −0.640492 + 1.10937i −0.0249311 + 0.0431820i
\(661\) −0.589214 + 1.02055i −0.0229178 + 0.0396947i −0.877257 0.480021i \(-0.840629\pi\)
0.854339 + 0.519716i \(0.173962\pi\)
\(662\) −1.82521 −0.0709387
\(663\) −14.3562 22.6139i −0.557548 0.878251i
\(664\) 2.33547 0.0906339
\(665\) −0.0381275 + 0.0660387i −0.00147852 + 0.00256087i
\(666\) 1.66012 2.87542i 0.0643285 0.111420i
\(667\) 21.5379 + 37.3048i 0.833952 + 1.44445i
\(668\) 2.99735 0.115971
\(669\) 5.01963 + 8.69426i 0.194070 + 0.336139i
\(670\) −1.29728 2.24695i −0.0501183 0.0868074i
\(671\) −2.85818 −0.110339
\(672\) −1.24399 2.15466i −0.0479880 0.0831177i
\(673\) −6.77878 + 11.7412i −0.261303 + 0.452590i −0.966588 0.256334i \(-0.917485\pi\)
0.705286 + 0.708923i \(0.250819\pi\)
\(674\) 4.88782 8.46595i 0.188272 0.326096i
\(675\) −1.00000 −0.0384900
\(676\) −24.4117 + 2.05759i −0.938913 + 0.0791381i
\(677\) 9.53793 0.366573 0.183286 0.983060i \(-0.441326\pi\)
0.183286 + 0.983060i \(0.441326\pi\)
\(678\) 0.904114 1.56597i 0.0347223 0.0601408i
\(679\) −3.26897 + 5.66202i −0.125451 + 0.217288i
\(680\) −4.90411 8.49418i −0.188064 0.325737i
\(681\) −1.21140 −0.0464210
\(682\) −1.15212 1.99554i −0.0441171 0.0764131i
\(683\) 22.2592 + 38.5540i 0.851723 + 1.47523i 0.879652 + 0.475617i \(0.157775\pi\)
−0.0279296 + 0.999610i \(0.508891\pi\)
\(684\) −0.217689 −0.00832353
\(685\) −1.69491 2.93568i −0.0647594 0.112166i
\(686\) −1.52164 + 2.63556i −0.0580965 + 0.100626i
\(687\) 9.62200 16.6658i 0.367102 0.635839i
\(688\) −1.80823 −0.0689381
\(689\) 1.31357 + 2.06915i 0.0500432 + 0.0788282i
\(690\) −2.64049 −0.100522
\(691\) 2.64030 4.57313i 0.100442 0.173970i −0.811425 0.584457i \(-0.801308\pi\)
0.911867 + 0.410486i \(0.134641\pi\)
\(692\) 12.0130 20.8071i 0.456664 0.790966i
\(693\) −0.224361 0.388604i −0.00852275 0.0147618i
\(694\) −7.61192 −0.288945
\(695\) −7.40411 12.8243i −0.280854 0.486454i
\(696\) 3.66012 + 6.33952i 0.138737 + 0.240299i
\(697\) 31.3832 1.18872
\(698\) −2.03479 3.52436i −0.0770180 0.133399i
\(699\) −11.9541 + 20.7051i −0.452144 + 0.783137i
\(700\) 0.621996 1.07733i 0.0235092 0.0407192i
\(701\) 20.1392 0.760646 0.380323 0.924854i \(-0.375813\pi\)
0.380323 + 0.924854i \(0.375813\pi\)
\(702\) −1.22436 + 0.0515075i −0.0462105 + 0.00194403i
\(703\) 1.12847 0.0425612
\(704\) 1.82157 3.15506i 0.0686531 0.118911i
\(705\) −2.50982 + 4.34713i −0.0945251 + 0.163722i
\(706\) −2.89517 5.01459i −0.108961 0.188727i
\(707\) −6.17843 −0.232364
\(708\) −2.09589 3.63018i −0.0787682 0.136431i
\(709\) −0.770294 1.33419i −0.0289290 0.0501065i 0.851198 0.524844i \(-0.175876\pi\)
−0.880127 + 0.474737i \(0.842543\pi\)
\(710\) −2.48571 −0.0932872
\(711\) −4.98685 8.63748i −0.187021 0.323931i
\(712\) −8.94111 + 15.4865i −0.335082 + 0.580379i
\(713\) −38.7427 + 67.1043i −1.45092 + 2.51307i
\(714\) 1.66680 0.0623782
\(715\) −2.44872 + 0.103015i −0.0915770 + 0.00385254i
\(716\) −33.4728 −1.25094
\(717\) 9.33988 16.1771i 0.348804 0.604146i
\(718\) −5.96187 + 10.3263i −0.222495 + 0.385373i
\(719\) −18.5020 32.0464i −0.690009 1.19513i −0.971835 0.235664i \(-0.924273\pi\)
0.281826 0.959466i \(-0.409060\pi\)
\(720\) 3.32025 0.123738
\(721\) −1.48704 2.57563i −0.0553803 0.0959215i
\(722\) −3.22656 5.58857i −0.120080 0.207985i
\(723\) −6.11552 −0.227438
\(724\) 6.62048 + 11.4670i 0.246048 + 0.426168i
\(725\) −2.77230 + 4.80177i −0.102961 + 0.178333i
\(726\) 1.79080 3.10176i 0.0664628 0.115117i
\(727\) −44.9015 −1.66530 −0.832652 0.553797i \(-0.813178\pi\)
−0.832652 + 0.553797i \(0.813178\pi\)
\(728\) 1.45539 2.78497i 0.0539405 0.103218i
\(729\) 1.00000 0.0370370
\(730\) 1.36284 2.36051i 0.0504411 0.0873666i
\(731\) 2.02297 3.50388i 0.0748221 0.129596i
\(732\) 3.96187 + 6.86216i 0.146435 + 0.253633i
\(733\) −4.94072 −0.182490 −0.0912449 0.995828i \(-0.529085\pi\)
−0.0912449 + 0.995828i \(0.529085\pi\)
\(734\) 3.41280 + 5.91114i 0.125969 + 0.218184i
\(735\) −3.28212 5.68480i −0.121063 0.209687i
\(736\) 29.2810 1.07931
\(737\) 2.59456 + 4.49391i 0.0955718 + 0.165535i
\(738\) 0.717881 1.24341i 0.0264256 0.0457704i
\(739\) −3.01963 + 5.23015i −0.111079 + 0.192394i −0.916206 0.400709i \(-0.868764\pi\)
0.805127 + 0.593103i \(0.202097\pi\)
\(740\) −18.4095 −0.676745
\(741\) −0.223227 0.351628i −0.00820044 0.0129174i
\(742\) −0.152510 −0.00559882
\(743\) 6.52945 11.3093i 0.239542 0.414899i −0.721041 0.692893i \(-0.756336\pi\)
0.960583 + 0.277993i \(0.0896693\pi\)
\(744\) −6.58387 + 11.4036i −0.241376 + 0.418076i
\(745\) 8.54461 + 14.7997i 0.313050 + 0.542219i
\(746\) 7.97998 0.292168
\(747\) −0.884484 1.53197i −0.0323616 0.0560519i
\(748\) 4.75828 + 8.24158i 0.173980 + 0.301342i
\(749\) 0.376871 0.0137706
\(750\) −0.169938 0.294342i −0.00620527 0.0107479i
\(751\) −24.0118 + 41.5897i −0.876204 + 1.51763i −0.0207292 + 0.999785i \(0.506599\pi\)
−0.855475 + 0.517845i \(0.826735\pi\)
\(752\) 8.33320 14.4335i 0.303881 0.526337i
\(753\) −3.35951 −0.122427
\(754\) −3.14697 + 6.02189i −0.114606 + 0.219304i
\(755\) 13.0130 0.473590
\(756\) −0.621996 + 1.07733i −0.0226218 + 0.0391820i
\(757\) 2.28212 3.95275i 0.0829450 0.143665i −0.821569 0.570110i \(-0.806901\pi\)
0.904514 + 0.426445i \(0.140234\pi\)
\(758\) 3.59274 + 6.22281i 0.130494 + 0.226023i
\(759\) 5.28098 0.191688
\(760\) −0.0762550 0.132077i −0.00276606 0.00479095i
\(761\) −10.5446 18.2638i −0.382242 0.662062i 0.609141 0.793062i \(-0.291514\pi\)
−0.991382 + 0.131000i \(0.958181\pi\)
\(762\) −4.08519 −0.147991
\(763\) −5.08607 8.80933i −0.184128 0.318919i
\(764\) −13.1481 + 22.7732i −0.475682 + 0.823905i
\(765\) −3.71455 + 6.43378i −0.134300 + 0.232614i
\(766\) −0.590926 −0.0213510
\(767\) 3.71455 7.10797i 0.134124 0.256654i
\(768\) −7.53793 −0.272002
\(769\) −21.1666 + 36.6616i −0.763287 + 1.32205i 0.177860 + 0.984056i \(0.443083\pi\)
−0.941147 + 0.337996i \(0.890251\pi\)
\(770\) 0.0762550