# Properties

 Label 195.2.i.d.16.2 Level $195$ Weight $2$ Character 195.16 Analytic conductor $1.557$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [195,2,Mod(16,195)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(195, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("195.16");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$195 = 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 195.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.55708283941$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.1714608.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - 3x^{5} + 12x^{4} - 19x^{3} + 30x^{2} - 21x + 7$$ x^6 - 3*x^5 + 12*x^4 - 19*x^3 + 30*x^2 - 21*x + 7 Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 16.2 Root $$0.500000 + 1.75780i$$ of defining polynomial Character $$\chi$$ $$=$$ 195.16 Dual form 195.2.i.d.61.2

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.169938 + 0.294342i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.942242 - 1.63201i) q^{4} +1.00000 q^{5} +(-0.169938 + 0.294342i) q^{6} +(-0.330062 + 0.571683i) q^{7} +1.32025 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.169938 + 0.294342i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.942242 - 1.63201i) q^{4} +1.00000 q^{5} +(-0.169938 + 0.294342i) q^{6} +(-0.330062 + 0.571683i) q^{7} +1.32025 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.169938 + 0.294342i) q^{10} +(-0.339877 - 0.588684i) q^{11} +1.88448 q^{12} +(1.93243 - 3.04397i) q^{13} -0.224361 q^{14} +(0.500000 + 0.866025i) q^{15} +(-1.66012 - 2.87542i) q^{16} +(-3.71455 + 6.43378i) q^{17} -0.339877 q^{18} +(-0.0577581 + 0.100040i) q^{19} +(0.942242 - 1.63201i) q^{20} -0.660123 q^{21} +(0.115516 - 0.200080i) q^{22} +(3.88448 + 6.72812i) q^{23} +(0.660123 + 1.14337i) q^{24} +1.00000 q^{25} +(1.22436 + 0.0515075i) q^{26} -1.00000 q^{27} +(0.621996 + 1.07733i) q^{28} +(-2.77230 - 4.80177i) q^{29} +(-0.169938 + 0.294342i) q^{30} -9.97370 q^{31} +(1.88448 - 3.26402i) q^{32} +(0.339877 - 0.588684i) q^{33} -2.52498 q^{34} +(-0.330062 + 0.571683i) q^{35} +(0.942242 + 1.63201i) q^{36} +(-4.88448 - 8.46017i) q^{37} -0.0392613 q^{38} +(3.60236 + 0.151548i) q^{39} +1.32025 q^{40} +(-2.11218 - 3.65840i) q^{41} +(-0.112180 - 0.194302i) q^{42} +(0.272303 - 0.471643i) q^{43} -1.28098 q^{44} +(-0.500000 + 0.866025i) q^{45} +(-1.32025 + 2.28673i) q^{46} -5.01963 q^{47} +(1.66012 - 2.87542i) q^{48} +(3.28212 + 5.68480i) q^{49} +(0.169938 + 0.294342i) q^{50} -7.42909 q^{51} +(-3.14697 - 6.02189i) q^{52} +0.679754 q^{53} +(-0.169938 - 0.294342i) q^{54} +(-0.339877 - 0.588684i) q^{55} +(-0.435763 + 0.754763i) q^{56} -0.115516 q^{57} +(0.942242 - 1.63201i) q^{58} +(-1.11218 + 1.92635i) q^{59} +1.88448 q^{60} +(2.10236 - 3.64140i) q^{61} +(-1.69491 - 2.93568i) q^{62} +(-0.330062 - 0.571683i) q^{63} -5.35951 q^{64} +(1.93243 - 3.04397i) q^{65} +0.231033 q^{66} +(3.81691 + 6.61108i) q^{67} +(7.00000 + 12.1244i) q^{68} +(-3.88448 + 6.72812i) q^{69} -0.224361 q^{70} +(-3.65679 + 6.33374i) q^{71} +(-0.660123 + 1.14337i) q^{72} +8.01963 q^{73} +(1.66012 - 2.87542i) q^{74} +(0.500000 + 0.866025i) q^{75} +(0.108844 + 0.188524i) q^{76} +0.448721 q^{77} +(0.567573 + 1.08608i) q^{78} +9.97370 q^{79} +(-1.66012 - 2.87542i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.717881 - 1.24341i) q^{82} +1.76897 q^{83} +(-0.621996 + 1.07733i) q^{84} +(-3.71455 + 6.43378i) q^{85} +0.185099 q^{86} +(2.77230 - 4.80177i) q^{87} +(-0.448721 - 0.777208i) q^{88} +(-6.77230 - 11.7300i) q^{89} -0.339877 q^{90} +(1.10236 + 2.10943i) q^{91} +14.6405 q^{92} +(-4.98685 - 8.63748i) q^{93} +(-0.853028 - 1.47749i) q^{94} +(-0.0577581 + 0.100040i) q^{95} +3.76897 q^{96} +(-4.95206 + 8.57721i) q^{97} +(-1.11552 + 1.93213i) q^{98} +0.679754 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 3 q^{3} - 6 q^{4} + 6 q^{5} - 3 q^{7} + 12 q^{8} - 3 q^{9}+O(q^{10})$$ 6 * q + 3 * q^3 - 6 * q^4 + 6 * q^5 - 3 * q^7 + 12 * q^8 - 3 * q^9 $$6 q + 3 q^{3} - 6 q^{4} + 6 q^{5} - 3 q^{7} + 12 q^{8} - 3 q^{9} - 12 q^{12} + 3 q^{13} + 24 q^{14} + 3 q^{15} - 12 q^{16} - 12 q^{19} - 6 q^{20} - 6 q^{21} + 24 q^{22} + 6 q^{24} + 6 q^{25} - 18 q^{26} - 6 q^{27} - 12 q^{28} - 6 q^{29} + 6 q^{31} - 12 q^{32} - 3 q^{35} - 6 q^{36} - 6 q^{37} + 12 q^{38} + 12 q^{39} + 12 q^{40} + 12 q^{42} - 9 q^{43} - 24 q^{44} - 3 q^{45} - 12 q^{46} - 24 q^{47} + 12 q^{48} + 6 q^{49} + 12 q^{52} - 30 q^{56} - 24 q^{57} - 6 q^{58} + 6 q^{59} - 12 q^{60} + 3 q^{61} + 6 q^{62} - 3 q^{63} - 24 q^{64} + 3 q^{65} + 48 q^{66} - 9 q^{67} + 42 q^{68} + 24 q^{70} + 12 q^{71} - 6 q^{72} + 42 q^{73} + 12 q^{74} + 3 q^{75} - 48 q^{76} - 48 q^{77} + 12 q^{78} - 6 q^{79} - 12 q^{80} - 3 q^{81} + 18 q^{82} - 36 q^{83} + 12 q^{84} - 12 q^{86} + 6 q^{87} + 48 q^{88} - 30 q^{89} - 3 q^{91} + 96 q^{92} + 3 q^{93} - 36 q^{94} - 12 q^{95} - 24 q^{96} - 15 q^{97} - 30 q^{98}+O(q^{100})$$ 6 * q + 3 * q^3 - 6 * q^4 + 6 * q^5 - 3 * q^7 + 12 * q^8 - 3 * q^9 - 12 * q^12 + 3 * q^13 + 24 * q^14 + 3 * q^15 - 12 * q^16 - 12 * q^19 - 6 * q^20 - 6 * q^21 + 24 * q^22 + 6 * q^24 + 6 * q^25 - 18 * q^26 - 6 * q^27 - 12 * q^28 - 6 * q^29 + 6 * q^31 - 12 * q^32 - 3 * q^35 - 6 * q^36 - 6 * q^37 + 12 * q^38 + 12 * q^39 + 12 * q^40 + 12 * q^42 - 9 * q^43 - 24 * q^44 - 3 * q^45 - 12 * q^46 - 24 * q^47 + 12 * q^48 + 6 * q^49 + 12 * q^52 - 30 * q^56 - 24 * q^57 - 6 * q^58 + 6 * q^59 - 12 * q^60 + 3 * q^61 + 6 * q^62 - 3 * q^63 - 24 * q^64 + 3 * q^65 + 48 * q^66 - 9 * q^67 + 42 * q^68 + 24 * q^70 + 12 * q^71 - 6 * q^72 + 42 * q^73 + 12 * q^74 + 3 * q^75 - 48 * q^76 - 48 * q^77 + 12 * q^78 - 6 * q^79 - 12 * q^80 - 3 * q^81 + 18 * q^82 - 36 * q^83 + 12 * q^84 - 12 * q^86 + 6 * q^87 + 48 * q^88 - 30 * q^89 - 3 * q^91 + 96 * q^92 + 3 * q^93 - 36 * q^94 - 12 * q^95 - 24 * q^96 - 15 * q^97 - 30 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/195\mathbb{Z}\right)^\times$$.

 $$n$$ $$106$$ $$131$$ $$157$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.169938 + 0.294342i 0.120165 + 0.208131i 0.919832 0.392311i $$-0.128324\pi$$
−0.799668 + 0.600443i $$0.794991\pi$$
$$3$$ 0.500000 + 0.866025i 0.288675 + 0.500000i
$$4$$ 0.942242 1.63201i 0.471121 0.816005i
$$5$$ 1.00000 0.447214
$$6$$ −0.169938 + 0.294342i −0.0693771 + 0.120165i
$$7$$ −0.330062 + 0.571683i −0.124752 + 0.216076i −0.921636 0.388056i $$-0.873147\pi$$
0.796884 + 0.604132i $$0.206480\pi$$
$$8$$ 1.32025 0.466778
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ 0.169938 + 0.294342i 0.0537393 + 0.0930791i
$$11$$ −0.339877 0.588684i −0.102477 0.177495i 0.810228 0.586115i $$-0.199343\pi$$
−0.912704 + 0.408620i $$0.866010\pi$$
$$12$$ 1.88448 0.544004
$$13$$ 1.93243 3.04397i 0.535959 0.844244i
$$14$$ −0.224361 −0.0599629
$$15$$ 0.500000 + 0.866025i 0.129099 + 0.223607i
$$16$$ −1.66012 2.87542i −0.415031 0.718854i
$$17$$ −3.71455 + 6.43378i −0.900910 + 1.56042i −0.0745938 + 0.997214i $$0.523766\pi$$
−0.826316 + 0.563207i $$0.809567\pi$$
$$18$$ −0.339877 −0.0801098
$$19$$ −0.0577581 + 0.100040i −0.0132506 + 0.0229508i −0.872575 0.488481i $$-0.837551\pi$$
0.859324 + 0.511431i $$0.170885\pi$$
$$20$$ 0.942242 1.63201i 0.210692 0.364929i
$$21$$ −0.660123 −0.144051
$$22$$ 0.115516 0.200080i 0.0246282 0.0426572i
$$23$$ 3.88448 + 6.72812i 0.809971 + 1.40291i 0.912883 + 0.408220i $$0.133850\pi$$
−0.102913 + 0.994690i $$0.532816\pi$$
$$24$$ 0.660123 + 1.14337i 0.134747 + 0.233389i
$$25$$ 1.00000 0.200000
$$26$$ 1.22436 + 0.0515075i 0.240117 + 0.0101015i
$$27$$ −1.00000 −0.192450
$$28$$ 0.621996 + 1.07733i 0.117546 + 0.203596i
$$29$$ −2.77230 4.80177i −0.514804 0.891666i −0.999852 0.0171792i $$-0.994531\pi$$
0.485049 0.874487i $$-0.338802\pi$$
$$30$$ −0.169938 + 0.294342i −0.0310264 + 0.0537393i
$$31$$ −9.97370 −1.79133 −0.895664 0.444730i $$-0.853299\pi$$
−0.895664 + 0.444730i $$0.853299\pi$$
$$32$$ 1.88448 3.26402i 0.333133 0.577003i
$$33$$ 0.339877 0.588684i 0.0591650 0.102477i
$$34$$ −2.52498 −0.433030
$$35$$ −0.330062 + 0.571683i −0.0557906 + 0.0966321i
$$36$$ 0.942242 + 1.63201i 0.157040 + 0.272002i
$$37$$ −4.88448 8.46017i −0.803004 1.39084i −0.917630 0.397435i $$-0.869900\pi$$
0.114626 0.993409i $$-0.463433\pi$$
$$38$$ −0.0392613 −0.00636903
$$39$$ 3.60236 + 0.151548i 0.576840 + 0.0242670i
$$40$$ 1.32025 0.208749
$$41$$ −2.11218 3.65840i −0.329867 0.571347i 0.652618 0.757687i $$-0.273671\pi$$
−0.982485 + 0.186340i $$0.940337\pi$$
$$42$$ −0.112180 0.194302i −0.0173098 0.0299814i
$$43$$ 0.272303 0.471643i 0.0415259 0.0719249i −0.844515 0.535531i $$-0.820111\pi$$
0.886041 + 0.463606i $$0.153445\pi$$
$$44$$ −1.28098 −0.193116
$$45$$ −0.500000 + 0.866025i −0.0745356 + 0.129099i
$$46$$ −1.32025 + 2.28673i −0.194660 + 0.337160i
$$47$$ −5.01963 −0.732188 −0.366094 0.930578i $$-0.619305\pi$$
−0.366094 + 0.930578i $$0.619305\pi$$
$$48$$ 1.66012 2.87542i 0.239618 0.415031i
$$49$$ 3.28212 + 5.68480i 0.468874 + 0.812114i
$$50$$ 0.169938 + 0.294342i 0.0240329 + 0.0416262i
$$51$$ −7.42909 −1.04028
$$52$$ −3.14697 6.02189i −0.436406 0.835086i
$$53$$ 0.679754 0.0933714 0.0466857 0.998910i $$-0.485134\pi$$
0.0466857 + 0.998910i $$0.485134\pi$$
$$54$$ −0.169938 0.294342i −0.0231257 0.0400549i
$$55$$ −0.339877 0.588684i −0.0458290 0.0793781i
$$56$$ −0.435763 + 0.754763i −0.0582312 + 0.100859i
$$57$$ −0.115516 −0.0153005
$$58$$ 0.942242 1.63201i 0.123722 0.214294i
$$59$$ −1.11218 + 1.92635i −0.144794 + 0.250790i −0.929296 0.369336i $$-0.879585\pi$$
0.784502 + 0.620126i $$0.212918\pi$$
$$60$$ 1.88448 0.243286
$$61$$ 2.10236 3.64140i 0.269180 0.466234i −0.699470 0.714662i $$-0.746581\pi$$
0.968650 + 0.248428i $$0.0799139\pi$$
$$62$$ −1.69491 2.93568i −0.215254 0.372832i
$$63$$ −0.330062 0.571683i −0.0415838 0.0720253i
$$64$$ −5.35951 −0.669938
$$65$$ 1.93243 3.04397i 0.239688 0.377557i
$$66$$ 0.231033 0.0284381
$$67$$ 3.81691 + 6.61108i 0.466310 + 0.807672i 0.999260 0.0384746i $$-0.0122499\pi$$
−0.532950 + 0.846147i $$0.678917\pi$$
$$68$$ 7.00000 + 12.1244i 0.848875 + 1.47029i
$$69$$ −3.88448 + 6.72812i −0.467637 + 0.809971i
$$70$$ −0.224361 −0.0268162
$$71$$ −3.65679 + 6.33374i −0.433981 + 0.751677i −0.997212 0.0746227i $$-0.976225\pi$$
0.563231 + 0.826299i $$0.309558\pi$$
$$72$$ −0.660123 + 1.14337i −0.0777963 + 0.134747i
$$73$$ 8.01963 0.938627 0.469313 0.883032i $$-0.344501\pi$$
0.469313 + 0.883032i $$0.344501\pi$$
$$74$$ 1.66012 2.87542i 0.192985 0.334261i
$$75$$ 0.500000 + 0.866025i 0.0577350 + 0.100000i
$$76$$ 0.108844 + 0.188524i 0.0124853 + 0.0216252i
$$77$$ 0.448721 0.0511365
$$78$$ 0.567573 + 1.08608i 0.0642650 + 0.122974i
$$79$$ 9.97370 1.12213 0.561064 0.827772i $$-0.310392\pi$$
0.561064 + 0.827772i $$0.310392\pi$$
$$80$$ −1.66012 2.87542i −0.185607 0.321481i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ 0.717881 1.24341i 0.0792767 0.137311i
$$83$$ 1.76897 0.194169 0.0970847 0.995276i $$-0.469048\pi$$
0.0970847 + 0.995276i $$0.469048\pi$$
$$84$$ −0.621996 + 1.07733i −0.0678653 + 0.117546i
$$85$$ −3.71455 + 6.43378i −0.402899 + 0.697842i
$$86$$ 0.185099 0.0199598
$$87$$ 2.77230 4.80177i 0.297222 0.514804i
$$88$$ −0.448721 0.777208i −0.0478338 0.0828506i
$$89$$ −6.77230 11.7300i −0.717863 1.24337i −0.961845 0.273595i $$-0.911787\pi$$
0.243982 0.969780i $$-0.421546\pi$$
$$90$$ −0.339877 −0.0358262
$$91$$ 1.10236 + 2.10943i 0.115559 + 0.221129i
$$92$$ 14.6405 1.52638
$$93$$ −4.98685 8.63748i −0.517112 0.895664i
$$94$$ −0.853028 1.47749i −0.0879831 0.152391i
$$95$$ −0.0577581 + 0.100040i −0.00592586 + 0.0102639i
$$96$$ 3.76897 0.384669
$$97$$ −4.95206 + 8.57721i −0.502805 + 0.870884i 0.497190 + 0.867642i $$0.334365\pi$$
−0.999995 + 0.00324223i $$0.998968\pi$$
$$98$$ −1.11552 + 1.93213i −0.112684 + 0.195175i
$$99$$ 0.679754 0.0683178
$$100$$ 0.942242 1.63201i 0.0942242 0.163201i
$$101$$ 4.67975 + 8.10557i 0.465653 + 0.806534i 0.999231 0.0392165i $$-0.0124862\pi$$
−0.533578 + 0.845751i $$0.679153\pi$$
$$102$$ −1.26249 2.18669i −0.125005 0.216515i
$$103$$ 4.50535 0.443925 0.221962 0.975055i $$-0.428754\pi$$
0.221962 + 0.975055i $$0.428754\pi$$
$$104$$ 2.55128 4.01878i 0.250173 0.394074i
$$105$$ −0.660123 −0.0644214
$$106$$ 0.115516 + 0.200080i 0.0112199 + 0.0194335i
$$107$$ −0.285455 0.494422i −0.0275960 0.0477976i 0.851898 0.523708i $$-0.175452\pi$$
−0.879494 + 0.475911i $$0.842119\pi$$
$$108$$ −0.942242 + 1.63201i −0.0906673 + 0.157040i
$$109$$ 15.4095 1.47596 0.737979 0.674823i $$-0.235780\pi$$
0.737979 + 0.674823i $$0.235780\pi$$
$$110$$ 0.115516 0.200080i 0.0110140 0.0190769i
$$111$$ 4.88448 8.46017i 0.463615 0.803004i
$$112$$ 2.19177 0.207103
$$113$$ 2.66012 4.60747i 0.250243 0.433434i −0.713349 0.700809i $$-0.752823\pi$$
0.963593 + 0.267374i $$0.0861560\pi$$
$$114$$ −0.0196307 0.0340013i −0.00183858 0.00318451i
$$115$$ 3.88448 + 6.72812i 0.362230 + 0.627401i
$$116$$ −10.4487 −0.970139
$$117$$ 1.66994 + 3.19551i 0.154386 + 0.295425i
$$118$$ −0.756009 −0.0695962
$$119$$ −2.45206 4.24709i −0.224780 0.389330i
$$120$$ 0.660123 + 1.14337i 0.0602607 + 0.104375i
$$121$$ 5.26897 9.12612i 0.478997 0.829647i
$$122$$ 1.42909 0.129384
$$123$$ 2.11218 3.65840i 0.190449 0.329867i
$$124$$ −9.39764 + 16.2772i −0.843933 + 1.46173i
$$125$$ 1.00000 0.0894427
$$126$$ 0.112180 0.194302i 0.00999381 0.0173098i
$$127$$ 6.00982 + 10.4093i 0.533285 + 0.923676i 0.999244 + 0.0388704i $$0.0123759\pi$$
−0.465959 + 0.884806i $$0.654291\pi$$
$$128$$ −4.67975 8.10557i −0.413636 0.716438i
$$129$$ 0.544607 0.0479500
$$130$$ 1.22436 + 0.0515075i 0.107384 + 0.00451751i
$$131$$ 10.9041 0.952697 0.476348 0.879257i $$-0.341960\pi$$
0.476348 + 0.879257i $$0.341960\pi$$
$$132$$ −0.640492 1.10937i −0.0557477 0.0965579i
$$133$$ −0.0381275 0.0660387i −0.00330607 0.00572629i
$$134$$ −1.29728 + 2.24695i −0.112068 + 0.194107i
$$135$$ −1.00000 −0.0860663
$$136$$ −4.90411 + 8.49418i −0.420524 + 0.728370i
$$137$$ −1.69491 + 2.93568i −0.144806 + 0.250812i −0.929301 0.369324i $$-0.879589\pi$$
0.784494 + 0.620136i $$0.212923\pi$$
$$138$$ −2.64049 −0.224774
$$139$$ −7.40411 + 12.8243i −0.628009 + 1.08774i 0.359942 + 0.932975i $$0.382796\pi$$
−0.987951 + 0.154768i $$0.950537\pi$$
$$140$$ 0.621996 + 1.07733i 0.0525682 + 0.0910508i
$$141$$ −2.50982 4.34713i −0.211365 0.366094i
$$142$$ −2.48571 −0.208597
$$143$$ −2.44872 0.103015i −0.204772 0.00861455i
$$144$$ 3.32025 0.276687
$$145$$ −2.77230 4.80177i −0.230227 0.398765i
$$146$$ 1.36284 + 2.36051i 0.112790 + 0.195358i
$$147$$ −3.28212 + 5.68480i −0.270705 + 0.468874i
$$148$$ −18.4095 −1.51325
$$149$$ 8.54461 14.7997i 0.700001 1.21244i −0.268464 0.963290i $$-0.586516\pi$$
0.968465 0.249148i $$-0.0801507\pi$$
$$150$$ −0.169938 + 0.294342i −0.0138754 + 0.0240329i
$$151$$ 13.0130 1.05898 0.529490 0.848316i $$-0.322383\pi$$
0.529490 + 0.848316i $$0.322383\pi$$
$$152$$ −0.0762550 + 0.132077i −0.00618510 + 0.0107129i
$$153$$ −3.71455 6.43378i −0.300303 0.520140i
$$154$$ 0.0762550 + 0.132077i 0.00614480 + 0.0106431i
$$155$$ −9.97370 −0.801107
$$156$$ 3.64163 5.73630i 0.291563 0.459272i
$$157$$ −0.775639 −0.0619028 −0.0309514 0.999521i $$-0.509854\pi$$
−0.0309514 + 0.999521i $$0.509854\pi$$
$$158$$ 1.69491 + 2.93568i 0.134840 + 0.233550i
$$159$$ 0.339877 + 0.588684i 0.0269540 + 0.0466857i
$$160$$ 1.88448 3.26402i 0.148982 0.258044i
$$161$$ −5.12847 −0.404180
$$162$$ 0.169938 0.294342i 0.0133516 0.0231257i
$$163$$ −6.09903 + 10.5638i −0.477713 + 0.827423i −0.999674 0.0255466i $$-0.991867\pi$$
0.521961 + 0.852969i $$0.325201\pi$$
$$164$$ −7.96074 −0.621629
$$165$$ 0.339877 0.588684i 0.0264594 0.0458290i
$$166$$ 0.300616 + 0.520681i 0.0233323 + 0.0404127i
$$167$$ 0.795270 + 1.37745i 0.0615398 + 0.106590i 0.895154 0.445757i $$-0.147066\pi$$
−0.833614 + 0.552347i $$0.813732\pi$$
$$168$$ −0.871525 −0.0672396
$$169$$ −5.53146 11.7645i −0.425497 0.904960i
$$170$$ −2.52498 −0.193657
$$171$$ −0.0577581 0.100040i −0.00441688 0.00765025i
$$172$$ −0.513151 0.888804i −0.0391274 0.0677707i
$$173$$ −6.37467 + 11.0412i −0.484657 + 0.839451i −0.999845 0.0176268i $$-0.994389\pi$$
0.515188 + 0.857077i $$0.327722\pi$$
$$174$$ 1.88448 0.142862
$$175$$ −0.330062 + 0.571683i −0.0249503 + 0.0432152i
$$176$$ −1.12847 + 1.95458i −0.0850620 + 0.147332i
$$177$$ −2.22436 −0.167193
$$178$$ 2.30175 3.98675i 0.172523 0.298819i
$$179$$ −8.88115 15.3826i −0.663808 1.14975i −0.979607 0.200923i $$-0.935606\pi$$
0.315799 0.948826i $$-0.397728\pi$$
$$180$$ 0.942242 + 1.63201i 0.0702306 + 0.121643i
$$181$$ 7.02630 0.522261 0.261130 0.965304i $$-0.415905\pi$$
0.261130 + 0.965304i $$0.415905\pi$$
$$182$$ −0.433560 + 0.682946i −0.0321376 + 0.0506233i
$$183$$ 4.20473 0.310823
$$184$$ 5.12847 + 8.88278i 0.378076 + 0.654847i
$$185$$ −4.88448 8.46017i −0.359114 0.622004i
$$186$$ 1.69491 2.93568i 0.124277 0.215254i
$$187$$ 5.04995 0.369289
$$188$$ −4.72971 + 8.19209i −0.344949 + 0.597470i
$$189$$ 0.330062 0.571683i 0.0240084 0.0415838i
$$190$$ −0.0392613 −0.00284832
$$191$$ 6.97703 12.0846i 0.504840 0.874409i −0.495144 0.868811i $$-0.664885\pi$$
0.999984 0.00559828i $$-0.00178200\pi$$
$$192$$ −2.67975 4.64147i −0.193395 0.334969i
$$193$$ −11.8747 20.5675i −0.854757 1.48048i −0.876870 0.480728i $$-0.840373\pi$$
0.0221126 0.999755i $$-0.492961\pi$$
$$194$$ −3.36618 −0.241678
$$195$$ 3.60236 + 0.151548i 0.257971 + 0.0108525i
$$196$$ 12.3702 0.883586
$$197$$ −7.90411 13.6903i −0.563145 0.975395i −0.997220 0.0745186i $$-0.976258\pi$$
0.434075 0.900877i $$-0.357075\pi$$
$$198$$ 0.115516 + 0.200080i 0.00820939 + 0.0142191i
$$199$$ −4.38448 + 7.59415i −0.310808 + 0.538335i −0.978537 0.206069i $$-0.933933\pi$$
0.667730 + 0.744404i $$0.267266\pi$$
$$200$$ 1.32025 0.0933555
$$201$$ −3.81691 + 6.61108i −0.269224 + 0.466310i
$$202$$ −1.59054 + 2.75490i −0.111910 + 0.193834i
$$203$$ 3.66012 0.256890
$$204$$ −7.00000 + 12.1244i −0.490098 + 0.848875i
$$205$$ −2.11218 3.65840i −0.147521 0.255514i
$$206$$ 0.765631 + 1.32611i 0.0533441 + 0.0923946i
$$207$$ −7.76897 −0.539981
$$208$$ −11.9607 0.503175i −0.829328 0.0348889i
$$209$$ 0.0785226 0.00543152
$$210$$ −0.112180 0.194302i −0.00774118 0.0134081i
$$211$$ −4.40411 7.62815i −0.303192 0.525143i 0.673665 0.739037i $$-0.264719\pi$$
−0.976857 + 0.213893i $$0.931386\pi$$
$$212$$ 0.640492 1.10937i 0.0439892 0.0761915i
$$213$$ −7.31357 −0.501118
$$214$$ 0.0970195 0.168043i 0.00663211 0.0114872i
$$215$$ 0.272303 0.471643i 0.0185709 0.0321658i
$$216$$ −1.32025 −0.0898314
$$217$$ 3.29193 5.70180i 0.223471 0.387063i
$$218$$ 2.61866 + 4.53565i 0.177358 + 0.307193i
$$219$$ 4.00982 + 6.94520i 0.270958 + 0.469313i
$$220$$ −1.28098 −0.0863640
$$221$$ 12.4061 + 23.7398i 0.834526 + 1.59691i
$$222$$ 3.32025 0.222840
$$223$$ −5.01963 8.69426i −0.336139 0.582210i 0.647564 0.762011i $$-0.275788\pi$$
−0.983703 + 0.179801i $$0.942455\pi$$
$$224$$ 1.24399 + 2.15466i 0.0831177 + 0.143964i
$$225$$ −0.500000 + 0.866025i −0.0333333 + 0.0577350i
$$226$$ 1.80823 0.120282
$$227$$ −0.605701 + 1.04910i −0.0402018 + 0.0696315i −0.885426 0.464780i $$-0.846133\pi$$
0.845224 + 0.534412i $$0.179467\pi$$
$$228$$ −0.108844 + 0.188524i −0.00720839 + 0.0124853i
$$229$$ 19.2440 1.27168 0.635839 0.771821i $$-0.280654\pi$$
0.635839 + 0.771821i $$0.280654\pi$$
$$230$$ −1.32025 + 2.28673i −0.0870545 + 0.150783i
$$231$$ 0.224361 + 0.388604i 0.0147618 + 0.0255683i
$$232$$ −3.66012 6.33952i −0.240299 0.416210i
$$233$$ −23.9081 −1.56627 −0.783137 0.621849i $$-0.786382\pi$$
−0.783137 + 0.621849i $$0.786382\pi$$
$$234$$ −0.656787 + 1.03457i −0.0429355 + 0.0676322i
$$235$$ −5.01963 −0.327445
$$236$$ 2.09589 + 3.63018i 0.136431 + 0.236305i
$$237$$ 4.98685 + 8.63748i 0.323931 + 0.561064i
$$238$$ 0.833398 1.44349i 0.0540211 0.0935674i
$$239$$ 18.6798 1.20829 0.604146 0.796873i $$-0.293514\pi$$
0.604146 + 0.796873i $$0.293514\pi$$
$$240$$ 1.66012 2.87542i 0.107160 0.185607i
$$241$$ −3.05776 + 5.29619i −0.196968 + 0.341158i −0.947544 0.319626i $$-0.896443\pi$$
0.750576 + 0.660784i $$0.229776\pi$$
$$242$$ 3.58160 0.230234
$$243$$ 0.500000 0.866025i 0.0320750 0.0555556i
$$244$$ −3.96187 6.86216i −0.253633 0.439305i
$$245$$ 3.28212 + 5.68480i 0.209687 + 0.363188i
$$246$$ 1.43576 0.0915409
$$247$$ 0.192905 + 0.369134i 0.0122743 + 0.0234874i
$$248$$ −13.1677 −0.836152
$$249$$ 0.884484 + 1.53197i 0.0560519 + 0.0970847i
$$250$$ 0.169938 + 0.294342i 0.0107479 + 0.0186158i
$$251$$ −1.67975 + 2.90942i −0.106025 + 0.183641i −0.914157 0.405361i $$-0.867146\pi$$
0.808131 + 0.589002i $$0.200479\pi$$
$$252$$ −1.24399 −0.0783641
$$253$$ 2.64049 4.57347i 0.166006 0.287531i
$$254$$ −2.04260 + 3.53788i −0.128164 + 0.221986i
$$255$$ −7.42909 −0.465228
$$256$$ −3.76897 + 6.52804i −0.235560 + 0.408003i
$$257$$ 5.05442 + 8.75452i 0.315286 + 0.546092i 0.979498 0.201452i $$-0.0645662\pi$$
−0.664212 + 0.747544i $$0.731233\pi$$
$$258$$ 0.0925496 + 0.160301i 0.00576189 + 0.00997988i
$$259$$ 6.44872 0.400704
$$260$$ −3.14697 6.02189i −0.195167 0.373462i
$$261$$ 5.54461 0.343203
$$262$$ 1.85303 + 3.20954i 0.114480 + 0.198286i
$$263$$ 11.2592 + 19.5014i 0.694269 + 1.20251i 0.970426 + 0.241397i $$0.0776056\pi$$
−0.276157 + 0.961112i $$0.589061\pi$$
$$264$$ 0.448721 0.777208i 0.0276169 0.0478338i
$$265$$ 0.679754 0.0417569
$$266$$ 0.0129587 0.0224450i 0.000794546 0.00137619i
$$267$$ 6.77230 11.7300i 0.414458 0.717863i
$$268$$ 14.3858 0.878753
$$269$$ −4.24733 + 7.35659i −0.258964 + 0.448539i −0.965965 0.258674i $$-0.916714\pi$$
0.707001 + 0.707213i $$0.250048\pi$$
$$270$$ −0.169938 0.294342i −0.0103421 0.0179131i
$$271$$ −4.68510 8.11483i −0.284600 0.492941i 0.687912 0.725794i $$-0.258527\pi$$
−0.972512 + 0.232853i $$0.925194\pi$$
$$272$$ 24.6664 1.49562
$$273$$ −1.27564 + 2.00939i −0.0772052 + 0.121614i
$$274$$ −1.15212 −0.0696024
$$275$$ −0.339877 0.588684i −0.0204953 0.0354990i
$$276$$ 7.32025 + 12.6790i 0.440627 + 0.763188i
$$277$$ −0.359508 + 0.622685i −0.0216007 + 0.0374135i −0.876624 0.481177i $$-0.840210\pi$$
0.855023 + 0.518590i $$0.173543\pi$$
$$278$$ −5.03297 −0.301858
$$279$$ 4.98685 8.63748i 0.298555 0.517112i
$$280$$ −0.435763 + 0.754763i −0.0260418 + 0.0451057i
$$281$$ 1.54461 0.0921435 0.0460718 0.998938i $$-0.485330\pi$$
0.0460718 + 0.998938i $$0.485330\pi$$
$$282$$ 0.853028 1.47749i 0.0507971 0.0879831i
$$283$$ 9.05977 + 15.6920i 0.538547 + 0.932791i 0.998983 + 0.0450980i $$0.0143600\pi$$
−0.460435 + 0.887693i $$0.652307\pi$$
$$284$$ 6.89116 + 11.9358i 0.408915 + 0.708261i
$$285$$ −0.115516 −0.00684259
$$286$$ −0.385810 0.738268i −0.0228134 0.0436547i
$$287$$ 2.78860 0.164606
$$288$$ 1.88448 + 3.26402i 0.111044 + 0.192334i
$$289$$ −19.0957 33.0747i −1.12328 1.94557i
$$290$$ 0.942242 1.63201i 0.0553303 0.0958350i
$$291$$ −9.90411 −0.580589
$$292$$ 7.55643 13.0881i 0.442207 0.765924i
$$293$$ 15.2525 26.4181i 0.891059 1.54336i 0.0524523 0.998623i $$-0.483296\pi$$
0.838607 0.544737i $$-0.183370\pi$$
$$294$$ −2.23103 −0.130116
$$295$$ −1.11218 + 1.92635i −0.0647536 + 0.112157i
$$296$$ −6.44872 11.1695i −0.374824 0.649215i
$$297$$ 0.339877 + 0.588684i 0.0197217 + 0.0341589i
$$298$$ 5.80823 0.336462
$$299$$ 27.9867 + 1.17737i 1.61851 + 0.0680890i
$$300$$ 1.88448 0.108801
$$301$$ 0.179754 + 0.311343i 0.0103608 + 0.0179455i
$$302$$ 2.21140 + 3.83026i 0.127252 + 0.220407i
$$303$$ −4.67975 + 8.10557i −0.268845 + 0.465653i
$$304$$ 0.383543 0.0219977
$$305$$ 2.10236 3.64140i 0.120381 0.208506i
$$306$$ 1.26249 2.18669i 0.0721716 0.125005i
$$307$$ −4.77564 −0.272560 −0.136280 0.990670i $$-0.543515\pi$$
−0.136280 + 0.990670i $$0.543515\pi$$
$$308$$ 0.422804 0.732318i 0.0240915 0.0417277i
$$309$$ 2.25267 + 3.90174i 0.128150 + 0.221962i
$$310$$ −1.69491 2.93568i −0.0962647 0.166735i
$$311$$ 30.5812 1.73410 0.867051 0.498220i $$-0.166013\pi$$
0.867051 + 0.498220i $$0.166013\pi$$
$$312$$ 4.75601 + 0.200080i 0.269256 + 0.0113273i
$$313$$ −26.7230 −1.51048 −0.755238 0.655451i $$-0.772479\pi$$
−0.755238 + 0.655451i $$0.772479\pi$$
$$314$$ −0.131811 0.228303i −0.00743852 0.0128839i
$$315$$ −0.330062 0.571683i −0.0185969 0.0322107i
$$316$$ 9.39764 16.2772i 0.528658 0.915663i
$$317$$ −20.6271 −1.15854 −0.579268 0.815137i $$-0.696662\pi$$
−0.579268 + 0.815137i $$0.696662\pi$$
$$318$$ −0.115516 + 0.200080i −0.00647783 + 0.0112199i
$$319$$ −1.88448 + 3.26402i −0.105511 + 0.182750i
$$320$$ −5.35951 −0.299606
$$321$$ 0.285455 0.494422i 0.0159325 0.0275960i
$$322$$ −0.871525 1.50953i −0.0485682 0.0841226i
$$323$$ −0.429091 0.743207i −0.0238752 0.0413531i
$$324$$ −1.88448 −0.104694
$$325$$ 1.93243 3.04397i 0.107192 0.168849i
$$326$$ −4.14584 −0.229617
$$327$$ 7.70473 + 13.3450i 0.426073 + 0.737979i
$$328$$ −2.78860 4.82999i −0.153975 0.266692i
$$329$$ 1.65679 2.86964i 0.0913416 0.158208i
$$330$$ 0.231033 0.0127179
$$331$$ −2.68510 + 4.65073i −0.147586 + 0.255627i −0.930335 0.366711i $$-0.880484\pi$$
0.782749 + 0.622338i $$0.213817\pi$$
$$332$$ 1.66680 2.88697i 0.0914773 0.158443i
$$333$$ 9.76897 0.535336
$$334$$ −0.270294 + 0.468163i −0.0147898 + 0.0256167i
$$335$$ 3.81691 + 6.61108i 0.208540 + 0.361202i
$$336$$ 1.09589 + 1.89813i 0.0597855 + 0.103551i
$$337$$ 28.7623 1.56678 0.783391 0.621529i $$-0.213488\pi$$
0.783391 + 0.621529i $$0.213488\pi$$
$$338$$ 2.52277 3.62738i 0.137221 0.197303i
$$339$$ 5.32025 0.288956
$$340$$ 7.00000 + 12.1244i 0.379628 + 0.657536i
$$341$$ 3.38983 + 5.87136i 0.183570 + 0.317952i
$$342$$ 0.0196307 0.0340013i 0.00106150 0.00183858i
$$343$$ −8.95407 −0.483474
$$344$$ 0.359508 0.622685i 0.0193833 0.0335729i
$$345$$ −3.88448 + 6.72812i −0.209134 + 0.362230i
$$346$$ −4.33320 −0.232955
$$347$$ −11.1981 + 19.3956i −0.601143 + 1.04121i 0.391505 + 0.920176i $$0.371955\pi$$
−0.992648 + 0.121035i $$0.961379\pi$$
$$348$$ −5.22436 9.04886i −0.280055 0.485070i
$$349$$ 5.98685 + 10.3695i 0.320469 + 0.555068i 0.980585 0.196096i $$-0.0628263\pi$$
−0.660116 + 0.751164i $$0.729493\pi$$
$$350$$ −0.224361 −0.0119926
$$351$$ −1.93243 + 3.04397i −0.103145 + 0.162475i
$$352$$ −2.56197 −0.136553
$$353$$ 8.51830 + 14.7541i 0.453384 + 0.785283i 0.998594 0.0530161i $$-0.0168834\pi$$
−0.545210 + 0.838299i $$0.683550\pi$$
$$354$$ −0.378004 0.654723i −0.0200907 0.0347981i
$$355$$ −3.65679 + 6.33374i −0.194082 + 0.336160i
$$356$$ −25.5246 −1.35280
$$357$$ 2.45206 4.24709i 0.129777 0.224780i
$$358$$ 3.01850 5.22819i 0.159533 0.276318i
$$359$$ −35.0825 −1.85159 −0.925793 0.378031i $$-0.876601\pi$$
−0.925793 + 0.378031i $$0.876601\pi$$
$$360$$ −0.660123 + 1.14337i −0.0347915 + 0.0602607i
$$361$$ 9.49333 + 16.4429i 0.499649 + 0.865417i
$$362$$ 1.19404 + 2.06814i 0.0627573 + 0.108699i
$$363$$ 10.5379 0.553098
$$364$$ 4.48131 + 0.188524i 0.234884 + 0.00988133i
$$365$$ 8.01963 0.419767
$$366$$ 0.714545 + 1.23763i 0.0373499 + 0.0646919i
$$367$$ −10.0413 17.3920i −0.524150 0.907855i −0.999605 0.0281143i $$-0.991050\pi$$
0.475455 0.879740i $$-0.342284\pi$$
$$368$$ 12.8974 22.3390i 0.672326 1.16450i
$$369$$ 4.22436 0.219911
$$370$$ 1.66012 2.87542i 0.0863057 0.149486i
$$371$$ −0.224361 + 0.388604i −0.0116482 + 0.0201753i
$$372$$ −18.7953 −0.974489
$$373$$ 11.7395 20.3334i 0.607849 1.05283i −0.383745 0.923439i $$-0.625366\pi$$
0.991594 0.129387i $$-0.0413009\pi$$
$$374$$ 0.858181 + 1.48641i 0.0443755 + 0.0768606i
$$375$$ 0.500000 + 0.866025i 0.0258199 + 0.0447214i
$$376$$ −6.62715 −0.341769
$$377$$ −19.9737 0.840272i −1.02870 0.0432762i
$$378$$ 0.224361 0.0115399
$$379$$ −10.5707 18.3090i −0.542981 0.940471i −0.998731 0.0503631i $$-0.983962\pi$$
0.455750 0.890108i $$-0.349371\pi$$
$$380$$ 0.108844 + 0.188524i 0.00558359 + 0.00967107i
$$381$$ −6.00982 + 10.4093i −0.307892 + 0.533285i
$$382$$ 4.74266 0.242656
$$383$$ −0.869323 + 1.50571i −0.0444203 + 0.0769383i −0.887381 0.461037i $$-0.847477\pi$$
0.842960 + 0.537976i $$0.180811\pi$$
$$384$$ 4.67975 8.10557i 0.238813 0.413636i
$$385$$ 0.448721 0.0228689
$$386$$ 4.03593 6.99043i 0.205423 0.355803i
$$387$$ 0.272303 + 0.471643i 0.0138420 + 0.0239750i
$$388$$ 9.33207 + 16.1636i 0.473764 + 0.820584i
$$389$$ −26.6664 −1.35204 −0.676020 0.736883i $$-0.736297\pi$$
−0.676020 + 0.736883i $$0.736297\pi$$
$$390$$ 0.567573 + 1.08608i 0.0287402 + 0.0549959i
$$391$$ −57.7164 −2.91884
$$392$$ 4.33320 + 7.50533i 0.218860 + 0.379076i
$$393$$ 5.45206 + 9.44324i 0.275020 + 0.476348i
$$394$$ 2.68643 4.65303i 0.135340 0.234416i
$$395$$ 9.97370 0.501831
$$396$$ 0.640492 1.10937i 0.0321860 0.0557477i
$$397$$ −7.27230 + 12.5960i −0.364986 + 0.632175i −0.988774 0.149419i $$-0.952260\pi$$
0.623788 + 0.781594i $$0.285593\pi$$
$$398$$ −2.98037 −0.149392
$$399$$ 0.0381275 0.0660387i 0.00190876 0.00330607i
$$400$$ −1.66012 2.87542i −0.0830062 0.143771i
$$401$$ 4.18510 + 7.24880i 0.208994 + 0.361988i 0.951398 0.307964i $$-0.0996478\pi$$
−0.742404 + 0.669952i $$0.766314\pi$$
$$402$$ −2.59456 −0.129405
$$403$$ −19.2734 + 30.3596i −0.960078 + 1.51232i
$$404$$ 17.6378 0.877515
$$405$$ −0.500000 0.866025i −0.0248452 0.0430331i
$$406$$ 0.621996 + 1.07733i 0.0308691 + 0.0534669i
$$407$$ −3.32025 + 5.75084i −0.164578 + 0.285058i
$$408$$ −9.80823 −0.485580
$$409$$ −8.62734 + 14.9430i −0.426595 + 0.738883i −0.996568 0.0827798i $$-0.973620\pi$$
0.569973 + 0.821663i $$0.306954\pi$$
$$410$$ 0.717881 1.24341i 0.0354536 0.0614075i
$$411$$ −3.38983 −0.167208
$$412$$ 4.24513 7.35277i 0.209142 0.362245i
$$413$$ −0.734176 1.27163i −0.0361264 0.0625728i
$$414$$ −1.32025 2.28673i −0.0648866 0.112387i
$$415$$ 1.76897 0.0868352
$$416$$ −6.29394 12.0438i −0.308586 0.590495i
$$417$$ −14.8082 −0.725162
$$418$$ 0.0133440 + 0.0231125i 0.000652677 + 0.00113047i
$$419$$ −6.43243 11.1413i −0.314245 0.544288i 0.665032 0.746815i $$-0.268418\pi$$
−0.979277 + 0.202527i $$0.935085\pi$$
$$420$$ −0.621996 + 1.07733i −0.0303503 + 0.0525682i
$$421$$ 24.5616 1.19706 0.598529 0.801101i $$-0.295752\pi$$
0.598529 + 0.801101i $$0.295752\pi$$
$$422$$ 1.49686 2.59263i 0.0728658 0.126207i
$$423$$ 2.50982 4.34713i 0.122031 0.211365i
$$424$$ 0.897442 0.0435837
$$425$$ −3.71455 + 6.43378i −0.180182 + 0.312084i
$$426$$ −1.24286 2.15269i −0.0602166 0.104298i
$$427$$ 1.38782 + 2.40377i 0.0671613 + 0.116327i
$$428$$ −1.07587 −0.0520041
$$429$$ −1.13515 2.17216i −0.0548054 0.104873i
$$430$$ 0.185099 0.00892628
$$431$$ −12.3898 21.4598i −0.596797 1.03368i −0.993291 0.115645i $$-0.963106\pi$$
0.396493 0.918038i $$-0.370227\pi$$
$$432$$ 1.66012 + 2.87542i 0.0798727 + 0.138344i
$$433$$ 7.02945 12.1754i 0.337814 0.585110i −0.646208 0.763162i $$-0.723646\pi$$
0.984021 + 0.178051i $$0.0569793\pi$$
$$434$$ 2.23770 0.107413
$$435$$ 2.77230 4.80177i 0.132922 0.230227i
$$436$$ 14.5194 25.1484i 0.695355 1.20439i
$$437$$ −0.897442 −0.0429305
$$438$$ −1.36284 + 2.36051i −0.0651192 + 0.112790i
$$439$$ −10.4226 18.0525i −0.497444 0.861598i 0.502552 0.864547i $$-0.332395\pi$$
−0.999996 + 0.00294880i $$0.999061\pi$$
$$440$$ −0.448721 0.777208i −0.0213919 0.0370519i
$$441$$ −6.56424 −0.312583
$$442$$ −4.87933 + 7.68594i −0.232086 + 0.365583i
$$443$$ −11.4291 −0.543012 −0.271506 0.962437i $$-0.587522\pi$$
−0.271506 + 0.962437i $$0.587522\pi$$
$$444$$ −9.20473 15.9431i −0.436837 0.756624i
$$445$$ −6.77230 11.7300i −0.321038 0.556054i
$$446$$ 1.70606 2.95498i 0.0807841 0.139922i
$$447$$ 17.0892 0.808292
$$448$$ 1.76897 3.06394i 0.0835759 0.144758i
$$449$$ −12.9541 + 22.4371i −0.611340 + 1.05887i 0.379675 + 0.925120i $$0.376036\pi$$
−0.991015 + 0.133752i $$0.957297\pi$$
$$450$$ −0.339877 −0.0160220
$$451$$ −1.43576 + 2.48681i −0.0676074 + 0.117099i
$$452$$ −5.01296 8.68270i −0.235790 0.408400i
$$453$$ 6.50648 + 11.2696i 0.305701 + 0.529490i
$$454$$ −0.411728 −0.0193233
$$455$$ 1.10236 + 2.10943i 0.0516797 + 0.0988917i
$$456$$ −0.152510 −0.00714193
$$457$$ −2.95206 5.11311i −0.138091 0.239181i 0.788683 0.614800i $$-0.210763\pi$$
−0.926774 + 0.375619i $$0.877430\pi$$
$$458$$ 3.27029 + 5.66432i 0.152811 + 0.264676i
$$459$$ 3.71455 6.43378i 0.173380 0.300303i
$$460$$ 14.6405 0.682616
$$461$$ 7.74600 13.4165i 0.360767 0.624867i −0.627320 0.778762i $$-0.715848\pi$$
0.988087 + 0.153894i $$0.0491815\pi$$
$$462$$ −0.0762550 + 0.132077i −0.00354770 + 0.00614480i
$$463$$ 17.4420 0.810601 0.405300 0.914184i $$-0.367167\pi$$
0.405300 + 0.914184i $$0.367167\pi$$
$$464$$ −9.20473 + 15.9431i −0.427319 + 0.740138i
$$465$$ −4.98685 8.63748i −0.231260 0.400553i
$$466$$ −4.06291 7.03717i −0.188211 0.325991i
$$467$$ −20.4790 −0.947657 −0.473829 0.880617i $$-0.657128\pi$$
−0.473829 + 0.880617i $$0.657128\pi$$
$$468$$ 6.78860 + 0.285589i 0.313803 + 0.0132014i
$$469$$ −5.03926 −0.232691
$$470$$ −0.853028 1.47749i −0.0393473 0.0681514i
$$471$$ −0.387820 0.671723i −0.0178698 0.0309514i
$$472$$ −1.46835 + 2.54326i −0.0675864 + 0.117063i
$$473$$ −0.370199 −0.0170217
$$474$$ −1.69491 + 2.93568i −0.0778500 + 0.134840i
$$475$$ −0.0577581 + 0.100040i −0.00265013 + 0.00459015i
$$476$$ −9.24172 −0.423594
$$477$$ −0.339877 + 0.588684i −0.0155619 + 0.0269540i
$$478$$ 3.17441 + 5.49824i 0.145194 + 0.251483i
$$479$$ 20.4953 + 35.4990i 0.936456 + 1.62199i 0.772017 + 0.635602i $$0.219248\pi$$
0.164439 + 0.986387i $$0.447419\pi$$
$$480$$ 3.76897 0.172029
$$481$$ −35.1914 1.48046i −1.60459 0.0675033i
$$482$$ −2.07852 −0.0946741
$$483$$ −2.56424 4.44139i −0.116677 0.202090i
$$484$$ −9.92928 17.1980i −0.451331 0.781728i
$$485$$ −4.95206 + 8.57721i −0.224861 + 0.389471i
$$486$$ 0.339877 0.0154171
$$487$$ −12.0315 + 20.8391i −0.545197 + 0.944309i 0.453397 + 0.891309i $$0.350212\pi$$
−0.998594 + 0.0530008i $$0.983121\pi$$
$$488$$ 2.77564 4.80755i 0.125647 0.217627i
$$489$$ −12.1981 −0.551615
$$490$$ −1.11552 + 1.93213i −0.0503939 + 0.0872848i
$$491$$ −18.3865 31.8463i −0.829771 1.43721i −0.898218 0.439550i $$-0.855138\pi$$
0.0684471 0.997655i $$-0.478196\pi$$
$$492$$ −3.98037 6.89420i −0.179449 0.310815i
$$493$$ 41.1914 1.85517
$$494$$ −0.0758696 + 0.119510i −0.00341354 + 0.00537701i
$$495$$ 0.679754 0.0305527
$$496$$ 16.5576 + 28.6785i 0.743457 + 1.28770i
$$497$$ −2.41393 4.18105i −0.108280 0.187546i
$$498$$ −0.300616 + 0.520681i −0.0134709 + 0.0233323i
$$499$$ 34.8212 1.55881 0.779405 0.626520i $$-0.215521\pi$$
0.779405 + 0.626520i $$0.215521\pi$$
$$500$$ 0.942242 1.63201i 0.0421383 0.0729857i
$$501$$ −0.795270 + 1.37745i −0.0355300 + 0.0615398i
$$502$$ −1.14182 −0.0509619
$$503$$ 16.0130 27.7353i 0.713983 1.23665i −0.249368 0.968409i $$-0.580223\pi$$
0.963351 0.268245i $$-0.0864438\pi$$
$$504$$ −0.435763 0.754763i −0.0194104 0.0336198i
$$505$$ 4.67975 + 8.10557i 0.208246 + 0.360693i
$$506$$ 1.79488 0.0797924
$$507$$ 7.42261 10.6726i 0.329650 0.473988i
$$508$$ 22.6508 1.00497
$$509$$ 20.6731 + 35.8068i 0.916318 + 1.58711i 0.804960 + 0.593329i $$0.202187\pi$$
0.111359 + 0.993780i $$0.464480\pi$$
$$510$$ −1.26249 2.18669i −0.0559039 0.0968284i
$$511$$ −2.64697 + 4.58469i −0.117095 + 0.202815i
$$512$$ −21.2810 −0.940496
$$513$$ 0.0577581 0.100040i 0.00255008 0.00441688i
$$514$$ −1.71788 + 2.97546i −0.0757725 + 0.131242i
$$515$$ 4.50535 0.198529
$$516$$ 0.513151 0.888804i 0.0225902 0.0391274i
$$517$$ 1.70606 + 2.95498i 0.0750323 + 0.129960i
$$518$$ 1.09589 + 1.89813i 0.0481505 + 0.0833990i
$$519$$ −12.7493 −0.559634
$$520$$ 2.55128 4.01878i 0.111881 0.176235i
$$521$$ 4.40279 0.192890 0.0964448 0.995338i $$-0.469253\pi$$
0.0964448 + 0.995338i $$0.469253\pi$$
$$522$$ 0.942242 + 1.63201i 0.0412408 + 0.0714312i
$$523$$ 16.2244 + 28.1014i 0.709442 + 1.22879i 0.965064 + 0.262013i $$0.0843862\pi$$
−0.255623 + 0.966777i $$0.582280\pi$$
$$524$$ 10.2743 17.7956i 0.448835 0.777406i
$$525$$ −0.660123 −0.0288101
$$526$$ −3.82673 + 6.62808i −0.166853 + 0.288998i
$$527$$ 37.0478 64.1686i 1.61383 2.79523i
$$528$$ −2.25695 −0.0982211
$$529$$ −18.6784 + 32.3520i −0.812106 + 1.40661i
$$530$$ 0.115516 + 0.200080i 0.00501771 + 0.00869092i
$$531$$ −1.11218 1.92635i −0.0482645 0.0835966i
$$532$$ −0.143701 −0.00623024
$$533$$ −15.2177 0.640192i −0.659151 0.0277298i
$$534$$ 4.60350 0.199213
$$535$$ −0.285455 0.494422i −0.0123413 0.0213757i
$$536$$ 5.03926 + 8.72826i 0.217663 + 0.377003i
$$537$$ 8.88115 15.3826i 0.383250 0.663808i
$$538$$ −2.88714 −0.124473
$$539$$ 2.23103 3.86426i 0.0960974 0.166446i
$$540$$ −0.942242 + 1.63201i −0.0405476 + 0.0702306i
$$541$$ −8.57720 −0.368762 −0.184381 0.982855i $$-0.559028\pi$$
−0.184381 + 0.982855i $$0.559028\pi$$
$$542$$ 1.59236 2.75804i 0.0683976 0.118468i
$$543$$ 3.51315 + 6.08496i 0.150764 + 0.261130i
$$544$$ 14.0000 + 24.2487i 0.600245 + 1.03965i
$$545$$ 15.4095 0.660069
$$546$$ −0.808229 0.0340013i −0.0345890 0.00145512i
$$547$$ −32.4920 −1.38926 −0.694629 0.719368i $$-0.744431\pi$$
−0.694629 + 0.719368i $$0.744431\pi$$
$$548$$ 3.19404 + 5.53224i 0.136443 + 0.236325i
$$549$$ 2.10236 + 3.64140i 0.0897268 + 0.155411i
$$550$$ 0.115516 0.200080i 0.00492563 0.00853144i
$$551$$ 0.640492 0.0272859
$$552$$ −5.12847 + 8.88278i −0.218282 + 0.378076i
$$553$$ −3.29193 + 5.70180i −0.139987 + 0.242465i
$$554$$ −0.244377 −0.0103826
$$555$$ 4.88448 8.46017i 0.207335 0.359114i
$$556$$ 13.9529 + 24.1672i 0.591736 + 1.02492i
$$557$$ 20.6075 + 35.6933i 0.873169 + 1.51237i 0.858701 + 0.512477i $$0.171272\pi$$
0.0144676 + 0.999895i $$0.495395\pi$$
$$558$$ 3.38983 0.143503
$$559$$ −0.909460 1.74030i −0.0384661 0.0736068i
$$560$$ 2.19177 0.0926192
$$561$$ 2.52498 + 4.37339i 0.106605 + 0.184645i
$$562$$ 0.262488 + 0.454643i 0.0110724 + 0.0191779i
$$563$$ 6.08921 10.5468i 0.256630 0.444496i −0.708707 0.705503i $$-0.750721\pi$$
0.965337 + 0.261007i $$0.0840546\pi$$
$$564$$ −9.45941 −0.398313
$$565$$ 2.66012 4.60747i 0.111912 0.193838i
$$566$$ −3.07921 + 5.33334i −0.129429 + 0.224177i
$$567$$ 0.660123 0.0277226
$$568$$ −4.82786 + 8.36210i −0.202572 + 0.350866i
$$569$$ −3.47169 6.01314i −0.145541 0.252084i 0.784034 0.620718i $$-0.213159\pi$$
−0.929575 + 0.368634i $$0.879826\pi$$
$$570$$ −0.0196307 0.0340013i −0.000822238 0.00142416i
$$571$$ 3.51429 0.147068 0.0735341 0.997293i $$-0.476572\pi$$
0.0735341 + 0.997293i $$0.476572\pi$$
$$572$$ −2.47541 + 3.89927i −0.103502 + 0.163037i
$$573$$ 13.9541 0.582939
$$574$$ 0.473890 + 0.820802i 0.0197798 + 0.0342596i
$$575$$ 3.88448 + 6.72812i 0.161994 + 0.280582i
$$576$$ 2.67975 4.64147i 0.111656 0.193395i
$$577$$ 3.14182 0.130796 0.0653978 0.997859i $$-0.479168\pi$$
0.0653978 + 0.997859i $$0.479168\pi$$
$$578$$ 6.49018 11.2413i 0.269956 0.467578i
$$579$$ 11.8747 20.5675i 0.493494 0.854757i
$$580$$ −10.4487 −0.433860
$$581$$ −0.583868 + 1.01129i −0.0242229 + 0.0419553i
$$582$$ −1.68309 2.91520i −0.0697663 0.120839i
$$583$$ −0.231033 0.400160i −0.00956839 0.0165729i
$$584$$ 10.5879 0.438130
$$585$$ 1.66994 + 3.19551i 0.0690435 + 0.132118i
$$586$$ 10.3679 0.428295
$$587$$ −18.9889 32.8897i −0.783754 1.35750i −0.929741 0.368215i $$-0.879969\pi$$
0.145987 0.989287i $$-0.453364\pi$$
$$588$$ 6.18510 + 10.7129i 0.255069 + 0.441793i
$$589$$ 0.576062 0.997769i 0.0237362 0.0411124i
$$590$$ −0.756009 −0.0311244
$$591$$ 7.90411 13.6903i 0.325132 0.563145i
$$592$$ −16.2177 + 28.0899i −0.666543 + 1.15449i
$$593$$ 10.4487 0.429078 0.214539 0.976715i $$-0.431175\pi$$
0.214539 + 0.976715i $$0.431175\pi$$
$$594$$ −0.115516 + 0.200080i −0.00473969 + 0.00820939i
$$595$$ −2.45206 4.24709i −0.100525 0.174114i
$$596$$ −16.1022 27.8898i −0.659571 1.14241i
$$597$$ −8.76897 −0.358890
$$598$$ 4.40946 + 8.43773i 0.180316 + 0.345044i
$$599$$ −45.5705 −1.86196 −0.930981 0.365069i $$-0.881045\pi$$
−0.930981 + 0.365069i $$0.881045\pi$$
$$600$$ 0.660123 + 1.14337i 0.0269494 + 0.0466778i
$$601$$ 7.39096 + 12.8015i 0.301484 + 0.522185i 0.976472 0.215643i $$-0.0691848\pi$$
−0.674989 + 0.737828i $$0.735851\pi$$
$$602$$ −0.0610942 + 0.105818i −0.00249001 + 0.00431283i
$$603$$ −7.63382 −0.310873
$$604$$ 12.2614 21.2373i 0.498907 0.864133i
$$605$$ 5.26897 9.12612i 0.214214 0.371030i
$$606$$ −3.18108 −0.129223
$$607$$ 9.46722 16.3977i 0.384263 0.665562i −0.607404 0.794393i $$-0.707789\pi$$
0.991667 + 0.128831i $$0.0411224\pi$$
$$608$$ 0.217689 + 0.377048i 0.00882844 + 0.0152913i
$$609$$ 1.83006 + 3.16976i 0.0741578 + 0.128445i
$$610$$ 1.42909 0.0578622
$$611$$ −9.70007 + 15.2796i −0.392423 + 0.618146i
$$612$$ −14.0000 −0.565916
$$613$$ 1.29193 + 2.23770i 0.0521807 + 0.0903797i 0.890936 0.454129i $$-0.150049\pi$$
−0.838755 + 0.544509i $$0.816716\pi$$
$$614$$ −0.811565 1.40567i −0.0327521 0.0567283i
$$615$$ 2.11218 3.65840i 0.0851713 0.147521i
$$616$$ 0.592422 0.0238694
$$617$$ −7.01963 + 12.1584i −0.282600 + 0.489477i −0.972024 0.234880i $$-0.924530\pi$$
0.689425 + 0.724357i $$0.257863\pi$$
$$618$$ −0.765631 + 1.32611i −0.0307982 + 0.0533441i
$$619$$ −17.8582 −0.717781 −0.358890 0.933380i $$-0.616845\pi$$
−0.358890 + 0.933380i $$0.616845\pi$$
$$620$$ −9.39764 + 16.2772i −0.377418 + 0.653707i
$$621$$ −3.88448 6.72812i −0.155879 0.269990i
$$622$$ 5.19692 + 9.00134i 0.208378 + 0.360921i
$$623$$ 8.94111 0.358218
$$624$$ −5.54461 10.6099i −0.221962 0.424736i
$$625$$ 1.00000 0.0400000
$$626$$ −4.54127 7.86571i −0.181506 0.314377i
$$627$$ 0.0392613 + 0.0680026i 0.00156795 + 0.00271576i
$$628$$ −0.730840 + 1.26585i −0.0291637 + 0.0505130i
$$629$$ 72.5745 2.89374
$$630$$ 0.112180 0.194302i 0.00446937 0.00774118i
$$631$$ 12.4815 21.6186i 0.496881 0.860623i −0.503113 0.864221i $$-0.667812\pi$$
0.999994 + 0.00359801i $$0.00114528\pi$$
$$632$$ 13.1677 0.523784
$$633$$ 4.40411 7.62815i 0.175048 0.303192i
$$634$$ −3.50535 6.07144i −0.139215 0.241128i
$$635$$ 6.00982 + 10.4093i 0.238492 + 0.413081i
$$636$$ 1.28098 0.0507944
$$637$$ 23.6468 + 0.994794i 0.936920 + 0.0394152i
$$638$$ −1.28098 −0.0507147
$$639$$ −3.65679 6.33374i −0.144660 0.250559i
$$640$$ −4.67975 8.10557i −0.184984 0.320401i
$$641$$ −11.6535 + 20.1844i −0.460284 + 0.797235i −0.998975 0.0452686i $$-0.985586\pi$$
0.538691 + 0.842503i $$0.318919\pi$$
$$642$$ 0.194039 0.00765811
$$643$$ −22.7395 + 39.3860i −0.896759 + 1.55323i −0.0651470 + 0.997876i $$0.520752\pi$$
−0.831612 + 0.555357i $$0.812582\pi$$
$$644$$ −4.83226 + 8.36973i −0.190418 + 0.329813i
$$645$$ 0.544607 0.0214439
$$646$$ 0.145838 0.252599i 0.00573792 0.00993836i
$$647$$ −3.20473 5.55076i −0.125991 0.218223i 0.796129 0.605127i $$-0.206878\pi$$
−0.922120 + 0.386904i $$0.873544\pi$$
$$648$$ −0.660123 1.14337i −0.0259321 0.0449157i
$$649$$ 1.51202 0.0593519
$$650$$ 1.22436 + 0.0515075i 0.0480234 + 0.00202029i
$$651$$ 6.58387 0.258042
$$652$$ 11.4935 + 19.9074i 0.450121 + 0.779632i
$$653$$ −0.740848 1.28319i −0.0289916 0.0502150i 0.851166 0.524897i $$-0.175896\pi$$
−0.880157 + 0.474682i $$0.842563\pi$$
$$654$$ −2.61866 + 4.53565i −0.102398 + 0.177358i
$$655$$ 10.9041 0.426059
$$656$$ −7.01296 + 12.1468i −0.273810 + 0.474253i
$$657$$ −4.00982 + 6.94520i −0.156438 + 0.270958i
$$658$$ 1.12621 0.0439041
$$659$$ 3.54461 6.13944i 0.138078 0.239159i −0.788691 0.614790i $$-0.789241\pi$$
0.926769 + 0.375631i $$0.122574\pi$$
$$660$$ −0.640492 1.10937i −0.0249311 0.0431820i
$$661$$ −0.589214 1.02055i −0.0229178 0.0396947i 0.854339 0.519716i $$-0.173962\pi$$
−0.877257 + 0.480021i $$0.840629\pi$$
$$662$$ −1.82521 −0.0709387
$$663$$ −14.3562 + 22.6139i −0.557548 + 0.878251i
$$664$$ 2.33547 0.0906339
$$665$$ −0.0381275 0.0660387i −0.00147852 0.00256087i
$$666$$ 1.66012 + 2.87542i 0.0643285 + 0.111420i
$$667$$ 21.5379 37.3048i 0.833952 1.44445i
$$668$$ 2.99735 0.115971
$$669$$ 5.01963 8.69426i 0.194070 0.336139i
$$670$$ −1.29728 + 2.24695i −0.0501183 + 0.0868074i
$$671$$ −2.85818 −0.110339
$$672$$ −1.24399 + 2.15466i −0.0479880 + 0.0831177i
$$673$$ −6.77878 11.7412i −0.261303 0.452590i 0.705286 0.708923i $$-0.250819\pi$$
−0.966588 + 0.256334i $$0.917485\pi$$
$$674$$ 4.88782 + 8.46595i 0.188272 + 0.326096i
$$675$$ −1.00000 −0.0384900
$$676$$ −24.4117 2.05759i −0.938913 0.0791381i
$$677$$ 9.53793 0.366573 0.183286 0.983060i $$-0.441326\pi$$
0.183286 + 0.983060i $$0.441326\pi$$
$$678$$ 0.904114 + 1.56597i 0.0347223 + 0.0601408i
$$679$$ −3.26897 5.66202i −0.125451 0.217288i
$$680$$ −4.90411 + 8.49418i −0.188064 + 0.325737i
$$681$$ −1.21140 −0.0464210
$$682$$ −1.15212 + 1.99554i −0.0441171 + 0.0764131i
$$683$$ 22.2592 38.5540i 0.851723 1.47523i −0.0279296 0.999610i $$-0.508891\pi$$
0.879652 0.475617i $$-0.157775\pi$$
$$684$$ −0.217689 −0.00832353
$$685$$ −1.69491 + 2.93568i −0.0647594 + 0.112166i
$$686$$ −1.52164 2.63556i −0.0580965 0.100626i
$$687$$ 9.62200 + 16.6658i 0.367102 + 0.635839i
$$688$$ −1.80823 −0.0689381
$$689$$ 1.31357 2.06915i 0.0500432 0.0788282i
$$690$$ −2.64049 −0.100522
$$691$$ 2.64030 + 4.57313i 0.100442 + 0.173970i 0.911867 0.410486i $$-0.134641\pi$$
−0.811425 + 0.584457i $$0.801308\pi$$
$$692$$ 12.0130 + 20.8071i 0.456664 + 0.790966i
$$693$$ −0.224361 + 0.388604i −0.00852275 + 0.0147618i
$$694$$ −7.61192 −0.288945
$$695$$ −7.40411 + 12.8243i −0.280854 + 0.486454i
$$696$$ 3.66012 6.33952i 0.138737 0.240299i
$$697$$ 31.3832 1.18872
$$698$$ −2.03479 + 3.52436i −0.0770180 + 0.133399i
$$699$$ −11.9541 20.7051i −0.452144 0.783137i
$$700$$ 0.621996 + 1.07733i 0.0235092 + 0.0407192i
$$701$$ 20.1392 0.760646 0.380323 0.924854i $$-0.375813\pi$$
0.380323 + 0.924854i $$0.375813\pi$$
$$702$$ −1.22436 0.0515075i −0.0462105 0.00194403i
$$703$$ 1.12847 0.0425612
$$704$$ 1.82157 + 3.15506i 0.0686531 + 0.118911i
$$705$$ −2.50982 4.34713i −0.0945251 0.163722i
$$706$$ −2.89517 + 5.01459i −0.108961 + 0.188727i
$$707$$ −6.17843 −0.232364
$$708$$ −2.09589 + 3.63018i −0.0787682 + 0.136431i
$$709$$ −0.770294 + 1.33419i −0.0289290 + 0.0501065i −0.880127 0.474737i $$-0.842543\pi$$
0.851198 + 0.524844i $$0.175876\pi$$
$$710$$ −2.48571 −0.0932872
$$711$$ −4.98685 + 8.63748i −0.187021 + 0.323931i
$$712$$ −8.94111 15.4865i −0.335082 0.580379i
$$713$$ −38.7427 67.1043i −1.45092 2.51307i
$$714$$ 1.66680 0.0623782
$$715$$ −2.44872 0.103015i −0.0915770 0.00385254i
$$716$$ −33.4728 −1.25094
$$717$$ 9.33988 + 16.1771i 0.348804 + 0.604146i
$$718$$ −5.96187 10.3263i −0.222495 0.385373i
$$719$$ −18.5020 + 32.0464i −0.690009 + 1.19513i 0.281826 + 0.959466i $$0.409060\pi$$
−0.971835 + 0.235664i $$0.924273\pi$$
$$720$$ 3.32025 0.123738
$$721$$ −1.48704 + 2.57563i −0.0553803 + 0.0959215i
$$722$$ −3.22656 + 5.58857i −0.120080 + 0.207985i
$$723$$ −6.11552 −0.227438
$$724$$ 6.62048 11.4670i 0.246048 0.426168i
$$725$$ −2.77230 4.80177i −0.102961 0.178333i
$$726$$ 1.79080 + 3.10176i 0.0664628 + 0.115117i
$$727$$ −44.9015 −1.66530 −0.832652 0.553797i $$-0.813178\pi$$
−0.832652 + 0.553797i $$0.813178\pi$$
$$728$$ 1.45539 + 2.78497i 0.0539405 + 0.103218i
$$729$$ 1.00000 0.0370370
$$730$$ 1.36284 + 2.36051i 0.0504411 + 0.0873666i
$$731$$ 2.02297 + 3.50388i 0.0748221 + 0.129596i
$$732$$ 3.96187 6.86216i 0.146435 0.253633i
$$733$$ −4.94072 −0.182490 −0.0912449 0.995828i $$-0.529085\pi$$
−0.0912449 + 0.995828i $$0.529085\pi$$
$$734$$ 3.41280 5.91114i 0.125969 0.218184i
$$735$$ −3.28212 + 5.68480i −0.121063 + 0.209687i
$$736$$ 29.2810 1.07931
$$737$$ 2.59456 4.49391i 0.0955718 0.165535i
$$738$$ 0.717881 + 1.24341i 0.0264256 + 0.0457704i
$$739$$ −3.01963 5.23015i −0.111079 0.192394i 0.805127 0.593103i $$-0.202097\pi$$
−0.916206 + 0.400709i $$0.868764\pi$$
$$740$$ −18.4095 −0.676745
$$741$$ −0.223227 + 0.351628i −0.00820044 + 0.0129174i
$$742$$ −0.152510 −0.00559882
$$743$$ 6.52945 + 11.3093i 0.239542 + 0.414899i 0.960583 0.277993i $$-0.0896693\pi$$
−0.721041 + 0.692893i $$0.756336\pi$$
$$744$$ −6.58387 11.4036i −0.241376 0.418076i
$$745$$ 8.54461 14.7997i 0.313050 0.542219i
$$746$$ 7.97998 0.292168
$$747$$ −0.884484 + 1.53197i −0.0323616 + 0.0560519i
$$748$$ 4.75828 8.24158i 0.173980 0.301342i
$$749$$ 0.376871 0.0137706
$$750$$ −0.169938 + 0.294342i −0.00620527 + 0.0107479i
$$751$$ −24.0118 41.5897i −0.876204 1.51763i −0.855475 0.517845i $$-0.826735\pi$$
−0.0207292 0.999785i $$-0.506599\pi$$
$$752$$ 8.33320 + 14.4335i 0.303881 + 0.526337i
$$753$$ −3.35951 −0.122427
$$754$$ −3.14697 6.02189i −0.114606 0.219304i
$$755$$ 13.0130 0.473590
$$756$$ −0.621996 1.07733i −0.0226218 0.0391820i
$$757$$ 2.28212 + 3.95275i 0.0829450 + 0.143665i 0.904514 0.426445i $$-0.140234\pi$$
−0.821569 + 0.570110i $$0.806901\pi$$
$$758$$ 3.59274 6.22281i 0.130494 0.226023i
$$759$$ 5.28098 0.191688
$$760$$ −0.0762550 + 0.132077i −0.00276606 + 0.00479095i
$$761$$ −10.5446 + 18.2638i −0.382242 + 0.662062i −0.991382 0.131000i $$-0.958181\pi$$
0.609141 + 0.793062i $$0.291514\pi$$
$$762$$ −4.08519 −0.147991
$$763$$ −5.08607 + 8.80933i −0.184128 + 0.318919i
$$764$$ −13.1481 22.7732i −0.475682 0.823905i
$$765$$ −3.71455 6.43378i −0.134300 0.232614i
$$766$$ −0.590926 −0.0213510
$$767$$ 3.71455 + 7.10797i 0.134124 + 0.256654i
$$768$$ −7.53793 −0.272002
$$769$$ −21.1666 36.6616i −0.763287 1.32205i −0.941147 0.337996i $$-0.890251\pi$$
0.177860 0.984056i $$-0.443083\pi$$
$$770$$ 0.0762550 + 0.132077i 0.00274804 +