Properties

Label 195.2.c
Level $195$
Weight $2$
Character orbit 195.c
Rep. character $\chi_{195}(79,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $2$
Sturm bound $56$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(56\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(195, [\chi])\).

Total New Old
Modular forms 32 12 20
Cusp forms 24 12 12
Eisenstein series 8 0 8

Trace form

\( 12 q - 8 q^{4} - 4 q^{5} - 12 q^{9} + 4 q^{10} + 8 q^{11} - 24 q^{14} - 4 q^{15} + 8 q^{16} - 8 q^{19} + 28 q^{20} + 8 q^{21} + 4 q^{25} + 4 q^{30} + 16 q^{31} - 40 q^{34} + 8 q^{35} + 8 q^{36} - 8 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(195, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
195.2.c.a 195.c 5.b $2$ $1.557$ \(\Q(\sqrt{-1}) \) None 195.2.c.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 q^{4}+(2 i-1)q^{5}+i q^{7}+\cdots\)
195.2.c.b 195.c 5.b $10$ $1.557$ 10.0.\(\cdots\).1 None 195.2.c.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{3}+(-1-\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(195, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(195, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)