Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [195,2,Mod(94,195)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(195, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("195.94");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.ba (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.55708283941\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
94.1 | −2.01317 | + | 1.16230i | 0.866025 | − | 0.500000i | 1.70191 | − | 2.94779i | −0.174568 | + | 2.22924i | −1.16230 | + | 2.01317i | −0.473110 | − | 0.273150i | 3.26331i | 0.500000 | − | 0.866025i | −2.23963 | − | 4.69075i | ||
94.2 | −1.85914 | + | 1.07337i | −0.866025 | + | 0.500000i | 1.30426 | − | 2.25904i | −2.16557 | + | 0.557052i | 1.07337 | − | 1.85914i | −0.635729 | − | 0.367038i | 1.30633i | 0.500000 | − | 0.866025i | 3.42817 | − | 3.36010i | ||
94.3 | −1.52669 | + | 0.881436i | −0.866025 | + | 0.500000i | 0.553860 | − | 0.959313i | 1.52636 | − | 1.63408i | 0.881436 | − | 1.52669i | 1.92736 | + | 1.11276i | − | 1.57298i | 0.500000 | − | 0.866025i | −0.889946 | + | 3.84013i | |
94.4 | −1.16430 | + | 0.672211i | 0.866025 | − | 0.500000i | −0.0962645 | + | 0.166735i | −0.868136 | − | 2.06066i | −0.672211 | + | 1.16430i | −3.39681 | − | 1.96115i | − | 2.94768i | 0.500000 | − | 0.866025i | 2.39598 | + | 1.81567i | |
94.5 | −0.729738 | + | 0.421315i | 0.866025 | − | 0.500000i | −0.644988 | + | 1.11715i | 2.23540 | − | 0.0545741i | −0.421315 | + | 0.729738i | 0.347589 | + | 0.200681i | − | 2.77223i | 0.500000 | − | 0.866025i | −1.60827 | + | 0.981632i | |
94.6 | −0.521384 | + | 0.301021i | −0.866025 | + | 0.500000i | −0.818772 | + | 1.41816i | 0.446511 | + | 2.19103i | 0.301021 | − | 0.521384i | −3.08191 | − | 1.77934i | − | 2.18996i | 0.500000 | − | 0.866025i | −0.892352 | − | 1.00796i | |
94.7 | 0.521384 | − | 0.301021i | 0.866025 | − | 0.500000i | −0.818772 | + | 1.41816i | 0.446511 | − | 2.19103i | 0.301021 | − | 0.521384i | 3.08191 | + | 1.77934i | 2.18996i | 0.500000 | − | 0.866025i | −0.426744 | − | 1.27678i | ||
94.8 | 0.729738 | − | 0.421315i | −0.866025 | + | 0.500000i | −0.644988 | + | 1.11715i | 2.23540 | + | 0.0545741i | −0.421315 | + | 0.729738i | −0.347589 | − | 0.200681i | 2.77223i | 0.500000 | − | 0.866025i | 1.65425 | − | 0.901983i | ||
94.9 | 1.16430 | − | 0.672211i | −0.866025 | + | 0.500000i | −0.0962645 | + | 0.166735i | −0.868136 | + | 2.06066i | −0.672211 | + | 1.16430i | 3.39681 | + | 1.96115i | 2.94768i | 0.500000 | − | 0.866025i | 0.374428 | + | 2.98281i | ||
94.10 | 1.52669 | − | 0.881436i | 0.866025 | − | 0.500000i | 0.553860 | − | 0.959313i | 1.52636 | + | 1.63408i | 0.881436 | − | 1.52669i | −1.92736 | − | 1.11276i | 1.57298i | 0.500000 | − | 0.866025i | 3.77062 | + | 1.14935i | ||
94.11 | 1.85914 | − | 1.07337i | 0.866025 | − | 0.500000i | 1.30426 | − | 2.25904i | −2.16557 | − | 0.557052i | 1.07337 | − | 1.85914i | 0.635729 | + | 0.367038i | − | 1.30633i | 0.500000 | − | 0.866025i | −4.62401 | + | 1.28883i | |
94.12 | 2.01317 | − | 1.16230i | −0.866025 | + | 0.500000i | 1.70191 | − | 2.94779i | −0.174568 | − | 2.22924i | −1.16230 | + | 2.01317i | 0.473110 | + | 0.273150i | − | 3.26331i | 0.500000 | − | 0.866025i | −2.94250 | − | 4.28495i | |
139.1 | −2.01317 | − | 1.16230i | 0.866025 | + | 0.500000i | 1.70191 | + | 2.94779i | −0.174568 | − | 2.22924i | −1.16230 | − | 2.01317i | −0.473110 | + | 0.273150i | − | 3.26331i | 0.500000 | + | 0.866025i | −2.23963 | + | 4.69075i | |
139.2 | −1.85914 | − | 1.07337i | −0.866025 | − | 0.500000i | 1.30426 | + | 2.25904i | −2.16557 | − | 0.557052i | 1.07337 | + | 1.85914i | −0.635729 | + | 0.367038i | − | 1.30633i | 0.500000 | + | 0.866025i | 3.42817 | + | 3.36010i | |
139.3 | −1.52669 | − | 0.881436i | −0.866025 | − | 0.500000i | 0.553860 | + | 0.959313i | 1.52636 | + | 1.63408i | 0.881436 | + | 1.52669i | 1.92736 | − | 1.11276i | 1.57298i | 0.500000 | + | 0.866025i | −0.889946 | − | 3.84013i | ||
139.4 | −1.16430 | − | 0.672211i | 0.866025 | + | 0.500000i | −0.0962645 | − | 0.166735i | −0.868136 | + | 2.06066i | −0.672211 | − | 1.16430i | −3.39681 | + | 1.96115i | 2.94768i | 0.500000 | + | 0.866025i | 2.39598 | − | 1.81567i | ||
139.5 | −0.729738 | − | 0.421315i | 0.866025 | + | 0.500000i | −0.644988 | − | 1.11715i | 2.23540 | + | 0.0545741i | −0.421315 | − | 0.729738i | 0.347589 | − | 0.200681i | 2.77223i | 0.500000 | + | 0.866025i | −1.60827 | − | 0.981632i | ||
139.6 | −0.521384 | − | 0.301021i | −0.866025 | − | 0.500000i | −0.818772 | − | 1.41816i | 0.446511 | − | 2.19103i | 0.301021 | + | 0.521384i | −3.08191 | + | 1.77934i | 2.18996i | 0.500000 | + | 0.866025i | −0.892352 | + | 1.00796i | ||
139.7 | 0.521384 | + | 0.301021i | 0.866025 | + | 0.500000i | −0.818772 | − | 1.41816i | 0.446511 | + | 2.19103i | 0.301021 | + | 0.521384i | 3.08191 | − | 1.77934i | − | 2.18996i | 0.500000 | + | 0.866025i | −0.426744 | + | 1.27678i | |
139.8 | 0.729738 | + | 0.421315i | −0.866025 | − | 0.500000i | −0.644988 | − | 1.11715i | 2.23540 | − | 0.0545741i | −0.421315 | − | 0.729738i | −0.347589 | + | 0.200681i | − | 2.77223i | 0.500000 | + | 0.866025i | 1.65425 | + | 0.901983i | |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
65.n | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 195.2.ba.a | ✓ | 24 |
3.b | odd | 2 | 1 | 585.2.bs.b | 24 | ||
5.b | even | 2 | 1 | inner | 195.2.ba.a | ✓ | 24 |
5.c | odd | 4 | 1 | 975.2.i.o | 12 | ||
5.c | odd | 4 | 1 | 975.2.i.q | 12 | ||
13.c | even | 3 | 1 | inner | 195.2.ba.a | ✓ | 24 |
15.d | odd | 2 | 1 | 585.2.bs.b | 24 | ||
39.i | odd | 6 | 1 | 585.2.bs.b | 24 | ||
65.n | even | 6 | 1 | inner | 195.2.ba.a | ✓ | 24 |
65.q | odd | 12 | 1 | 975.2.i.o | 12 | ||
65.q | odd | 12 | 1 | 975.2.i.q | 12 | ||
195.x | odd | 6 | 1 | 585.2.bs.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.2.ba.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
195.2.ba.a | ✓ | 24 | 5.b | even | 2 | 1 | inner |
195.2.ba.a | ✓ | 24 | 13.c | even | 3 | 1 | inner |
195.2.ba.a | ✓ | 24 | 65.n | even | 6 | 1 | inner |
585.2.bs.b | 24 | 3.b | odd | 2 | 1 | ||
585.2.bs.b | 24 | 15.d | odd | 2 | 1 | ||
585.2.bs.b | 24 | 39.i | odd | 6 | 1 | ||
585.2.bs.b | 24 | 195.x | odd | 6 | 1 | ||
975.2.i.o | 12 | 5.c | odd | 4 | 1 | ||
975.2.i.o | 12 | 65.q | odd | 12 | 1 | ||
975.2.i.q | 12 | 5.c | odd | 4 | 1 | ||
975.2.i.q | 12 | 65.q | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(195, [\chi])\).