Properties

Label 195.2.b
Level $195$
Weight $2$
Character orbit 195.b
Rep. character $\chi_{195}(181,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $3$
Sturm bound $56$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(56\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(195, [\chi])\).

Total New Old
Modular forms 32 8 24
Cusp forms 24 8 16
Eisenstein series 8 0 8

Trace form

\( 8 q + 4 q^{3} - 4 q^{4} + 8 q^{9} - 4 q^{10} - 12 q^{12} + 4 q^{13} - 16 q^{14} + 12 q^{16} + 24 q^{22} - 8 q^{23} - 8 q^{25} - 16 q^{26} + 4 q^{27} - 8 q^{29} - 4 q^{30} - 8 q^{35} - 4 q^{36} + 24 q^{38}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(195, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
195.2.b.a 195.b 13.b $2$ $1.557$ \(\Q(\sqrt{-1}) \) None 195.2.b.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+2 q^{4}+i q^{5}+3 i q^{7}+q^{9}+\cdots\)
195.2.b.b 195.b 13.b $2$ $1.557$ \(\Q(\sqrt{-1}) \) None 195.2.b.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{3}+q^{4}+i q^{5}+i q^{6}+\cdots\)
195.2.b.c 195.b 13.b $4$ $1.557$ \(\Q(i, \sqrt{17})\) None 195.2.b.c \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-3+\beta _{3})q^{4}-\beta _{2}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(195, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(195, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)