Properties

Label 195.2.a.e
Level $195$
Weight $2$
Character orbit 195.a
Self dual yes
Analytic conductor $1.557$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,2,Mod(1,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 3) q^{4} - q^{5} + \beta_1 q^{6} - \beta_{2} q^{7} + ( - 3 \beta_1 + 2) q^{8} + q^{9} + \beta_1 q^{10} - \beta_{2} q^{11} + ( - \beta_{2} - 3) q^{12} + q^{13}+ \cdots - \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 8 q^{4} - 3 q^{5} + q^{7} + 6 q^{8} + 3 q^{9} + q^{11} - 8 q^{12} + 3 q^{13} - 6 q^{14} + 3 q^{15} + 26 q^{16} - q^{17} + 6 q^{19} - 8 q^{20} - q^{21} - 6 q^{22} - 7 q^{23} - 6 q^{24}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.34292
−1.81361
0.470683
−2.48929 −1.00000 4.19656 −1.00000 2.48929 −1.19656 −5.46787 1.00000 2.48929
1.2 −0.289169 −1.00000 −1.91638 −1.00000 0.289169 4.91638 1.13249 1.00000 0.289169
1.3 2.77846 −1.00000 5.71982 −1.00000 −2.77846 −2.71982 10.3354 1.00000 −2.77846
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 195.2.a.e 3
3.b odd 2 1 585.2.a.n 3
4.b odd 2 1 3120.2.a.bj 3
5.b even 2 1 975.2.a.o 3
5.c odd 4 2 975.2.c.i 6
7.b odd 2 1 9555.2.a.bq 3
12.b even 2 1 9360.2.a.dd 3
13.b even 2 1 2535.2.a.bc 3
15.d odd 2 1 2925.2.a.bh 3
15.e even 4 2 2925.2.c.w 6
39.d odd 2 1 7605.2.a.bx 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.a.e 3 1.a even 1 1 trivial
585.2.a.n 3 3.b odd 2 1
975.2.a.o 3 5.b even 2 1
975.2.c.i 6 5.c odd 4 2
2535.2.a.bc 3 13.b even 2 1
2925.2.a.bh 3 15.d odd 2 1
2925.2.c.w 6 15.e even 4 2
3120.2.a.bj 3 4.b odd 2 1
7605.2.a.bx 3 39.d odd 2 1
9360.2.a.dd 3 12.b even 2 1
9555.2.a.bq 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(195))\):

\( T_{2}^{3} - 7T_{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{3} - T_{7}^{2} - 16T_{7} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 7T - 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - T^{2} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} + \cdots - 16 \) Copy content Toggle raw display
$13$ \( (T - 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + T^{2} + \cdots - 76 \) Copy content Toggle raw display
$19$ \( T^{3} - 6 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( T^{3} + 7 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$29$ \( (T - 6)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 6 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$37$ \( T^{3} - 13T^{2} + 316 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} + \cdots + 76 \) Copy content Toggle raw display
$43$ \( T^{3} - 112T - 128 \) Copy content Toggle raw display
$47$ \( T^{3} + 18 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$53$ \( T^{3} - 11 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$59$ \( T^{3} + 8 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$61$ \( T^{3} - 9 T^{2} + \cdots + 844 \) Copy content Toggle raw display
$67$ \( T^{3} - 4 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$71$ \( T^{3} + 11 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$73$ \( T^{3} + 6 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$79$ \( T^{3} - 5 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$83$ \( T^{3} - 8 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$89$ \( T^{3} - 11 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$97$ \( T^{3} + 25 T^{2} + \cdots + 244 \) Copy content Toggle raw display
show more
show less