Defining parameters
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(195))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 7 | 25 |
Cusp forms | 25 | 7 | 18 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(-\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
Plus space | \(+\) | \(0\) | ||
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(195))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | 13 | |||||||
195.2.a.a | $1$ | $1.557$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}-q^{4}+q^{5}-q^{6}+3q^{8}+\cdots\) | |
195.2.a.b | $1$ | $1.557$ | \(\Q\) | None | \(2\) | \(-1\) | \(1\) | \(3\) | $+$ | $-$ | $+$ | \(q+2q^{2}-q^{3}+2q^{4}+q^{5}-2q^{6}+3q^{7}+\cdots\) | |
195.2.a.c | $1$ | $1.557$ | \(\Q\) | None | \(2\) | \(1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | \(q+2q^{2}+q^{3}+2q^{4}-q^{5}+2q^{6}-q^{7}+\cdots\) | |
195.2.a.d | $1$ | $1.557$ | \(\Q\) | None | \(2\) | \(1\) | \(1\) | \(-3\) | $-$ | $-$ | $-$ | \(q+2q^{2}+q^{3}+2q^{4}+q^{5}+2q^{6}-3q^{7}+\cdots\) | |
195.2.a.e | $3$ | $1.557$ | 3.3.316.1 | None | \(0\) | \(-3\) | \(-3\) | \(1\) | $+$ | $+$ | $-$ | \(q-\beta _{1}q^{2}-q^{3}+(3+\beta _{2})q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(195))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(195)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 2}\)