Properties

Label 195.1.e.a
Level $195$
Weight $1$
Character orbit 195.e
Analytic conductor $0.097$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,1,Mod(194,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.194"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 195.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.0973176774634\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.12675.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{8}^{3} - \zeta_{8}) q^{2} + \zeta_{8}^{2} q^{3} - q^{4} + \zeta_{8} q^{5} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{6} - q^{9} + ( - \zeta_{8}^{2} + 1) q^{10} + (\zeta_{8}^{3} - \zeta_{8}) q^{11}+ \cdots + ( - \zeta_{8}^{3} + \zeta_{8}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{9} + 4 q^{10} - 4 q^{16} + 4 q^{30} + 4 q^{36} + 4 q^{39} - 4 q^{49} - 4 q^{55} + 4 q^{64} - 8 q^{66} - 4 q^{75} + 4 q^{81} - 4 q^{90} + 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
194.1
−0.707107 + 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
1.41421i 1.00000i −1.00000 −0.707107 + 0.707107i −1.41421 0 0 −1.00000 1.00000 + 1.00000i
194.2 1.41421i 1.00000i −1.00000 0.707107 + 0.707107i 1.41421 0 0 −1.00000 1.00000 1.00000i
194.3 1.41421i 1.00000i −1.00000 0.707107 0.707107i 1.41421 0 0 −1.00000 1.00000 + 1.00000i
194.4 1.41421i 1.00000i −1.00000 −0.707107 0.707107i −1.41421 0 0 −1.00000 1.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
39.d odd 2 1 CM by \(\Q(\sqrt{-39}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
13.b even 2 1 inner
15.d odd 2 1 inner
65.d even 2 1 inner
195.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 195.1.e.a 4
3.b odd 2 1 inner 195.1.e.a 4
4.b odd 2 1 3120.1.be.e 4
5.b even 2 1 inner 195.1.e.a 4
5.c odd 4 1 975.1.g.b 2
5.c odd 4 1 975.1.g.c 2
12.b even 2 1 3120.1.be.e 4
13.b even 2 1 inner 195.1.e.a 4
13.c even 3 2 2535.1.y.a 8
13.d odd 4 2 2535.1.f.e 4
13.e even 6 2 2535.1.y.a 8
13.f odd 12 4 2535.1.x.e 8
15.d odd 2 1 inner 195.1.e.a 4
15.e even 4 1 975.1.g.b 2
15.e even 4 1 975.1.g.c 2
20.d odd 2 1 3120.1.be.e 4
39.d odd 2 1 CM 195.1.e.a 4
39.f even 4 2 2535.1.f.e 4
39.h odd 6 2 2535.1.y.a 8
39.i odd 6 2 2535.1.y.a 8
39.k even 12 4 2535.1.x.e 8
52.b odd 2 1 3120.1.be.e 4
60.h even 2 1 3120.1.be.e 4
65.d even 2 1 inner 195.1.e.a 4
65.g odd 4 2 2535.1.f.e 4
65.h odd 4 1 975.1.g.b 2
65.h odd 4 1 975.1.g.c 2
65.l even 6 2 2535.1.y.a 8
65.n even 6 2 2535.1.y.a 8
65.s odd 12 4 2535.1.x.e 8
156.h even 2 1 3120.1.be.e 4
195.e odd 2 1 inner 195.1.e.a 4
195.n even 4 2 2535.1.f.e 4
195.s even 4 1 975.1.g.b 2
195.s even 4 1 975.1.g.c 2
195.x odd 6 2 2535.1.y.a 8
195.y odd 6 2 2535.1.y.a 8
195.bh even 12 4 2535.1.x.e 8
260.g odd 2 1 3120.1.be.e 4
780.d even 2 1 3120.1.be.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.1.e.a 4 1.a even 1 1 trivial
195.1.e.a 4 3.b odd 2 1 inner
195.1.e.a 4 5.b even 2 1 inner
195.1.e.a 4 13.b even 2 1 inner
195.1.e.a 4 15.d odd 2 1 inner
195.1.e.a 4 39.d odd 2 1 CM
195.1.e.a 4 65.d even 2 1 inner
195.1.e.a 4 195.e odd 2 1 inner
975.1.g.b 2 5.c odd 4 1
975.1.g.b 2 15.e even 4 1
975.1.g.b 2 65.h odd 4 1
975.1.g.b 2 195.s even 4 1
975.1.g.c 2 5.c odd 4 1
975.1.g.c 2 15.e even 4 1
975.1.g.c 2 65.h odd 4 1
975.1.g.c 2 195.s even 4 1
2535.1.f.e 4 13.d odd 4 2
2535.1.f.e 4 39.f even 4 2
2535.1.f.e 4 65.g odd 4 2
2535.1.f.e 4 195.n even 4 2
2535.1.x.e 8 13.f odd 12 4
2535.1.x.e 8 39.k even 12 4
2535.1.x.e 8 65.s odd 12 4
2535.1.x.e 8 195.bh even 12 4
2535.1.y.a 8 13.c even 3 2
2535.1.y.a 8 13.e even 6 2
2535.1.y.a 8 39.h odd 6 2
2535.1.y.a 8 39.i odd 6 2
2535.1.y.a 8 65.l even 6 2
2535.1.y.a 8 65.n even 6 2
2535.1.y.a 8 195.x odd 6 2
2535.1.y.a 8 195.y odd 6 2
3120.1.be.e 4 4.b odd 2 1
3120.1.be.e 4 12.b even 2 1
3120.1.be.e 4 20.d odd 2 1
3120.1.be.e 4 52.b odd 2 1
3120.1.be.e 4 60.h even 2 1
3120.1.be.e 4 156.h even 2 1
3120.1.be.e 4 260.g odd 2 1
3120.1.be.e 4 780.d even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(195, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less