Defining parameters
Level: | \( N \) | \(=\) | \( 1944 = 2^{3} \cdot 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1944.r (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 216 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1944, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 162 | 72 | 90 |
Cusp forms | 54 | 24 | 30 |
Eisenstein series | 108 | 48 | 60 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 24 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1944, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1944.1.r.a | $6$ | $0.970$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{18}^{4}q^{2}+\zeta_{18}^{8}q^{4}-\zeta_{18}^{3}q^{8}+\cdots\) |
1944.1.r.b | $6$ | $0.970$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{18}^{4}q^{2}+\zeta_{18}^{8}q^{4}-\zeta_{18}^{3}q^{8}+\cdots\) |
1944.1.r.c | $6$ | $0.970$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{18}^{4}q^{2}+\zeta_{18}^{8}q^{4}+\zeta_{18}^{3}q^{8}+\cdots\) |
1944.1.r.d | $6$ | $0.970$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{18}^{4}q^{2}+\zeta_{18}^{8}q^{4}+\zeta_{18}^{3}q^{8}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1944, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1944, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(648, [\chi])\)\(^{\oplus 2}\)