Properties

Label 1944.1.m
Level $1944$
Weight $1$
Character orbit 1944.m
Rep. character $\chi_{1944}(161,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $324$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1944 = 2^{3} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1944.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(324\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1944, [\chi])\).

Total New Old
Modular forms 100 4 96
Cusp forms 28 4 24
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4 q - 2 q^{13} - 4 q^{19} + 2 q^{25} + 2 q^{31} - 2 q^{43} + 2 q^{49} - 8 q^{55} - 2 q^{61} + 2 q^{67} + 4 q^{73} - 2 q^{79} - 4 q^{85} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1944, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1944.1.m.a 1944.m 9.d $4$ $0.970$ \(\Q(\sqrt{-2}, \sqrt{-3})\) $S_{4}$ None None 1944.1.e.a \(0\) \(0\) \(0\) \(0\) \(q+(\beta _{1}-\beta _{3})q^{5}-\beta _{1}q^{11}-\beta _{2}q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1944, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1944, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(972, [\chi])\)\(^{\oplus 2}\)