Properties

Label 1936.4.a.z.1.1
Level $1936$
Weight $4$
Character 1936.1
Self dual yes
Analytic conductor $114.228$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1936,4,Mod(1,1936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1936.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,8,0,-10,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 121)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.535898 q^{3} -1.53590 q^{5} +28.2487 q^{7} -26.7128 q^{9} +68.4641 q^{13} -0.823085 q^{15} +55.3538 q^{17} +55.1769 q^{19} +15.1384 q^{21} +178.315 q^{23} -122.641 q^{25} -28.7846 q^{27} +113.172 q^{29} -70.8128 q^{31} -43.3872 q^{35} -210.664 q^{37} +36.6898 q^{39} +191.928 q^{41} +208.210 q^{43} +41.0282 q^{45} -512.515 q^{47} +454.990 q^{49} +29.6640 q^{51} -375.449 q^{53} +29.5692 q^{57} +506.508 q^{59} -468.697 q^{61} -754.603 q^{63} -105.154 q^{65} +289.895 q^{67} +95.5589 q^{69} +394.010 q^{71} +289.538 q^{73} -65.7231 q^{75} +169.587 q^{79} +705.820 q^{81} +303.331 q^{83} -85.0179 q^{85} +60.6486 q^{87} -1146.68 q^{89} +1934.02 q^{91} -37.9485 q^{93} -84.7461 q^{95} +641.600 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{3} - 10 q^{5} + 8 q^{7} + 2 q^{9} + 130 q^{13} - 64 q^{15} - 14 q^{17} + 48 q^{19} - 136 q^{21} + 128 q^{23} - 176 q^{25} - 16 q^{27} - 30 q^{29} + 184 q^{31} + 128 q^{35} + 126 q^{37} + 496 q^{39}+ \cdots - 338 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.535898 0.103134 0.0515668 0.998670i \(-0.483578\pi\)
0.0515668 + 0.998670i \(0.483578\pi\)
\(4\) 0 0
\(5\) −1.53590 −0.137375 −0.0686875 0.997638i \(-0.521881\pi\)
−0.0686875 + 0.997638i \(0.521881\pi\)
\(6\) 0 0
\(7\) 28.2487 1.52529 0.762644 0.646819i \(-0.223901\pi\)
0.762644 + 0.646819i \(0.223901\pi\)
\(8\) 0 0
\(9\) −26.7128 −0.989363
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 68.4641 1.46066 0.730328 0.683097i \(-0.239367\pi\)
0.730328 + 0.683097i \(0.239367\pi\)
\(14\) 0 0
\(15\) −0.823085 −0.0141680
\(16\) 0 0
\(17\) 55.3538 0.789722 0.394861 0.918741i \(-0.370793\pi\)
0.394861 + 0.918741i \(0.370793\pi\)
\(18\) 0 0
\(19\) 55.1769 0.666234 0.333117 0.942885i \(-0.391900\pi\)
0.333117 + 0.942885i \(0.391900\pi\)
\(20\) 0 0
\(21\) 15.1384 0.157308
\(22\) 0 0
\(23\) 178.315 1.61658 0.808290 0.588785i \(-0.200394\pi\)
0.808290 + 0.588785i \(0.200394\pi\)
\(24\) 0 0
\(25\) −122.641 −0.981128
\(26\) 0 0
\(27\) −28.7846 −0.205170
\(28\) 0 0
\(29\) 113.172 0.724671 0.362336 0.932048i \(-0.381979\pi\)
0.362336 + 0.932048i \(0.381979\pi\)
\(30\) 0 0
\(31\) −70.8128 −0.410269 −0.205135 0.978734i \(-0.565763\pi\)
−0.205135 + 0.978734i \(0.565763\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −43.3872 −0.209536
\(36\) 0 0
\(37\) −210.664 −0.936026 −0.468013 0.883722i \(-0.655030\pi\)
−0.468013 + 0.883722i \(0.655030\pi\)
\(38\) 0 0
\(39\) 36.6898 0.150643
\(40\) 0 0
\(41\) 191.928 0.731077 0.365538 0.930796i \(-0.380885\pi\)
0.365538 + 0.930796i \(0.380885\pi\)
\(42\) 0 0
\(43\) 208.210 0.738413 0.369207 0.929347i \(-0.379629\pi\)
0.369207 + 0.929347i \(0.379629\pi\)
\(44\) 0 0
\(45\) 41.0282 0.135914
\(46\) 0 0
\(47\) −512.515 −1.59060 −0.795298 0.606218i \(-0.792686\pi\)
−0.795298 + 0.606218i \(0.792686\pi\)
\(48\) 0 0
\(49\) 454.990 1.32650
\(50\) 0 0
\(51\) 29.6640 0.0814470
\(52\) 0 0
\(53\) −375.449 −0.973054 −0.486527 0.873666i \(-0.661736\pi\)
−0.486527 + 0.873666i \(0.661736\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 29.5692 0.0687112
\(58\) 0 0
\(59\) 506.508 1.11766 0.558828 0.829284i \(-0.311251\pi\)
0.558828 + 0.829284i \(0.311251\pi\)
\(60\) 0 0
\(61\) −468.697 −0.983779 −0.491890 0.870658i \(-0.663694\pi\)
−0.491890 + 0.870658i \(0.663694\pi\)
\(62\) 0 0
\(63\) −754.603 −1.50906
\(64\) 0 0
\(65\) −105.154 −0.200657
\(66\) 0 0
\(67\) 289.895 0.528601 0.264301 0.964440i \(-0.414859\pi\)
0.264301 + 0.964440i \(0.414859\pi\)
\(68\) 0 0
\(69\) 95.5589 0.166724
\(70\) 0 0
\(71\) 394.010 0.658597 0.329299 0.944226i \(-0.393188\pi\)
0.329299 + 0.944226i \(0.393188\pi\)
\(72\) 0 0
\(73\) 289.538 0.464218 0.232109 0.972690i \(-0.425437\pi\)
0.232109 + 0.972690i \(0.425437\pi\)
\(74\) 0 0
\(75\) −65.7231 −0.101187
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 169.587 0.241519 0.120760 0.992682i \(-0.461467\pi\)
0.120760 + 0.992682i \(0.461467\pi\)
\(80\) 0 0
\(81\) 705.820 0.968203
\(82\) 0 0
\(83\) 303.331 0.401143 0.200572 0.979679i \(-0.435720\pi\)
0.200572 + 0.979679i \(0.435720\pi\)
\(84\) 0 0
\(85\) −85.0179 −0.108488
\(86\) 0 0
\(87\) 60.6486 0.0747380
\(88\) 0 0
\(89\) −1146.68 −1.36571 −0.682854 0.730555i \(-0.739262\pi\)
−0.682854 + 0.730555i \(0.739262\pi\)
\(90\) 0 0
\(91\) 1934.02 2.22792
\(92\) 0 0
\(93\) −37.9485 −0.0423126
\(94\) 0 0
\(95\) −84.7461 −0.0915239
\(96\) 0 0
\(97\) 641.600 0.671594 0.335797 0.941934i \(-0.390994\pi\)
0.335797 + 0.941934i \(0.390994\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1107.57 1.09116 0.545580 0.838058i \(-0.316309\pi\)
0.545580 + 0.838058i \(0.316309\pi\)
\(102\) 0 0
\(103\) 298.297 0.285360 0.142680 0.989769i \(-0.454428\pi\)
0.142680 + 0.989769i \(0.454428\pi\)
\(104\) 0 0
\(105\) −23.2511 −0.0216102
\(106\) 0 0
\(107\) 598.126 0.540402 0.270201 0.962804i \(-0.412910\pi\)
0.270201 + 0.962804i \(0.412910\pi\)
\(108\) 0 0
\(109\) −1530.16 −1.34461 −0.672305 0.740275i \(-0.734695\pi\)
−0.672305 + 0.740275i \(0.734695\pi\)
\(110\) 0 0
\(111\) −112.895 −0.0965358
\(112\) 0 0
\(113\) −151.010 −0.125716 −0.0628578 0.998022i \(-0.520021\pi\)
−0.0628578 + 0.998022i \(0.520021\pi\)
\(114\) 0 0
\(115\) −273.874 −0.222077
\(116\) 0 0
\(117\) −1828.87 −1.44512
\(118\) 0 0
\(119\) 1563.67 1.20455
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 102.854 0.0753987
\(124\) 0 0
\(125\) 380.351 0.272157
\(126\) 0 0
\(127\) 695.749 0.486124 0.243062 0.970011i \(-0.421848\pi\)
0.243062 + 0.970011i \(0.421848\pi\)
\(128\) 0 0
\(129\) 111.580 0.0761553
\(130\) 0 0
\(131\) −1665.68 −1.11093 −0.555463 0.831541i \(-0.687459\pi\)
−0.555463 + 0.831541i \(0.687459\pi\)
\(132\) 0 0
\(133\) 1558.68 1.01620
\(134\) 0 0
\(135\) 44.2102 0.0281853
\(136\) 0 0
\(137\) −1605.48 −1.00121 −0.500603 0.865677i \(-0.666888\pi\)
−0.500603 + 0.865677i \(0.666888\pi\)
\(138\) 0 0
\(139\) 1069.30 0.652495 0.326248 0.945284i \(-0.394216\pi\)
0.326248 + 0.945284i \(0.394216\pi\)
\(140\) 0 0
\(141\) −274.656 −0.164044
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −173.820 −0.0995517
\(146\) 0 0
\(147\) 243.828 0.136807
\(148\) 0 0
\(149\) −355.172 −0.195281 −0.0976403 0.995222i \(-0.531129\pi\)
−0.0976403 + 0.995222i \(0.531129\pi\)
\(150\) 0 0
\(151\) −1879.55 −1.01295 −0.506476 0.862254i \(-0.669052\pi\)
−0.506476 + 0.862254i \(0.669052\pi\)
\(152\) 0 0
\(153\) −1478.66 −0.781322
\(154\) 0 0
\(155\) 108.761 0.0563607
\(156\) 0 0
\(157\) 2499.99 1.27083 0.635417 0.772169i \(-0.280828\pi\)
0.635417 + 0.772169i \(0.280828\pi\)
\(158\) 0 0
\(159\) −201.202 −0.100355
\(160\) 0 0
\(161\) 5037.18 2.46575
\(162\) 0 0
\(163\) −1863.02 −0.895235 −0.447617 0.894225i \(-0.647727\pi\)
−0.447617 + 0.894225i \(0.647727\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2647.27 1.22666 0.613328 0.789828i \(-0.289830\pi\)
0.613328 + 0.789828i \(0.289830\pi\)
\(168\) 0 0
\(169\) 2490.33 1.13352
\(170\) 0 0
\(171\) −1473.93 −0.659148
\(172\) 0 0
\(173\) −2109.38 −0.927015 −0.463507 0.886093i \(-0.653409\pi\)
−0.463507 + 0.886093i \(0.653409\pi\)
\(174\) 0 0
\(175\) −3464.45 −1.49650
\(176\) 0 0
\(177\) 271.437 0.115268
\(178\) 0 0
\(179\) −1391.25 −0.580931 −0.290465 0.956886i \(-0.593810\pi\)
−0.290465 + 0.956886i \(0.593810\pi\)
\(180\) 0 0
\(181\) 3701.40 1.52002 0.760008 0.649913i \(-0.225195\pi\)
0.760008 + 0.649913i \(0.225195\pi\)
\(182\) 0 0
\(183\) −251.174 −0.101461
\(184\) 0 0
\(185\) 323.559 0.128586
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −813.128 −0.312944
\(190\) 0 0
\(191\) 3533.03 1.33844 0.669218 0.743066i \(-0.266629\pi\)
0.669218 + 0.743066i \(0.266629\pi\)
\(192\) 0 0
\(193\) 2605.66 0.971811 0.485906 0.874011i \(-0.338490\pi\)
0.485906 + 0.874011i \(0.338490\pi\)
\(194\) 0 0
\(195\) −56.3518 −0.0206945
\(196\) 0 0
\(197\) −719.202 −0.260107 −0.130053 0.991507i \(-0.541515\pi\)
−0.130053 + 0.991507i \(0.541515\pi\)
\(198\) 0 0
\(199\) −1035.15 −0.368744 −0.184372 0.982857i \(-0.559025\pi\)
−0.184372 + 0.982857i \(0.559025\pi\)
\(200\) 0 0
\(201\) 155.354 0.0545166
\(202\) 0 0
\(203\) 3196.96 1.10533
\(204\) 0 0
\(205\) −294.782 −0.100432
\(206\) 0 0
\(207\) −4763.30 −1.59938
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −356.297 −0.116249 −0.0581244 0.998309i \(-0.518512\pi\)
−0.0581244 + 0.998309i \(0.518512\pi\)
\(212\) 0 0
\(213\) 211.149 0.0679236
\(214\) 0 0
\(215\) −319.790 −0.101439
\(216\) 0 0
\(217\) −2000.37 −0.625779
\(218\) 0 0
\(219\) 155.163 0.0478765
\(220\) 0 0
\(221\) 3789.75 1.15351
\(222\) 0 0
\(223\) 292.544 0.0878485 0.0439242 0.999035i \(-0.486014\pi\)
0.0439242 + 0.999035i \(0.486014\pi\)
\(224\) 0 0
\(225\) 3276.09 0.970692
\(226\) 0 0
\(227\) 5604.04 1.63856 0.819280 0.573394i \(-0.194374\pi\)
0.819280 + 0.573394i \(0.194374\pi\)
\(228\) 0 0
\(229\) −5654.38 −1.63167 −0.815833 0.578287i \(-0.803721\pi\)
−0.815833 + 0.578287i \(0.803721\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2553.08 0.717845 0.358923 0.933367i \(-0.383144\pi\)
0.358923 + 0.933367i \(0.383144\pi\)
\(234\) 0 0
\(235\) 787.171 0.218508
\(236\) 0 0
\(237\) 90.8814 0.0249088
\(238\) 0 0
\(239\) 5297.27 1.43369 0.716845 0.697233i \(-0.245586\pi\)
0.716845 + 0.697233i \(0.245586\pi\)
\(240\) 0 0
\(241\) 4145.14 1.10793 0.553966 0.832539i \(-0.313114\pi\)
0.553966 + 0.832539i \(0.313114\pi\)
\(242\) 0 0
\(243\) 1155.43 0.305025
\(244\) 0 0
\(245\) −698.818 −0.182228
\(246\) 0 0
\(247\) 3777.64 0.973139
\(248\) 0 0
\(249\) 162.554 0.0413714
\(250\) 0 0
\(251\) 1788.13 0.449665 0.224832 0.974397i \(-0.427817\pi\)
0.224832 + 0.974397i \(0.427817\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −45.5609 −0.0111888
\(256\) 0 0
\(257\) 5167.01 1.25412 0.627061 0.778970i \(-0.284258\pi\)
0.627061 + 0.778970i \(0.284258\pi\)
\(258\) 0 0
\(259\) −5950.99 −1.42771
\(260\) 0 0
\(261\) −3023.14 −0.716963
\(262\) 0 0
\(263\) 57.6791 0.0135234 0.00676169 0.999977i \(-0.497848\pi\)
0.00676169 + 0.999977i \(0.497848\pi\)
\(264\) 0 0
\(265\) 576.651 0.133673
\(266\) 0 0
\(267\) −614.505 −0.140851
\(268\) 0 0
\(269\) −3028.06 −0.686335 −0.343167 0.939274i \(-0.611500\pi\)
−0.343167 + 0.939274i \(0.611500\pi\)
\(270\) 0 0
\(271\) 1487.84 0.333504 0.166752 0.985999i \(-0.446672\pi\)
0.166752 + 0.985999i \(0.446672\pi\)
\(272\) 0 0
\(273\) 1036.44 0.229774
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7460.46 1.61825 0.809126 0.587635i \(-0.199941\pi\)
0.809126 + 0.587635i \(0.199941\pi\)
\(278\) 0 0
\(279\) 1891.61 0.405906
\(280\) 0 0
\(281\) 900.155 0.191099 0.0955493 0.995425i \(-0.469539\pi\)
0.0955493 + 0.995425i \(0.469539\pi\)
\(282\) 0 0
\(283\) −6486.92 −1.36257 −0.681285 0.732018i \(-0.738578\pi\)
−0.681285 + 0.732018i \(0.738578\pi\)
\(284\) 0 0
\(285\) −45.4153 −0.00943920
\(286\) 0 0
\(287\) 5421.72 1.11510
\(288\) 0 0
\(289\) −1848.95 −0.376339
\(290\) 0 0
\(291\) 343.832 0.0692639
\(292\) 0 0
\(293\) 6129.38 1.22212 0.611062 0.791583i \(-0.290743\pi\)
0.611062 + 0.791583i \(0.290743\pi\)
\(294\) 0 0
\(295\) −777.944 −0.153538
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12208.2 2.36127
\(300\) 0 0
\(301\) 5881.67 1.12629
\(302\) 0 0
\(303\) 593.545 0.112535
\(304\) 0 0
\(305\) 719.872 0.135147
\(306\) 0 0
\(307\) −5377.67 −0.999740 −0.499870 0.866101i \(-0.666619\pi\)
−0.499870 + 0.866101i \(0.666619\pi\)
\(308\) 0 0
\(309\) 159.857 0.0294303
\(310\) 0 0
\(311\) 6066.41 1.10609 0.553046 0.833151i \(-0.313465\pi\)
0.553046 + 0.833151i \(0.313465\pi\)
\(312\) 0 0
\(313\) 3241.18 0.585311 0.292655 0.956218i \(-0.405461\pi\)
0.292655 + 0.956218i \(0.405461\pi\)
\(314\) 0 0
\(315\) 1158.99 0.207307
\(316\) 0 0
\(317\) 6519.32 1.15508 0.577542 0.816361i \(-0.304012\pi\)
0.577542 + 0.816361i \(0.304012\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 320.535 0.0557336
\(322\) 0 0
\(323\) 3054.25 0.526140
\(324\) 0 0
\(325\) −8396.51 −1.43309
\(326\) 0 0
\(327\) −820.008 −0.138675
\(328\) 0 0
\(329\) −14477.9 −2.42612
\(330\) 0 0
\(331\) −5879.55 −0.976343 −0.488171 0.872748i \(-0.662336\pi\)
−0.488171 + 0.872748i \(0.662336\pi\)
\(332\) 0 0
\(333\) 5627.43 0.926070
\(334\) 0 0
\(335\) −445.249 −0.0726166
\(336\) 0 0
\(337\) 1342.66 0.217031 0.108516 0.994095i \(-0.465390\pi\)
0.108516 + 0.994095i \(0.465390\pi\)
\(338\) 0 0
\(339\) −80.9262 −0.0129655
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 3163.56 0.498007
\(344\) 0 0
\(345\) −146.769 −0.0229037
\(346\) 0 0
\(347\) 5650.03 0.874091 0.437046 0.899439i \(-0.356025\pi\)
0.437046 + 0.899439i \(0.356025\pi\)
\(348\) 0 0
\(349\) −1249.55 −0.191653 −0.0958266 0.995398i \(-0.530549\pi\)
−0.0958266 + 0.995398i \(0.530549\pi\)
\(350\) 0 0
\(351\) −1970.71 −0.299683
\(352\) 0 0
\(353\) 5984.25 0.902293 0.451147 0.892450i \(-0.351015\pi\)
0.451147 + 0.892450i \(0.351015\pi\)
\(354\) 0 0
\(355\) −605.160 −0.0904748
\(356\) 0 0
\(357\) 837.971 0.124230
\(358\) 0 0
\(359\) 2176.01 0.319904 0.159952 0.987125i \(-0.448866\pi\)
0.159952 + 0.987125i \(0.448866\pi\)
\(360\) 0 0
\(361\) −3814.51 −0.556132
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −444.701 −0.0637719
\(366\) 0 0
\(367\) 8464.39 1.20392 0.601958 0.798528i \(-0.294387\pi\)
0.601958 + 0.798528i \(0.294387\pi\)
\(368\) 0 0
\(369\) −5126.94 −0.723301
\(370\) 0 0
\(371\) −10605.9 −1.48419
\(372\) 0 0
\(373\) −4248.93 −0.589816 −0.294908 0.955526i \(-0.595289\pi\)
−0.294908 + 0.955526i \(0.595289\pi\)
\(374\) 0 0
\(375\) 203.830 0.0280686
\(376\) 0 0
\(377\) 7748.20 1.05850
\(378\) 0 0
\(379\) −4852.93 −0.657727 −0.328863 0.944378i \(-0.606666\pi\)
−0.328863 + 0.944378i \(0.606666\pi\)
\(380\) 0 0
\(381\) 372.851 0.0501357
\(382\) 0 0
\(383\) 8181.81 1.09157 0.545785 0.837926i \(-0.316232\pi\)
0.545785 + 0.837926i \(0.316232\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5561.88 −0.730559
\(388\) 0 0
\(389\) 1254.82 0.163552 0.0817761 0.996651i \(-0.473941\pi\)
0.0817761 + 0.996651i \(0.473941\pi\)
\(390\) 0 0
\(391\) 9870.44 1.27665
\(392\) 0 0
\(393\) −892.636 −0.114574
\(394\) 0 0
\(395\) −260.469 −0.0331787
\(396\) 0 0
\(397\) −11519.3 −1.45627 −0.728133 0.685436i \(-0.759612\pi\)
−0.728133 + 0.685436i \(0.759612\pi\)
\(398\) 0 0
\(399\) 835.292 0.104804
\(400\) 0 0
\(401\) −1500.66 −0.186882 −0.0934409 0.995625i \(-0.529787\pi\)
−0.0934409 + 0.995625i \(0.529787\pi\)
\(402\) 0 0
\(403\) −4848.13 −0.599262
\(404\) 0 0
\(405\) −1084.07 −0.133007
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 91.3936 0.0110492 0.00552460 0.999985i \(-0.498241\pi\)
0.00552460 + 0.999985i \(0.498241\pi\)
\(410\) 0 0
\(411\) −860.372 −0.103258
\(412\) 0 0
\(413\) 14308.2 1.70475
\(414\) 0 0
\(415\) −465.885 −0.0551070
\(416\) 0 0
\(417\) 573.036 0.0672942
\(418\) 0 0
\(419\) 1880.83 0.219295 0.109648 0.993971i \(-0.465028\pi\)
0.109648 + 0.993971i \(0.465028\pi\)
\(420\) 0 0
\(421\) −7279.83 −0.842748 −0.421374 0.906887i \(-0.638452\pi\)
−0.421374 + 0.906887i \(0.638452\pi\)
\(422\) 0 0
\(423\) 13690.7 1.57368
\(424\) 0 0
\(425\) −6788.65 −0.774819
\(426\) 0 0
\(427\) −13240.1 −1.50055
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6870.61 −0.767855 −0.383928 0.923363i \(-0.625429\pi\)
−0.383928 + 0.923363i \(0.625429\pi\)
\(432\) 0 0
\(433\) 1121.32 0.124451 0.0622255 0.998062i \(-0.480180\pi\)
0.0622255 + 0.998062i \(0.480180\pi\)
\(434\) 0 0
\(435\) −93.1500 −0.0102671
\(436\) 0 0
\(437\) 9838.89 1.07702
\(438\) 0 0
\(439\) −7114.94 −0.773525 −0.386763 0.922179i \(-0.626407\pi\)
−0.386763 + 0.922179i \(0.626407\pi\)
\(440\) 0 0
\(441\) −12154.1 −1.31239
\(442\) 0 0
\(443\) 14057.4 1.50764 0.753822 0.657079i \(-0.228208\pi\)
0.753822 + 0.657079i \(0.228208\pi\)
\(444\) 0 0
\(445\) 1761.19 0.187614
\(446\) 0 0
\(447\) −190.336 −0.0201400
\(448\) 0 0
\(449\) −15323.9 −1.61064 −0.805320 0.592840i \(-0.798007\pi\)
−0.805320 + 0.592840i \(0.798007\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −1007.25 −0.104470
\(454\) 0 0
\(455\) −2970.46 −0.306060
\(456\) 0 0
\(457\) −7212.20 −0.738233 −0.369117 0.929383i \(-0.620340\pi\)
−0.369117 + 0.929383i \(0.620340\pi\)
\(458\) 0 0
\(459\) −1593.34 −0.162028
\(460\) 0 0
\(461\) −10159.6 −1.02642 −0.513212 0.858262i \(-0.671544\pi\)
−0.513212 + 0.858262i \(0.671544\pi\)
\(462\) 0 0
\(463\) 10292.0 1.03306 0.516532 0.856268i \(-0.327223\pi\)
0.516532 + 0.856268i \(0.327223\pi\)
\(464\) 0 0
\(465\) 58.2850 0.00581269
\(466\) 0 0
\(467\) −18023.0 −1.78588 −0.892938 0.450180i \(-0.851360\pi\)
−0.892938 + 0.450180i \(0.851360\pi\)
\(468\) 0 0
\(469\) 8189.16 0.806269
\(470\) 0 0
\(471\) 1339.74 0.131066
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −6766.95 −0.653661
\(476\) 0 0
\(477\) 10029.3 0.962704
\(478\) 0 0
\(479\) −17083.8 −1.62960 −0.814801 0.579741i \(-0.803154\pi\)
−0.814801 + 0.579741i \(0.803154\pi\)
\(480\) 0 0
\(481\) −14422.9 −1.36721
\(482\) 0 0
\(483\) 2699.42 0.254302
\(484\) 0 0
\(485\) −985.432 −0.0922601
\(486\) 0 0
\(487\) −461.804 −0.0429699 −0.0214850 0.999769i \(-0.506839\pi\)
−0.0214850 + 0.999769i \(0.506839\pi\)
\(488\) 0 0
\(489\) −998.391 −0.0923288
\(490\) 0 0
\(491\) 12542.7 1.15284 0.576422 0.817152i \(-0.304448\pi\)
0.576422 + 0.817152i \(0.304448\pi\)
\(492\) 0 0
\(493\) 6264.49 0.572289
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11130.3 1.00455
\(498\) 0 0
\(499\) 18277.0 1.63966 0.819829 0.572608i \(-0.194068\pi\)
0.819829 + 0.572608i \(0.194068\pi\)
\(500\) 0 0
\(501\) 1418.67 0.126510
\(502\) 0 0
\(503\) 2655.18 0.235365 0.117683 0.993051i \(-0.462453\pi\)
0.117683 + 0.993051i \(0.462453\pi\)
\(504\) 0 0
\(505\) −1701.11 −0.149898
\(506\) 0 0
\(507\) 1334.57 0.116904
\(508\) 0 0
\(509\) −4887.16 −0.425579 −0.212789 0.977098i \(-0.568255\pi\)
−0.212789 + 0.977098i \(0.568255\pi\)
\(510\) 0 0
\(511\) 8179.08 0.708065
\(512\) 0 0
\(513\) −1588.25 −0.136692
\(514\) 0 0
\(515\) −458.155 −0.0392014
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1130.42 −0.0956064
\(520\) 0 0
\(521\) −21941.1 −1.84502 −0.922512 0.385969i \(-0.873867\pi\)
−0.922512 + 0.385969i \(0.873867\pi\)
\(522\) 0 0
\(523\) 6102.28 0.510199 0.255099 0.966915i \(-0.417892\pi\)
0.255099 + 0.966915i \(0.417892\pi\)
\(524\) 0 0
\(525\) −1856.59 −0.154340
\(526\) 0 0
\(527\) −3919.76 −0.323999
\(528\) 0 0
\(529\) 19629.4 1.61333
\(530\) 0 0
\(531\) −13530.2 −1.10577
\(532\) 0 0
\(533\) 13140.2 1.06785
\(534\) 0 0
\(535\) −918.660 −0.0742377
\(536\) 0 0
\(537\) −745.566 −0.0599135
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2099.35 −0.166836 −0.0834179 0.996515i \(-0.526584\pi\)
−0.0834179 + 0.996515i \(0.526584\pi\)
\(542\) 0 0
\(543\) 1983.58 0.156765
\(544\) 0 0
\(545\) 2350.16 0.184716
\(546\) 0 0
\(547\) 9029.06 0.705767 0.352884 0.935667i \(-0.385201\pi\)
0.352884 + 0.935667i \(0.385201\pi\)
\(548\) 0 0
\(549\) 12520.2 0.973315
\(550\) 0 0
\(551\) 6244.47 0.482801
\(552\) 0 0
\(553\) 4790.62 0.368386
\(554\) 0 0
\(555\) 173.394 0.0132616
\(556\) 0 0
\(557\) 7894.54 0.600543 0.300271 0.953854i \(-0.402923\pi\)
0.300271 + 0.953854i \(0.402923\pi\)
\(558\) 0 0
\(559\) 14254.9 1.07857
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22377.6 1.67514 0.837569 0.546332i \(-0.183976\pi\)
0.837569 + 0.546332i \(0.183976\pi\)
\(564\) 0 0
\(565\) 231.936 0.0172702
\(566\) 0 0
\(567\) 19938.5 1.47679
\(568\) 0 0
\(569\) 16920.5 1.24665 0.623325 0.781963i \(-0.285781\pi\)
0.623325 + 0.781963i \(0.285781\pi\)
\(570\) 0 0
\(571\) 16320.0 1.19609 0.598047 0.801461i \(-0.295944\pi\)
0.598047 + 0.801461i \(0.295944\pi\)
\(572\) 0 0
\(573\) 1893.35 0.138038
\(574\) 0 0
\(575\) −21868.8 −1.58607
\(576\) 0 0
\(577\) 830.262 0.0599034 0.0299517 0.999551i \(-0.490465\pi\)
0.0299517 + 0.999551i \(0.490465\pi\)
\(578\) 0 0
\(579\) 1396.37 0.100226
\(580\) 0 0
\(581\) 8568.70 0.611858
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 2808.96 0.198523
\(586\) 0 0
\(587\) −21919.4 −1.54124 −0.770621 0.637294i \(-0.780054\pi\)
−0.770621 + 0.637294i \(0.780054\pi\)
\(588\) 0 0
\(589\) −3907.23 −0.273336
\(590\) 0 0
\(591\) −385.419 −0.0268258
\(592\) 0 0
\(593\) 8236.51 0.570376 0.285188 0.958472i \(-0.407944\pi\)
0.285188 + 0.958472i \(0.407944\pi\)
\(594\) 0 0
\(595\) −2401.64 −0.165475
\(596\) 0 0
\(597\) −554.737 −0.0380299
\(598\) 0 0
\(599\) 10922.0 0.745009 0.372505 0.928030i \(-0.378499\pi\)
0.372505 + 0.928030i \(0.378499\pi\)
\(600\) 0 0
\(601\) 1386.44 0.0940997 0.0470498 0.998893i \(-0.485018\pi\)
0.0470498 + 0.998893i \(0.485018\pi\)
\(602\) 0 0
\(603\) −7743.91 −0.522979
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1417.78 0.0948035 0.0474017 0.998876i \(-0.484906\pi\)
0.0474017 + 0.998876i \(0.484906\pi\)
\(608\) 0 0
\(609\) 1713.24 0.113997
\(610\) 0 0
\(611\) −35088.9 −2.32331
\(612\) 0 0
\(613\) 15424.9 1.01632 0.508162 0.861261i \(-0.330325\pi\)
0.508162 + 0.861261i \(0.330325\pi\)
\(614\) 0 0
\(615\) −157.973 −0.0103579
\(616\) 0 0
\(617\) 15169.5 0.989793 0.494897 0.868952i \(-0.335206\pi\)
0.494897 + 0.868952i \(0.335206\pi\)
\(618\) 0 0
\(619\) 2081.56 0.135162 0.0675809 0.997714i \(-0.478472\pi\)
0.0675809 + 0.997714i \(0.478472\pi\)
\(620\) 0 0
\(621\) −5132.74 −0.331674
\(622\) 0 0
\(623\) −32392.3 −2.08310
\(624\) 0 0
\(625\) 14745.9 0.943741
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11661.1 −0.739200
\(630\) 0 0
\(631\) −25249.7 −1.59298 −0.796492 0.604649i \(-0.793313\pi\)
−0.796492 + 0.604649i \(0.793313\pi\)
\(632\) 0 0
\(633\) −190.939 −0.0119892
\(634\) 0 0
\(635\) −1068.60 −0.0667812
\(636\) 0 0
\(637\) 31150.5 1.93756
\(638\) 0 0
\(639\) −10525.1 −0.651592
\(640\) 0 0
\(641\) −2626.57 −0.161846 −0.0809231 0.996720i \(-0.525787\pi\)
−0.0809231 + 0.996720i \(0.525787\pi\)
\(642\) 0 0
\(643\) −9229.61 −0.566066 −0.283033 0.959110i \(-0.591341\pi\)
−0.283033 + 0.959110i \(0.591341\pi\)
\(644\) 0 0
\(645\) −171.375 −0.0104618
\(646\) 0 0
\(647\) −316.901 −0.0192561 −0.00962803 0.999954i \(-0.503065\pi\)
−0.00962803 + 0.999954i \(0.503065\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1071.99 −0.0645389
\(652\) 0 0
\(653\) −5022.66 −0.300998 −0.150499 0.988610i \(-0.548088\pi\)
−0.150499 + 0.988610i \(0.548088\pi\)
\(654\) 0 0
\(655\) 2558.32 0.152613
\(656\) 0 0
\(657\) −7734.38 −0.459280
\(658\) 0 0
\(659\) 24927.5 1.47350 0.736752 0.676163i \(-0.236358\pi\)
0.736752 + 0.676163i \(0.236358\pi\)
\(660\) 0 0
\(661\) −16440.5 −0.967418 −0.483709 0.875229i \(-0.660711\pi\)
−0.483709 + 0.875229i \(0.660711\pi\)
\(662\) 0 0
\(663\) 2030.92 0.118966
\(664\) 0 0
\(665\) −2393.97 −0.139600
\(666\) 0 0
\(667\) 20180.3 1.17149
\(668\) 0 0
\(669\) 156.774 0.00906014
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −11777.4 −0.674572 −0.337286 0.941402i \(-0.609509\pi\)
−0.337286 + 0.941402i \(0.609509\pi\)
\(674\) 0 0
\(675\) 3530.17 0.201298
\(676\) 0 0
\(677\) −2818.49 −0.160005 −0.0800025 0.996795i \(-0.525493\pi\)
−0.0800025 + 0.996795i \(0.525493\pi\)
\(678\) 0 0
\(679\) 18124.4 1.02437
\(680\) 0 0
\(681\) 3003.19 0.168991
\(682\) 0 0
\(683\) −15803.2 −0.885346 −0.442673 0.896683i \(-0.645970\pi\)
−0.442673 + 0.896683i \(0.645970\pi\)
\(684\) 0 0
\(685\) 2465.85 0.137540
\(686\) 0 0
\(687\) −3030.17 −0.168280
\(688\) 0 0
\(689\) −25704.8 −1.42130
\(690\) 0 0
\(691\) −3300.72 −0.181716 −0.0908578 0.995864i \(-0.528961\pi\)
−0.0908578 + 0.995864i \(0.528961\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1642.34 −0.0896365
\(696\) 0 0
\(697\) 10624.0 0.577348
\(698\) 0 0
\(699\) 1368.19 0.0740340
\(700\) 0 0
\(701\) −29773.2 −1.60416 −0.802082 0.597214i \(-0.796274\pi\)
−0.802082 + 0.597214i \(0.796274\pi\)
\(702\) 0 0
\(703\) −11623.8 −0.623612
\(704\) 0 0
\(705\) 421.844 0.0225355
\(706\) 0 0
\(707\) 31287.4 1.66433
\(708\) 0 0
\(709\) −24002.5 −1.27141 −0.635707 0.771931i \(-0.719291\pi\)
−0.635707 + 0.771931i \(0.719291\pi\)
\(710\) 0 0
\(711\) −4530.15 −0.238951
\(712\) 0 0
\(713\) −12627.0 −0.663233
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2838.80 0.147862
\(718\) 0 0
\(719\) 20668.7 1.07206 0.536032 0.844198i \(-0.319923\pi\)
0.536032 + 0.844198i \(0.319923\pi\)
\(720\) 0 0
\(721\) 8426.52 0.435257
\(722\) 0 0
\(723\) 2221.37 0.114265
\(724\) 0 0
\(725\) −13879.5 −0.710995
\(726\) 0 0
\(727\) −21928.9 −1.11870 −0.559351 0.828931i \(-0.688950\pi\)
−0.559351 + 0.828931i \(0.688950\pi\)
\(728\) 0 0
\(729\) −18438.0 −0.936745
\(730\) 0 0
\(731\) 11525.2 0.583141
\(732\) 0 0
\(733\) −25124.0 −1.26600 −0.633000 0.774152i \(-0.718177\pi\)
−0.633000 + 0.774152i \(0.718177\pi\)
\(734\) 0 0
\(735\) −374.495 −0.0187938
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −37038.1 −1.84367 −0.921833 0.387588i \(-0.873308\pi\)
−0.921833 + 0.387588i \(0.873308\pi\)
\(740\) 0 0
\(741\) 2024.43 0.100363
\(742\) 0 0
\(743\) 24798.0 1.22443 0.612213 0.790693i \(-0.290279\pi\)
0.612213 + 0.790693i \(0.290279\pi\)
\(744\) 0 0
\(745\) 545.508 0.0268267
\(746\) 0 0
\(747\) −8102.82 −0.396876
\(748\) 0 0
\(749\) 16896.3 0.824268
\(750\) 0 0
\(751\) −13967.2 −0.678654 −0.339327 0.940668i \(-0.610199\pi\)
−0.339327 + 0.940668i \(0.610199\pi\)
\(752\) 0 0
\(753\) 958.256 0.0463756
\(754\) 0 0
\(755\) 2886.80 0.139154
\(756\) 0 0
\(757\) −8515.45 −0.408850 −0.204425 0.978882i \(-0.565532\pi\)
−0.204425 + 0.978882i \(0.565532\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31658.0 −1.50802 −0.754009 0.656865i \(-0.771882\pi\)
−0.754009 + 0.656865i \(0.771882\pi\)
\(762\) 0 0
\(763\) −43224.9 −2.05091
\(764\) 0 0
\(765\) 2271.07 0.107334
\(766\) 0 0
\(767\) 34677.6 1.63251
\(768\) 0 0
\(769\) −606.519 −0.0284416 −0.0142208 0.999899i \(-0.504527\pi\)
−0.0142208 + 0.999899i \(0.504527\pi\)
\(770\) 0 0
\(771\) 2768.99 0.129342
\(772\) 0 0
\(773\) −4699.76 −0.218679 −0.109339 0.994004i \(-0.534874\pi\)
−0.109339 + 0.994004i \(0.534874\pi\)
\(774\) 0 0
\(775\) 8684.55 0.402527
\(776\) 0 0
\(777\) −3189.12 −0.147245
\(778\) 0 0
\(779\) 10590.0 0.487068
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −3257.60 −0.148681
\(784\) 0 0
\(785\) −3839.73 −0.174581
\(786\) 0 0
\(787\) −24078.1 −1.09059 −0.545293 0.838245i \(-0.683582\pi\)
−0.545293 + 0.838245i \(0.683582\pi\)
\(788\) 0 0
\(789\) 30.9101 0.00139472
\(790\) 0 0
\(791\) −4265.85 −0.191752
\(792\) 0 0
\(793\) −32088.9 −1.43696
\(794\) 0 0
\(795\) 309.026 0.0137862
\(796\) 0 0
\(797\) −18977.7 −0.843443 −0.421722 0.906725i \(-0.638574\pi\)
−0.421722 + 0.906725i \(0.638574\pi\)
\(798\) 0 0
\(799\) −28369.7 −1.25613
\(800\) 0 0
\(801\) 30631.1 1.35118
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −7736.59 −0.338732
\(806\) 0 0
\(807\) −1622.73 −0.0707842
\(808\) 0 0
\(809\) 9120.70 0.396374 0.198187 0.980164i \(-0.436495\pi\)
0.198187 + 0.980164i \(0.436495\pi\)
\(810\) 0 0
\(811\) −39874.2 −1.72648 −0.863239 0.504796i \(-0.831568\pi\)
−0.863239 + 0.504796i \(0.831568\pi\)
\(812\) 0 0
\(813\) 797.329 0.0343955
\(814\) 0 0
\(815\) 2861.41 0.122983
\(816\) 0 0
\(817\) 11488.4 0.491956
\(818\) 0 0
\(819\) −51663.2 −2.20422
\(820\) 0 0
\(821\) 4913.94 0.208889 0.104444 0.994531i \(-0.466694\pi\)
0.104444 + 0.994531i \(0.466694\pi\)
\(822\) 0 0
\(823\) −2777.58 −0.117643 −0.0588215 0.998269i \(-0.518734\pi\)
−0.0588215 + 0.998269i \(0.518734\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20306.5 −0.853842 −0.426921 0.904289i \(-0.640402\pi\)
−0.426921 + 0.904289i \(0.640402\pi\)
\(828\) 0 0
\(829\) −35572.7 −1.49034 −0.745170 0.666875i \(-0.767632\pi\)
−0.745170 + 0.666875i \(0.767632\pi\)
\(830\) 0 0
\(831\) 3998.05 0.166896
\(832\) 0 0
\(833\) 25185.4 1.04757
\(834\) 0 0
\(835\) −4065.93 −0.168512
\(836\) 0 0
\(837\) 2038.32 0.0841751
\(838\) 0 0
\(839\) −7096.72 −0.292021 −0.146011 0.989283i \(-0.546643\pi\)
−0.146011 + 0.989283i \(0.546643\pi\)
\(840\) 0 0
\(841\) −11581.2 −0.474851
\(842\) 0 0
\(843\) 482.391 0.0197087
\(844\) 0 0
\(845\) −3824.90 −0.155717
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3476.33 −0.140527
\(850\) 0 0
\(851\) −37564.6 −1.51316
\(852\) 0 0
\(853\) 24157.6 0.969682 0.484841 0.874602i \(-0.338877\pi\)
0.484841 + 0.874602i \(0.338877\pi\)
\(854\) 0 0
\(855\) 2263.81 0.0905504
\(856\) 0 0
\(857\) 28806.8 1.14822 0.574108 0.818779i \(-0.305349\pi\)
0.574108 + 0.818779i \(0.305349\pi\)
\(858\) 0 0
\(859\) −11244.4 −0.446628 −0.223314 0.974747i \(-0.571688\pi\)
−0.223314 + 0.974747i \(0.571688\pi\)
\(860\) 0 0
\(861\) 2905.49 0.115005
\(862\) 0 0
\(863\) 1291.92 0.0509589 0.0254794 0.999675i \(-0.491889\pi\)
0.0254794 + 0.999675i \(0.491889\pi\)
\(864\) 0 0
\(865\) 3239.80 0.127349
\(866\) 0 0
\(867\) −990.851 −0.0388132
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 19847.4 0.772105
\(872\) 0 0
\(873\) −17138.9 −0.664450
\(874\) 0 0
\(875\) 10744.4 0.415118
\(876\) 0 0
\(877\) 26823.1 1.03278 0.516391 0.856353i \(-0.327275\pi\)
0.516391 + 0.856353i \(0.327275\pi\)
\(878\) 0 0
\(879\) 3284.73 0.126042
\(880\) 0 0
\(881\) −28515.7 −1.09049 −0.545243 0.838278i \(-0.683563\pi\)
−0.545243 + 0.838278i \(0.683563\pi\)
\(882\) 0 0
\(883\) −41686.4 −1.58874 −0.794371 0.607433i \(-0.792199\pi\)
−0.794371 + 0.607433i \(0.792199\pi\)
\(884\) 0 0
\(885\) −416.899 −0.0158349
\(886\) 0 0
\(887\) −49179.3 −1.86164 −0.930822 0.365473i \(-0.880907\pi\)
−0.930822 + 0.365473i \(0.880907\pi\)
\(888\) 0 0
\(889\) 19654.0 0.741478
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −28279.0 −1.05971
\(894\) 0 0
\(895\) 2136.81 0.0798053
\(896\) 0 0
\(897\) 6542.35 0.243526
\(898\) 0 0
\(899\) −8014.01 −0.297310
\(900\) 0 0
\(901\) −20782.5 −0.768442
\(902\) 0 0
\(903\) 3151.98 0.116159
\(904\) 0 0
\(905\) −5684.98 −0.208812
\(906\) 0 0
\(907\) −52977.8 −1.93947 −0.969734 0.244163i \(-0.921487\pi\)
−0.969734 + 0.244163i \(0.921487\pi\)
\(908\) 0 0
\(909\) −29586.3 −1.07955
\(910\) 0 0
\(911\) 31469.8 1.14450 0.572251 0.820078i \(-0.306070\pi\)
0.572251 + 0.820078i \(0.306070\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 385.778 0.0139382
\(916\) 0 0
\(917\) −47053.4 −1.69448
\(918\) 0 0
\(919\) 42860.9 1.53847 0.769234 0.638967i \(-0.220638\pi\)
0.769234 + 0.638967i \(0.220638\pi\)
\(920\) 0 0
\(921\) −2881.89 −0.103107
\(922\) 0 0
\(923\) 26975.6 0.961984
\(924\) 0 0
\(925\) 25836.1 0.918361
\(926\) 0 0
\(927\) −7968.37 −0.282325
\(928\) 0 0
\(929\) −20968.3 −0.740525 −0.370262 0.928927i \(-0.620732\pi\)
−0.370262 + 0.928927i \(0.620732\pi\)
\(930\) 0 0
\(931\) 25104.9 0.883760
\(932\) 0 0
\(933\) 3250.98 0.114075
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 17126.8 0.597127 0.298563 0.954390i \(-0.403493\pi\)
0.298563 + 0.954390i \(0.403493\pi\)
\(938\) 0 0
\(939\) 1736.94 0.0603652
\(940\) 0 0
\(941\) −44021.2 −1.52503 −0.762513 0.646973i \(-0.776034\pi\)
−0.762513 + 0.646973i \(0.776034\pi\)
\(942\) 0 0
\(943\) 34223.7 1.18184
\(944\) 0 0
\(945\) 1248.88 0.0429906
\(946\) 0 0
\(947\) −8692.03 −0.298261 −0.149130 0.988818i \(-0.547647\pi\)
−0.149130 + 0.988818i \(0.547647\pi\)
\(948\) 0 0
\(949\) 19823.0 0.678062
\(950\) 0 0
\(951\) 3493.69 0.119128
\(952\) 0 0
\(953\) 57906.0 1.96827 0.984133 0.177431i \(-0.0567787\pi\)
0.984133 + 0.177431i \(0.0567787\pi\)
\(954\) 0 0
\(955\) −5426.38 −0.183867
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −45352.6 −1.52713
\(960\) 0 0
\(961\) −24776.6 −0.831679
\(962\) 0 0
\(963\) −15977.6 −0.534654
\(964\) 0 0
\(965\) −4002.03 −0.133503
\(966\) 0 0
\(967\) 56564.3 1.88106 0.940530 0.339711i \(-0.110329\pi\)
0.940530 + 0.339711i \(0.110329\pi\)
\(968\) 0 0
\(969\) 1636.77 0.0542628
\(970\) 0 0
\(971\) 30894.7 1.02107 0.510534 0.859857i \(-0.329448\pi\)
0.510534 + 0.859857i \(0.329448\pi\)
\(972\) 0 0
\(973\) 30206.3 0.995242
\(974\) 0 0
\(975\) −4499.67 −0.147800
\(976\) 0 0
\(977\) −29998.9 −0.982342 −0.491171 0.871063i \(-0.663431\pi\)
−0.491171 + 0.871063i \(0.663431\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 40874.8 1.33031
\(982\) 0 0
\(983\) 24485.9 0.794485 0.397242 0.917714i \(-0.369967\pi\)
0.397242 + 0.917714i \(0.369967\pi\)
\(984\) 0 0
\(985\) 1104.62 0.0357321
\(986\) 0 0
\(987\) −7758.68 −0.250214
\(988\) 0 0
\(989\) 37127.1 1.19370
\(990\) 0 0
\(991\) 52661.1 1.68803 0.844014 0.536321i \(-0.180186\pi\)
0.844014 + 0.536321i \(0.180186\pi\)
\(992\) 0 0
\(993\) −3150.84 −0.100694
\(994\) 0 0
\(995\) 1589.89 0.0506562
\(996\) 0 0
\(997\) −54748.6 −1.73912 −0.869561 0.493826i \(-0.835598\pi\)
−0.869561 + 0.493826i \(0.835598\pi\)
\(998\) 0 0
\(999\) 6063.88 0.192045
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.4.a.z.1.1 2
4.3 odd 2 121.4.a.b.1.2 2
11.10 odd 2 1936.4.a.y.1.1 2
12.11 even 2 1089.4.a.x.1.1 2
44.3 odd 10 121.4.c.g.9.2 8
44.7 even 10 121.4.c.d.27.1 8
44.15 odd 10 121.4.c.g.27.2 8
44.19 even 10 121.4.c.d.9.1 8
44.27 odd 10 121.4.c.g.3.1 8
44.31 odd 10 121.4.c.g.81.1 8
44.35 even 10 121.4.c.d.81.2 8
44.39 even 10 121.4.c.d.3.2 8
44.43 even 2 121.4.a.e.1.1 yes 2
132.131 odd 2 1089.4.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.4.a.b.1.2 2 4.3 odd 2
121.4.a.e.1.1 yes 2 44.43 even 2
121.4.c.d.3.2 8 44.39 even 10
121.4.c.d.9.1 8 44.19 even 10
121.4.c.d.27.1 8 44.7 even 10
121.4.c.d.81.2 8 44.35 even 10
121.4.c.g.3.1 8 44.27 odd 10
121.4.c.g.9.2 8 44.3 odd 10
121.4.c.g.27.2 8 44.15 odd 10
121.4.c.g.81.1 8 44.31 odd 10
1089.4.a.k.1.2 2 132.131 odd 2
1089.4.a.x.1.1 2 12.11 even 2
1936.4.a.y.1.1 2 11.10 odd 2
1936.4.a.z.1.1 2 1.1 even 1 trivial