Properties

Label 1936.4.a.y
Level $1936$
Weight $4$
Character orbit 1936.a
Self dual yes
Analytic conductor $114.228$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1936,4,Mod(1,1936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 121)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 4) q^{3} + ( - \beta - 5) q^{5} + (7 \beta - 4) q^{7} + (8 \beta + 1) q^{9} + (\beta - 65) q^{13} + ( - 9 \beta - 32) q^{15} + (18 \beta + 7) q^{17} + (9 \beta - 24) q^{19} + (24 \beta + 68) q^{21}+ \cdots + ( - 234 \beta - 169) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{3} - 10 q^{5} - 8 q^{7} + 2 q^{9} - 130 q^{13} - 64 q^{15} + 14 q^{17} - 48 q^{19} + 136 q^{21} + 128 q^{23} - 176 q^{25} - 16 q^{27} + 30 q^{29} + 184 q^{31} - 128 q^{35} + 126 q^{37} - 496 q^{39}+ \cdots - 338 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0.535898 0 −1.53590 0 −28.2487 0 −26.7128 0
1.2 0 7.46410 0 −8.46410 0 20.2487 0 28.7128 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1936.4.a.y 2
4.b odd 2 1 121.4.a.e yes 2
11.b odd 2 1 1936.4.a.z 2
12.b even 2 1 1089.4.a.k 2
44.c even 2 1 121.4.a.b 2
44.g even 10 4 121.4.c.g 8
44.h odd 10 4 121.4.c.d 8
132.d odd 2 1 1089.4.a.x 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
121.4.a.b 2 44.c even 2 1
121.4.a.e yes 2 4.b odd 2 1
121.4.c.d 8 44.h odd 10 4
121.4.c.g 8 44.g even 10 4
1089.4.a.k 2 12.b even 2 1
1089.4.a.x 2 132.d odd 2 1
1936.4.a.y 2 1.a even 1 1 trivial
1936.4.a.z 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1936))\):

\( T_{3}^{2} - 8T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} + 10T_{5} + 13 \) Copy content Toggle raw display
\( T_{7}^{2} + 8T_{7} - 572 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} + 10T + 13 \) Copy content Toggle raw display
$7$ \( T^{2} + 8T - 572 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 130T + 4213 \) Copy content Toggle raw display
$17$ \( T^{2} - 14T - 3839 \) Copy content Toggle raw display
$19$ \( T^{2} + 48T - 396 \) Copy content Toggle raw display
$23$ \( T^{2} - 128T - 8972 \) Copy content Toggle raw display
$29$ \( T^{2} - 30T - 16203 \) Copy content Toggle raw display
$31$ \( T^{2} - 184T - 18044 \) Copy content Toggle raw display
$37$ \( T^{2} - 126T - 70923 \) Copy content Toggle raw display
$41$ \( T^{2} + 370T + 34177 \) Copy content Toggle raw display
$43$ \( T^{2} + 264T + 11616 \) Copy content Toggle raw display
$47$ \( T^{2} + 256T - 131468 \) Copy content Toggle raw display
$53$ \( T^{2} + 162T - 80139 \) Copy content Toggle raw display
$59$ \( T^{2} - 1304 T + 403936 \) Copy content Toggle raw display
$61$ \( T^{2} - 300T - 79068 \) Copy content Toggle raw display
$67$ \( T^{2} - 656T + 106132 \) Copy content Toggle raw display
$71$ \( T^{2} - 1176 T + 308112 \) Copy content Toggle raw display
$73$ \( T^{2} - 668T - 277244 \) Copy content Toggle raw display
$79$ \( T^{2} - 416T - 99308 \) Copy content Toggle raw display
$83$ \( T^{2} + 960T + 199188 \) Copy content Toggle raw display
$89$ \( T^{2} + 1074T - 83343 \) Copy content Toggle raw display
$97$ \( T^{2} + 338T - 628511 \) Copy content Toggle raw display
show more
show less