Properties

Label 1936.4.a.w
Level $1936$
Weight $4$
Character orbit 1936.a
Self dual yes
Analytic conductor $114.228$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1936,4,Mod(1,1936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{3} + (2 \beta + 1) q^{5} + ( - \beta + 10) q^{7} + (2 \beta + 22) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta + 1) q^{3} + (2 \beta + 1) q^{5} + ( - \beta + 10) q^{7} + (2 \beta + 22) q^{9} + (5 \beta - 40) q^{13} + (3 \beta + 97) q^{15} + ( - 3 \beta + 62) q^{17} + (15 \beta + 36) q^{19} + (9 \beta - 38) q^{21} + (9 \beta + 49) q^{23} + (4 \beta + 68) q^{25} + ( - 3 \beta + 91) q^{27} + (14 \beta - 72) q^{29} + ( - 7 \beta + 17) q^{31} + (19 \beta - 86) q^{35} + ( - 2 \beta + 27) q^{37} + ( - 35 \beta + 200) q^{39} + (\beta - 268) q^{41} + ( - 4 \beta - 30) q^{43} + (46 \beta + 214) q^{45} + (30 \beta + 136) q^{47} + ( - 20 \beta - 195) q^{49} + (59 \beta - 82) q^{51} + ( - 14 \beta - 246) q^{53} + (51 \beta + 756) q^{57} + (33 \beta - 317) q^{59} + ( - 46 \beta - 420) q^{61} + ( - 2 \beta + 124) q^{63} + ( - 75 \beta + 440) q^{65} + (5 \beta - 377) q^{67} + (58 \beta + 481) q^{69} + ( - 19 \beta + 339) q^{71} + (117 \beta + 200) q^{73} + (72 \beta + 260) q^{75} + (164 \beta + 158) q^{79} + (34 \beta - 647) q^{81} + (30 \beta + 234) q^{83} + (121 \beta - 226) q^{85} + ( - 58 \beta + 600) q^{87} + ( - 82 \beta - 921) q^{89} + (90 \beta - 640) q^{91} + (10 \beta - 319) q^{93} + (87 \beta + 1476) q^{95} + (36 \beta + 1097) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 20 q^{7} + 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 2 q^{5} + 20 q^{7} + 44 q^{9} - 80 q^{13} + 194 q^{15} + 124 q^{17} + 72 q^{19} - 76 q^{21} + 98 q^{23} + 136 q^{25} + 182 q^{27} - 144 q^{29} + 34 q^{31} - 172 q^{35} + 54 q^{37} + 400 q^{39} - 536 q^{41} - 60 q^{43} + 428 q^{45} + 272 q^{47} - 390 q^{49} - 164 q^{51} - 492 q^{53} + 1512 q^{57} - 634 q^{59} - 840 q^{61} + 248 q^{63} + 880 q^{65} - 754 q^{67} + 962 q^{69} + 678 q^{71} + 400 q^{73} + 520 q^{75} + 316 q^{79} - 1294 q^{81} + 468 q^{83} - 452 q^{85} + 1200 q^{87} - 1842 q^{89} - 1280 q^{91} - 638 q^{93} + 2952 q^{95} + 2194 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −5.92820 0 −12.8564 0 16.9282 0 8.14359 0
1.2 0 7.92820 0 14.8564 0 3.07180 0 35.8564 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1936.4.a.w 2
4.b odd 2 1 121.4.a.c 2
11.b odd 2 1 176.4.a.i 2
12.b even 2 1 1089.4.a.v 2
33.d even 2 1 1584.4.a.bc 2
44.c even 2 1 11.4.a.a 2
44.g even 10 4 121.4.c.c 8
44.h odd 10 4 121.4.c.f 8
88.b odd 2 1 704.4.a.n 2
88.g even 2 1 704.4.a.p 2
132.d odd 2 1 99.4.a.c 2
220.g even 2 1 275.4.a.b 2
220.i odd 4 2 275.4.b.c 4
308.g odd 2 1 539.4.a.e 2
572.b even 2 1 1859.4.a.a 2
660.g odd 2 1 2475.4.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.4.a.a 2 44.c even 2 1
99.4.a.c 2 132.d odd 2 1
121.4.a.c 2 4.b odd 2 1
121.4.c.c 8 44.g even 10 4
121.4.c.f 8 44.h odd 10 4
176.4.a.i 2 11.b odd 2 1
275.4.a.b 2 220.g even 2 1
275.4.b.c 4 220.i odd 4 2
539.4.a.e 2 308.g odd 2 1
704.4.a.n 2 88.b odd 2 1
704.4.a.p 2 88.g even 2 1
1089.4.a.v 2 12.b even 2 1
1584.4.a.bc 2 33.d even 2 1
1859.4.a.a 2 572.b even 2 1
1936.4.a.w 2 1.a even 1 1 trivial
2475.4.a.q 2 660.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1936))\):

\( T_{3}^{2} - 2T_{3} - 47 \) Copy content Toggle raw display
\( T_{5}^{2} - 2T_{5} - 191 \) Copy content Toggle raw display
\( T_{7}^{2} - 20T_{7} + 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 47 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T - 191 \) Copy content Toggle raw display
$7$ \( T^{2} - 20T + 52 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 80T + 400 \) Copy content Toggle raw display
$17$ \( T^{2} - 124T + 3412 \) Copy content Toggle raw display
$19$ \( T^{2} - 72T - 9504 \) Copy content Toggle raw display
$23$ \( T^{2} - 98T - 1487 \) Copy content Toggle raw display
$29$ \( T^{2} + 144T - 4224 \) Copy content Toggle raw display
$31$ \( T^{2} - 34T - 2063 \) Copy content Toggle raw display
$37$ \( T^{2} - 54T + 537 \) Copy content Toggle raw display
$41$ \( T^{2} + 536T + 71776 \) Copy content Toggle raw display
$43$ \( T^{2} + 60T + 132 \) Copy content Toggle raw display
$47$ \( T^{2} - 272T - 24704 \) Copy content Toggle raw display
$53$ \( T^{2} + 492T + 51108 \) Copy content Toggle raw display
$59$ \( T^{2} + 634T + 48217 \) Copy content Toggle raw display
$61$ \( T^{2} + 840T + 74832 \) Copy content Toggle raw display
$67$ \( T^{2} + 754T + 140929 \) Copy content Toggle raw display
$71$ \( T^{2} - 678T + 97593 \) Copy content Toggle raw display
$73$ \( T^{2} - 400T - 617072 \) Copy content Toggle raw display
$79$ \( T^{2} - 316 T - 1266044 \) Copy content Toggle raw display
$83$ \( T^{2} - 468T + 11556 \) Copy content Toggle raw display
$89$ \( T^{2} + 1842 T + 525489 \) Copy content Toggle raw display
$97$ \( T^{2} - 2194 T + 1141201 \) Copy content Toggle raw display
show more
show less