Properties

Label 1936.2.a.o.1.2
Level $1936$
Weight $2$
Character 1936.1
Self dual yes
Analytic conductor $15.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1936,2,Mod(1,1936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1936.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.4590378313\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.381966 q^{3} +3.23607 q^{5} +2.00000 q^{7} -2.85410 q^{9} +1.23607 q^{13} -1.23607 q^{15} -0.618034 q^{17} +5.85410 q^{19} -0.763932 q^{21} -1.23607 q^{23} +5.47214 q^{25} +2.23607 q^{27} +4.47214 q^{29} -2.00000 q^{31} +6.47214 q^{35} -3.70820 q^{37} -0.472136 q^{39} +5.61803 q^{41} +8.56231 q^{43} -9.23607 q^{45} +6.47214 q^{47} -3.00000 q^{49} +0.236068 q^{51} -1.52786 q^{53} -2.23607 q^{57} +8.61803 q^{59} -2.47214 q^{61} -5.70820 q^{63} +4.00000 q^{65} -11.0902 q^{67} +0.472136 q^{69} +5.23607 q^{71} +10.3820 q^{73} -2.09017 q^{75} -13.4164 q^{79} +7.70820 q^{81} -9.32624 q^{83} -2.00000 q^{85} -1.70820 q^{87} -8.09017 q^{89} +2.47214 q^{91} +0.763932 q^{93} +18.9443 q^{95} +7.14590 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + 2 q^{5} + 4 q^{7} + q^{9} - 2 q^{13} + 2 q^{15} + q^{17} + 5 q^{19} - 6 q^{21} + 2 q^{23} + 2 q^{25} - 4 q^{31} + 4 q^{35} + 6 q^{37} + 8 q^{39} + 9 q^{41} - 3 q^{43} - 14 q^{45} + 4 q^{47}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.381966 −0.220528 −0.110264 0.993902i \(-0.535170\pi\)
−0.110264 + 0.993902i \(0.535170\pi\)
\(4\) 0 0
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) −2.85410 −0.951367
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.23607 0.342824 0.171412 0.985199i \(-0.445167\pi\)
0.171412 + 0.985199i \(0.445167\pi\)
\(14\) 0 0
\(15\) −1.23607 −0.319151
\(16\) 0 0
\(17\) −0.618034 −0.149895 −0.0749476 0.997187i \(-0.523879\pi\)
−0.0749476 + 0.997187i \(0.523879\pi\)
\(18\) 0 0
\(19\) 5.85410 1.34302 0.671512 0.740994i \(-0.265645\pi\)
0.671512 + 0.740994i \(0.265645\pi\)
\(20\) 0 0
\(21\) −0.763932 −0.166704
\(22\) 0 0
\(23\) −1.23607 −0.257738 −0.128869 0.991662i \(-0.541135\pi\)
−0.128869 + 0.991662i \(0.541135\pi\)
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) 0 0
\(27\) 2.23607 0.430331
\(28\) 0 0
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.47214 1.09399
\(36\) 0 0
\(37\) −3.70820 −0.609625 −0.304812 0.952412i \(-0.598594\pi\)
−0.304812 + 0.952412i \(0.598594\pi\)
\(38\) 0 0
\(39\) −0.472136 −0.0756023
\(40\) 0 0
\(41\) 5.61803 0.877390 0.438695 0.898636i \(-0.355441\pi\)
0.438695 + 0.898636i \(0.355441\pi\)
\(42\) 0 0
\(43\) 8.56231 1.30574 0.652870 0.757470i \(-0.273565\pi\)
0.652870 + 0.757470i \(0.273565\pi\)
\(44\) 0 0
\(45\) −9.23607 −1.37683
\(46\) 0 0
\(47\) 6.47214 0.944058 0.472029 0.881583i \(-0.343522\pi\)
0.472029 + 0.881583i \(0.343522\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0.236068 0.0330561
\(52\) 0 0
\(53\) −1.52786 −0.209868 −0.104934 0.994479i \(-0.533463\pi\)
−0.104934 + 0.994479i \(0.533463\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.23607 −0.296174
\(58\) 0 0
\(59\) 8.61803 1.12197 0.560986 0.827825i \(-0.310422\pi\)
0.560986 + 0.827825i \(0.310422\pi\)
\(60\) 0 0
\(61\) −2.47214 −0.316525 −0.158262 0.987397i \(-0.550589\pi\)
−0.158262 + 0.987397i \(0.550589\pi\)
\(62\) 0 0
\(63\) −5.70820 −0.719166
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −11.0902 −1.35488 −0.677440 0.735578i \(-0.736911\pi\)
−0.677440 + 0.735578i \(0.736911\pi\)
\(68\) 0 0
\(69\) 0.472136 0.0568385
\(70\) 0 0
\(71\) 5.23607 0.621407 0.310703 0.950507i \(-0.399435\pi\)
0.310703 + 0.950507i \(0.399435\pi\)
\(72\) 0 0
\(73\) 10.3820 1.21512 0.607559 0.794275i \(-0.292149\pi\)
0.607559 + 0.794275i \(0.292149\pi\)
\(74\) 0 0
\(75\) −2.09017 −0.241352
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −13.4164 −1.50946 −0.754732 0.656033i \(-0.772233\pi\)
−0.754732 + 0.656033i \(0.772233\pi\)
\(80\) 0 0
\(81\) 7.70820 0.856467
\(82\) 0 0
\(83\) −9.32624 −1.02369 −0.511844 0.859079i \(-0.671037\pi\)
−0.511844 + 0.859079i \(0.671037\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) −1.70820 −0.183139
\(88\) 0 0
\(89\) −8.09017 −0.857556 −0.428778 0.903410i \(-0.641056\pi\)
−0.428778 + 0.903410i \(0.641056\pi\)
\(90\) 0 0
\(91\) 2.47214 0.259150
\(92\) 0 0
\(93\) 0.763932 0.0792161
\(94\) 0 0
\(95\) 18.9443 1.94364
\(96\) 0 0
\(97\) 7.14590 0.725556 0.362778 0.931876i \(-0.381828\pi\)
0.362778 + 0.931876i \(0.381828\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.18034 −0.415959 −0.207980 0.978133i \(-0.566689\pi\)
−0.207980 + 0.978133i \(0.566689\pi\)
\(102\) 0 0
\(103\) −15.7082 −1.54778 −0.773888 0.633323i \(-0.781691\pi\)
−0.773888 + 0.633323i \(0.781691\pi\)
\(104\) 0 0
\(105\) −2.47214 −0.241256
\(106\) 0 0
\(107\) 1.14590 0.110778 0.0553891 0.998465i \(-0.482360\pi\)
0.0553891 + 0.998465i \(0.482360\pi\)
\(108\) 0 0
\(109\) 18.9443 1.81453 0.907266 0.420557i \(-0.138165\pi\)
0.907266 + 0.420557i \(0.138165\pi\)
\(110\) 0 0
\(111\) 1.41641 0.134439
\(112\) 0 0
\(113\) −1.85410 −0.174419 −0.0872096 0.996190i \(-0.527795\pi\)
−0.0872096 + 0.996190i \(0.527795\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) −3.52786 −0.326151
\(118\) 0 0
\(119\) −1.23607 −0.113310
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −2.14590 −0.193489
\(124\) 0 0
\(125\) 1.52786 0.136656
\(126\) 0 0
\(127\) 10.9443 0.971147 0.485574 0.874196i \(-0.338611\pi\)
0.485574 + 0.874196i \(0.338611\pi\)
\(128\) 0 0
\(129\) −3.27051 −0.287952
\(130\) 0 0
\(131\) −6.79837 −0.593977 −0.296988 0.954881i \(-0.595982\pi\)
−0.296988 + 0.954881i \(0.595982\pi\)
\(132\) 0 0
\(133\) 11.7082 1.01523
\(134\) 0 0
\(135\) 7.23607 0.622782
\(136\) 0 0
\(137\) 16.0902 1.37468 0.687338 0.726338i \(-0.258779\pi\)
0.687338 + 0.726338i \(0.258779\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −2.47214 −0.208191
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 14.4721 1.20185
\(146\) 0 0
\(147\) 1.14590 0.0945121
\(148\) 0 0
\(149\) −6.18034 −0.506313 −0.253157 0.967425i \(-0.581469\pi\)
−0.253157 + 0.967425i \(0.581469\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 1.76393 0.142605
\(154\) 0 0
\(155\) −6.47214 −0.519854
\(156\) 0 0
\(157\) 9.70820 0.774799 0.387400 0.921912i \(-0.373373\pi\)
0.387400 + 0.921912i \(0.373373\pi\)
\(158\) 0 0
\(159\) 0.583592 0.0462819
\(160\) 0 0
\(161\) −2.47214 −0.194832
\(162\) 0 0
\(163\) −0.909830 −0.0712634 −0.0356317 0.999365i \(-0.511344\pi\)
−0.0356317 + 0.999365i \(0.511344\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.7639 1.14247 0.571234 0.820787i \(-0.306465\pi\)
0.571234 + 0.820787i \(0.306465\pi\)
\(168\) 0 0
\(169\) −11.4721 −0.882472
\(170\) 0 0
\(171\) −16.7082 −1.27771
\(172\) 0 0
\(173\) 21.8885 1.66416 0.832078 0.554659i \(-0.187151\pi\)
0.832078 + 0.554659i \(0.187151\pi\)
\(174\) 0 0
\(175\) 10.9443 0.827309
\(176\) 0 0
\(177\) −3.29180 −0.247427
\(178\) 0 0
\(179\) 8.61803 0.644142 0.322071 0.946715i \(-0.395621\pi\)
0.322071 + 0.946715i \(0.395621\pi\)
\(180\) 0 0
\(181\) −4.18034 −0.310722 −0.155361 0.987858i \(-0.549654\pi\)
−0.155361 + 0.987858i \(0.549654\pi\)
\(182\) 0 0
\(183\) 0.944272 0.0698026
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.47214 0.325300
\(190\) 0 0
\(191\) −4.76393 −0.344706 −0.172353 0.985035i \(-0.555137\pi\)
−0.172353 + 0.985035i \(0.555137\pi\)
\(192\) 0 0
\(193\) 17.4164 1.25366 0.626830 0.779156i \(-0.284352\pi\)
0.626830 + 0.779156i \(0.284352\pi\)
\(194\) 0 0
\(195\) −1.52786 −0.109413
\(196\) 0 0
\(197\) −20.9443 −1.49222 −0.746109 0.665824i \(-0.768080\pi\)
−0.746109 + 0.665824i \(0.768080\pi\)
\(198\) 0 0
\(199\) 18.9443 1.34292 0.671462 0.741039i \(-0.265667\pi\)
0.671462 + 0.741039i \(0.265667\pi\)
\(200\) 0 0
\(201\) 4.23607 0.298789
\(202\) 0 0
\(203\) 8.94427 0.627765
\(204\) 0 0
\(205\) 18.1803 1.26977
\(206\) 0 0
\(207\) 3.52786 0.245204
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 6.09017 0.419265 0.209632 0.977780i \(-0.432773\pi\)
0.209632 + 0.977780i \(0.432773\pi\)
\(212\) 0 0
\(213\) −2.00000 −0.137038
\(214\) 0 0
\(215\) 27.7082 1.88968
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) −3.96556 −0.267968
\(220\) 0 0
\(221\) −0.763932 −0.0513876
\(222\) 0 0
\(223\) −25.7082 −1.72155 −0.860774 0.508987i \(-0.830020\pi\)
−0.860774 + 0.508987i \(0.830020\pi\)
\(224\) 0 0
\(225\) −15.6180 −1.04120
\(226\) 0 0
\(227\) −14.5066 −0.962835 −0.481418 0.876491i \(-0.659878\pi\)
−0.481418 + 0.876491i \(0.659878\pi\)
\(228\) 0 0
\(229\) 1.70820 0.112881 0.0564406 0.998406i \(-0.482025\pi\)
0.0564406 + 0.998406i \(0.482025\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.61803 −0.630098 −0.315049 0.949075i \(-0.602021\pi\)
−0.315049 + 0.949075i \(0.602021\pi\)
\(234\) 0 0
\(235\) 20.9443 1.36625
\(236\) 0 0
\(237\) 5.12461 0.332879
\(238\) 0 0
\(239\) 21.7082 1.40419 0.702093 0.712085i \(-0.252249\pi\)
0.702093 + 0.712085i \(0.252249\pi\)
\(240\) 0 0
\(241\) −11.0902 −0.714381 −0.357190 0.934032i \(-0.616265\pi\)
−0.357190 + 0.934032i \(0.616265\pi\)
\(242\) 0 0
\(243\) −9.65248 −0.619207
\(244\) 0 0
\(245\) −9.70820 −0.620234
\(246\) 0 0
\(247\) 7.23607 0.460420
\(248\) 0 0
\(249\) 3.56231 0.225752
\(250\) 0 0
\(251\) −20.9443 −1.32199 −0.660995 0.750390i \(-0.729866\pi\)
−0.660995 + 0.750390i \(0.729866\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.763932 0.0478393
\(256\) 0 0
\(257\) −5.61803 −0.350443 −0.175222 0.984529i \(-0.556064\pi\)
−0.175222 + 0.984529i \(0.556064\pi\)
\(258\) 0 0
\(259\) −7.41641 −0.460833
\(260\) 0 0
\(261\) −12.7639 −0.790068
\(262\) 0 0
\(263\) 23.2361 1.43280 0.716399 0.697691i \(-0.245789\pi\)
0.716399 + 0.697691i \(0.245789\pi\)
\(264\) 0 0
\(265\) −4.94427 −0.303724
\(266\) 0 0
\(267\) 3.09017 0.189115
\(268\) 0 0
\(269\) 6.18034 0.376822 0.188411 0.982090i \(-0.439666\pi\)
0.188411 + 0.982090i \(0.439666\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 0 0
\(273\) −0.944272 −0.0571499
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −23.7082 −1.42449 −0.712244 0.701932i \(-0.752321\pi\)
−0.712244 + 0.701932i \(0.752321\pi\)
\(278\) 0 0
\(279\) 5.70820 0.341741
\(280\) 0 0
\(281\) −16.0902 −0.959859 −0.479930 0.877307i \(-0.659338\pi\)
−0.479930 + 0.877307i \(0.659338\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) −7.23607 −0.428628
\(286\) 0 0
\(287\) 11.2361 0.663244
\(288\) 0 0
\(289\) −16.6180 −0.977531
\(290\) 0 0
\(291\) −2.72949 −0.160006
\(292\) 0 0
\(293\) −28.3607 −1.65685 −0.828424 0.560101i \(-0.810762\pi\)
−0.828424 + 0.560101i \(0.810762\pi\)
\(294\) 0 0
\(295\) 27.8885 1.62373
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.52786 −0.0883587
\(300\) 0 0
\(301\) 17.1246 0.987046
\(302\) 0 0
\(303\) 1.59675 0.0917308
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) −27.7984 −1.58654 −0.793268 0.608872i \(-0.791622\pi\)
−0.793268 + 0.608872i \(0.791622\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) −26.0689 −1.47823 −0.739115 0.673579i \(-0.764756\pi\)
−0.739115 + 0.673579i \(0.764756\pi\)
\(312\) 0 0
\(313\) 4.32624 0.244533 0.122267 0.992497i \(-0.460984\pi\)
0.122267 + 0.992497i \(0.460984\pi\)
\(314\) 0 0
\(315\) −18.4721 −1.04079
\(316\) 0 0
\(317\) −3.70820 −0.208273 −0.104137 0.994563i \(-0.533208\pi\)
−0.104137 + 0.994563i \(0.533208\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.437694 −0.0244297
\(322\) 0 0
\(323\) −3.61803 −0.201313
\(324\) 0 0
\(325\) 6.76393 0.375195
\(326\) 0 0
\(327\) −7.23607 −0.400155
\(328\) 0 0
\(329\) 12.9443 0.713641
\(330\) 0 0
\(331\) −6.27051 −0.344658 −0.172329 0.985039i \(-0.555129\pi\)
−0.172329 + 0.985039i \(0.555129\pi\)
\(332\) 0 0
\(333\) 10.5836 0.579977
\(334\) 0 0
\(335\) −35.8885 −1.96080
\(336\) 0 0
\(337\) −26.7984 −1.45980 −0.729900 0.683554i \(-0.760433\pi\)
−0.729900 + 0.683554i \(0.760433\pi\)
\(338\) 0 0
\(339\) 0.708204 0.0384644
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 1.52786 0.0822574
\(346\) 0 0
\(347\) −16.6180 −0.892103 −0.446051 0.895007i \(-0.647170\pi\)
−0.446051 + 0.895007i \(0.647170\pi\)
\(348\) 0 0
\(349\) −19.5967 −1.04899 −0.524495 0.851414i \(-0.675746\pi\)
−0.524495 + 0.851414i \(0.675746\pi\)
\(350\) 0 0
\(351\) 2.76393 0.147528
\(352\) 0 0
\(353\) 32.6180 1.73608 0.868041 0.496492i \(-0.165379\pi\)
0.868041 + 0.496492i \(0.165379\pi\)
\(354\) 0 0
\(355\) 16.9443 0.899309
\(356\) 0 0
\(357\) 0.472136 0.0249881
\(358\) 0 0
\(359\) −5.12461 −0.270467 −0.135233 0.990814i \(-0.543178\pi\)
−0.135233 + 0.990814i \(0.543178\pi\)
\(360\) 0 0
\(361\) 15.2705 0.803711
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 33.5967 1.75853
\(366\) 0 0
\(367\) −19.7082 −1.02876 −0.514380 0.857562i \(-0.671978\pi\)
−0.514380 + 0.857562i \(0.671978\pi\)
\(368\) 0 0
\(369\) −16.0344 −0.834720
\(370\) 0 0
\(371\) −3.05573 −0.158645
\(372\) 0 0
\(373\) −4.29180 −0.222221 −0.111110 0.993808i \(-0.535441\pi\)
−0.111110 + 0.993808i \(0.535441\pi\)
\(374\) 0 0
\(375\) −0.583592 −0.0301366
\(376\) 0 0
\(377\) 5.52786 0.284699
\(378\) 0 0
\(379\) −14.2705 −0.733027 −0.366513 0.930413i \(-0.619449\pi\)
−0.366513 + 0.930413i \(0.619449\pi\)
\(380\) 0 0
\(381\) −4.18034 −0.214165
\(382\) 0 0
\(383\) 28.3607 1.44916 0.724582 0.689189i \(-0.242033\pi\)
0.724582 + 0.689189i \(0.242033\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −24.4377 −1.24224
\(388\) 0 0
\(389\) −10.6525 −0.540102 −0.270051 0.962846i \(-0.587041\pi\)
−0.270051 + 0.962846i \(0.587041\pi\)
\(390\) 0 0
\(391\) 0.763932 0.0386337
\(392\) 0 0
\(393\) 2.59675 0.130989
\(394\) 0 0
\(395\) −43.4164 −2.18452
\(396\) 0 0
\(397\) −17.1246 −0.859460 −0.429730 0.902958i \(-0.641391\pi\)
−0.429730 + 0.902958i \(0.641391\pi\)
\(398\) 0 0
\(399\) −4.47214 −0.223887
\(400\) 0 0
\(401\) −17.7984 −0.888808 −0.444404 0.895826i \(-0.646585\pi\)
−0.444404 + 0.895826i \(0.646585\pi\)
\(402\) 0 0
\(403\) −2.47214 −0.123146
\(404\) 0 0
\(405\) 24.9443 1.23949
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −13.4164 −0.663399 −0.331699 0.943385i \(-0.607622\pi\)
−0.331699 + 0.943385i \(0.607622\pi\)
\(410\) 0 0
\(411\) −6.14590 −0.303155
\(412\) 0 0
\(413\) 17.2361 0.848131
\(414\) 0 0
\(415\) −30.1803 −1.48149
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.8541 0.530258 0.265129 0.964213i \(-0.414586\pi\)
0.265129 + 0.964213i \(0.414586\pi\)
\(420\) 0 0
\(421\) −31.4164 −1.53114 −0.765571 0.643351i \(-0.777543\pi\)
−0.765571 + 0.643351i \(0.777543\pi\)
\(422\) 0 0
\(423\) −18.4721 −0.898146
\(424\) 0 0
\(425\) −3.38197 −0.164049
\(426\) 0 0
\(427\) −4.94427 −0.239270
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.9443 0.816177 0.408088 0.912942i \(-0.366196\pi\)
0.408088 + 0.912942i \(0.366196\pi\)
\(432\) 0 0
\(433\) 27.7426 1.33323 0.666613 0.745404i \(-0.267743\pi\)
0.666613 + 0.745404i \(0.267743\pi\)
\(434\) 0 0
\(435\) −5.52786 −0.265041
\(436\) 0 0
\(437\) −7.23607 −0.346148
\(438\) 0 0
\(439\) 6.58359 0.314218 0.157109 0.987581i \(-0.449783\pi\)
0.157109 + 0.987581i \(0.449783\pi\)
\(440\) 0 0
\(441\) 8.56231 0.407729
\(442\) 0 0
\(443\) 8.56231 0.406807 0.203404 0.979095i \(-0.434800\pi\)
0.203404 + 0.979095i \(0.434800\pi\)
\(444\) 0 0
\(445\) −26.1803 −1.24107
\(446\) 0 0
\(447\) 2.36068 0.111656
\(448\) 0 0
\(449\) 9.27051 0.437502 0.218751 0.975781i \(-0.429802\pi\)
0.218751 + 0.975781i \(0.429802\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −3.05573 −0.143571
\(454\) 0 0
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) −9.43769 −0.441477 −0.220738 0.975333i \(-0.570847\pi\)
−0.220738 + 0.975333i \(0.570847\pi\)
\(458\) 0 0
\(459\) −1.38197 −0.0645046
\(460\) 0 0
\(461\) 1.34752 0.0627605 0.0313802 0.999508i \(-0.490010\pi\)
0.0313802 + 0.999508i \(0.490010\pi\)
\(462\) 0 0
\(463\) 19.4164 0.902357 0.451178 0.892434i \(-0.351004\pi\)
0.451178 + 0.892434i \(0.351004\pi\)
\(464\) 0 0
\(465\) 2.47214 0.114643
\(466\) 0 0
\(467\) 33.3050 1.54117 0.770585 0.637338i \(-0.219964\pi\)
0.770585 + 0.637338i \(0.219964\pi\)
\(468\) 0 0
\(469\) −22.1803 −1.02419
\(470\) 0 0
\(471\) −3.70820 −0.170865
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 32.0344 1.46984
\(476\) 0 0
\(477\) 4.36068 0.199662
\(478\) 0 0
\(479\) 34.4721 1.57507 0.787536 0.616269i \(-0.211356\pi\)
0.787536 + 0.616269i \(0.211356\pi\)
\(480\) 0 0
\(481\) −4.58359 −0.208994
\(482\) 0 0
\(483\) 0.944272 0.0429659
\(484\) 0 0
\(485\) 23.1246 1.05003
\(486\) 0 0
\(487\) 1.34752 0.0610621 0.0305311 0.999534i \(-0.490280\pi\)
0.0305311 + 0.999534i \(0.490280\pi\)
\(488\) 0 0
\(489\) 0.347524 0.0157156
\(490\) 0 0
\(491\) −22.8541 −1.03139 −0.515696 0.856772i \(-0.672466\pi\)
−0.515696 + 0.856772i \(0.672466\pi\)
\(492\) 0 0
\(493\) −2.76393 −0.124481
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.4721 0.469739
\(498\) 0 0
\(499\) 30.8541 1.38122 0.690610 0.723228i \(-0.257342\pi\)
0.690610 + 0.723228i \(0.257342\pi\)
\(500\) 0 0
\(501\) −5.63932 −0.251946
\(502\) 0 0
\(503\) 3.23607 0.144289 0.0721446 0.997394i \(-0.477016\pi\)
0.0721446 + 0.997394i \(0.477016\pi\)
\(504\) 0 0
\(505\) −13.5279 −0.601982
\(506\) 0 0
\(507\) 4.38197 0.194610
\(508\) 0 0
\(509\) −8.29180 −0.367527 −0.183764 0.982970i \(-0.558828\pi\)
−0.183764 + 0.982970i \(0.558828\pi\)
\(510\) 0 0
\(511\) 20.7639 0.918542
\(512\) 0 0
\(513\) 13.0902 0.577945
\(514\) 0 0
\(515\) −50.8328 −2.23996
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −8.36068 −0.366993
\(520\) 0 0
\(521\) −20.0344 −0.877725 −0.438862 0.898554i \(-0.644618\pi\)
−0.438862 + 0.898554i \(0.644618\pi\)
\(522\) 0 0
\(523\) −9.20163 −0.402359 −0.201180 0.979554i \(-0.564477\pi\)
−0.201180 + 0.979554i \(0.564477\pi\)
\(524\) 0 0
\(525\) −4.18034 −0.182445
\(526\) 0 0
\(527\) 1.23607 0.0538440
\(528\) 0 0
\(529\) −21.4721 −0.933571
\(530\) 0 0
\(531\) −24.5967 −1.06741
\(532\) 0 0
\(533\) 6.94427 0.300790
\(534\) 0 0
\(535\) 3.70820 0.160320
\(536\) 0 0
\(537\) −3.29180 −0.142051
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.12461 −0.134338 −0.0671688 0.997742i \(-0.521397\pi\)
−0.0671688 + 0.997742i \(0.521397\pi\)
\(542\) 0 0
\(543\) 1.59675 0.0685230
\(544\) 0 0
\(545\) 61.3050 2.62602
\(546\) 0 0
\(547\) −8.32624 −0.356004 −0.178002 0.984030i \(-0.556963\pi\)
−0.178002 + 0.984030i \(0.556963\pi\)
\(548\) 0 0
\(549\) 7.05573 0.301131
\(550\) 0 0
\(551\) 26.1803 1.11532
\(552\) 0 0
\(553\) −26.8328 −1.14105
\(554\) 0 0
\(555\) 4.58359 0.194563
\(556\) 0 0
\(557\) 35.2361 1.49300 0.746500 0.665385i \(-0.231733\pi\)
0.746500 + 0.665385i \(0.231733\pi\)
\(558\) 0 0
\(559\) 10.5836 0.447638
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.381966 −0.0160979 −0.00804897 0.999968i \(-0.502562\pi\)
−0.00804897 + 0.999968i \(0.502562\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) 0 0
\(567\) 15.4164 0.647428
\(568\) 0 0
\(569\) 38.2148 1.60205 0.801023 0.598633i \(-0.204289\pi\)
0.801023 + 0.598633i \(0.204289\pi\)
\(570\) 0 0
\(571\) 2.47214 0.103456 0.0517278 0.998661i \(-0.483527\pi\)
0.0517278 + 0.998661i \(0.483527\pi\)
\(572\) 0 0
\(573\) 1.81966 0.0760174
\(574\) 0 0
\(575\) −6.76393 −0.282075
\(576\) 0 0
\(577\) −6.79837 −0.283020 −0.141510 0.989937i \(-0.545196\pi\)
−0.141510 + 0.989937i \(0.545196\pi\)
\(578\) 0 0
\(579\) −6.65248 −0.276467
\(580\) 0 0
\(581\) −18.6525 −0.773835
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −11.4164 −0.472010
\(586\) 0 0
\(587\) −22.1459 −0.914059 −0.457030 0.889452i \(-0.651087\pi\)
−0.457030 + 0.889452i \(0.651087\pi\)
\(588\) 0 0
\(589\) −11.7082 −0.482428
\(590\) 0 0
\(591\) 8.00000 0.329076
\(592\) 0 0
\(593\) −28.6869 −1.17803 −0.589015 0.808122i \(-0.700484\pi\)
−0.589015 + 0.808122i \(0.700484\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) 0 0
\(597\) −7.23607 −0.296153
\(598\) 0 0
\(599\) 13.4164 0.548180 0.274090 0.961704i \(-0.411623\pi\)
0.274090 + 0.961704i \(0.411623\pi\)
\(600\) 0 0
\(601\) −27.1459 −1.10730 −0.553652 0.832748i \(-0.686766\pi\)
−0.553652 + 0.832748i \(0.686766\pi\)
\(602\) 0 0
\(603\) 31.6525 1.28899
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −23.1246 −0.938599 −0.469300 0.883039i \(-0.655494\pi\)
−0.469300 + 0.883039i \(0.655494\pi\)
\(608\) 0 0
\(609\) −3.41641 −0.138440
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 35.7082 1.44224 0.721120 0.692810i \(-0.243627\pi\)
0.721120 + 0.692810i \(0.243627\pi\)
\(614\) 0 0
\(615\) −6.94427 −0.280020
\(616\) 0 0
\(617\) 23.4508 0.944096 0.472048 0.881573i \(-0.343515\pi\)
0.472048 + 0.881573i \(0.343515\pi\)
\(618\) 0 0
\(619\) −5.20163 −0.209071 −0.104536 0.994521i \(-0.533336\pi\)
−0.104536 + 0.994521i \(0.533336\pi\)
\(620\) 0 0
\(621\) −2.76393 −0.110913
\(622\) 0 0
\(623\) −16.1803 −0.648252
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.29180 0.0913799
\(630\) 0 0
\(631\) −23.7082 −0.943809 −0.471904 0.881650i \(-0.656433\pi\)
−0.471904 + 0.881650i \(0.656433\pi\)
\(632\) 0 0
\(633\) −2.32624 −0.0924597
\(634\) 0 0
\(635\) 35.4164 1.40546
\(636\) 0 0
\(637\) −3.70820 −0.146924
\(638\) 0 0
\(639\) −14.9443 −0.591186
\(640\) 0 0
\(641\) 16.6738 0.658574 0.329287 0.944230i \(-0.393192\pi\)
0.329287 + 0.944230i \(0.393192\pi\)
\(642\) 0 0
\(643\) −39.9787 −1.57661 −0.788303 0.615287i \(-0.789040\pi\)
−0.788303 + 0.615287i \(0.789040\pi\)
\(644\) 0 0
\(645\) −10.5836 −0.416729
\(646\) 0 0
\(647\) −29.0557 −1.14230 −0.571149 0.820846i \(-0.693502\pi\)
−0.571149 + 0.820846i \(0.693502\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.52786 0.0598817
\(652\) 0 0
\(653\) −15.3475 −0.600595 −0.300298 0.953846i \(-0.597086\pi\)
−0.300298 + 0.953846i \(0.597086\pi\)
\(654\) 0 0
\(655\) −22.0000 −0.859611
\(656\) 0 0
\(657\) −29.6312 −1.15602
\(658\) 0 0
\(659\) 16.9098 0.658713 0.329357 0.944206i \(-0.393168\pi\)
0.329357 + 0.944206i \(0.393168\pi\)
\(660\) 0 0
\(661\) −3.52786 −0.137218 −0.0686090 0.997644i \(-0.521856\pi\)
−0.0686090 + 0.997644i \(0.521856\pi\)
\(662\) 0 0
\(663\) 0.291796 0.0113324
\(664\) 0 0
\(665\) 37.8885 1.46925
\(666\) 0 0
\(667\) −5.52786 −0.214040
\(668\) 0 0
\(669\) 9.81966 0.379650
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 9.85410 0.379848 0.189924 0.981799i \(-0.439176\pi\)
0.189924 + 0.981799i \(0.439176\pi\)
\(674\) 0 0
\(675\) 12.2361 0.470966
\(676\) 0 0
\(677\) −14.3607 −0.551926 −0.275963 0.961168i \(-0.588997\pi\)
−0.275963 + 0.961168i \(0.588997\pi\)
\(678\) 0 0
\(679\) 14.2918 0.548469
\(680\) 0 0
\(681\) 5.54102 0.212332
\(682\) 0 0
\(683\) −18.4721 −0.706817 −0.353408 0.935469i \(-0.614977\pi\)
−0.353408 + 0.935469i \(0.614977\pi\)
\(684\) 0 0
\(685\) 52.0689 1.98945
\(686\) 0 0
\(687\) −0.652476 −0.0248935
\(688\) 0 0
\(689\) −1.88854 −0.0719478
\(690\) 0 0
\(691\) 26.2148 0.997257 0.498629 0.866816i \(-0.333837\pi\)
0.498629 + 0.866816i \(0.333837\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −3.47214 −0.131517
\(698\) 0 0
\(699\) 3.67376 0.138954
\(700\) 0 0
\(701\) −14.8328 −0.560228 −0.280114 0.959967i \(-0.590372\pi\)
−0.280114 + 0.959967i \(0.590372\pi\)
\(702\) 0 0
\(703\) −21.7082 −0.818740
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) −8.36068 −0.314436
\(708\) 0 0
\(709\) 24.4721 0.919070 0.459535 0.888160i \(-0.348016\pi\)
0.459535 + 0.888160i \(0.348016\pi\)
\(710\) 0 0
\(711\) 38.2918 1.43605
\(712\) 0 0
\(713\) 2.47214 0.0925822
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.29180 −0.309663
\(718\) 0 0
\(719\) −26.8328 −1.00070 −0.500348 0.865825i \(-0.666794\pi\)
−0.500348 + 0.865825i \(0.666794\pi\)
\(720\) 0 0
\(721\) −31.4164 −1.17001
\(722\) 0 0
\(723\) 4.23607 0.157541
\(724\) 0 0
\(725\) 24.4721 0.908872
\(726\) 0 0
\(727\) −2.87539 −0.106642 −0.0533211 0.998577i \(-0.516981\pi\)
−0.0533211 + 0.998577i \(0.516981\pi\)
\(728\) 0 0
\(729\) −19.4377 −0.719915
\(730\) 0 0
\(731\) −5.29180 −0.195724
\(732\) 0 0
\(733\) −9.41641 −0.347803 −0.173901 0.984763i \(-0.555637\pi\)
−0.173901 + 0.984763i \(0.555637\pi\)
\(734\) 0 0
\(735\) 3.70820 0.136779
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 37.5623 1.38175 0.690876 0.722973i \(-0.257225\pi\)
0.690876 + 0.722973i \(0.257225\pi\)
\(740\) 0 0
\(741\) −2.76393 −0.101536
\(742\) 0 0
\(743\) 8.76393 0.321517 0.160759 0.986994i \(-0.448606\pi\)
0.160759 + 0.986994i \(0.448606\pi\)
\(744\) 0 0
\(745\) −20.0000 −0.732743
\(746\) 0 0
\(747\) 26.6180 0.973903
\(748\) 0 0
\(749\) 2.29180 0.0837404
\(750\) 0 0
\(751\) 33.7771 1.23254 0.616272 0.787534i \(-0.288642\pi\)
0.616272 + 0.787534i \(0.288642\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 25.8885 0.942181
\(756\) 0 0
\(757\) −2.65248 −0.0964059 −0.0482029 0.998838i \(-0.515349\pi\)
−0.0482029 + 0.998838i \(0.515349\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.25735 −0.154329 −0.0771645 0.997018i \(-0.524587\pi\)
−0.0771645 + 0.997018i \(0.524587\pi\)
\(762\) 0 0
\(763\) 37.8885 1.37166
\(764\) 0 0
\(765\) 5.70820 0.206381
\(766\) 0 0
\(767\) 10.6525 0.384639
\(768\) 0 0
\(769\) 13.4164 0.483808 0.241904 0.970300i \(-0.422228\pi\)
0.241904 + 0.970300i \(0.422228\pi\)
\(770\) 0 0
\(771\) 2.14590 0.0772826
\(772\) 0 0
\(773\) −3.88854 −0.139861 −0.0699306 0.997552i \(-0.522278\pi\)
−0.0699306 + 0.997552i \(0.522278\pi\)
\(774\) 0 0
\(775\) −10.9443 −0.393130
\(776\) 0 0
\(777\) 2.83282 0.101627
\(778\) 0 0
\(779\) 32.8885 1.17835
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 10.0000 0.357371
\(784\) 0 0
\(785\) 31.4164 1.12130
\(786\) 0 0
\(787\) −26.2148 −0.934456 −0.467228 0.884137i \(-0.654747\pi\)
−0.467228 + 0.884137i \(0.654747\pi\)
\(788\) 0 0
\(789\) −8.87539 −0.315972
\(790\) 0 0
\(791\) −3.70820 −0.131849
\(792\) 0 0
\(793\) −3.05573 −0.108512
\(794\) 0 0
\(795\) 1.88854 0.0669797
\(796\) 0 0
\(797\) −24.7639 −0.877183 −0.438592 0.898686i \(-0.644523\pi\)
−0.438592 + 0.898686i \(0.644523\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) 23.0902 0.815851
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) −2.36068 −0.0830999
\(808\) 0 0
\(809\) 16.9098 0.594518 0.297259 0.954797i \(-0.403928\pi\)
0.297259 + 0.954797i \(0.403928\pi\)
\(810\) 0 0
\(811\) −8.38197 −0.294331 −0.147165 0.989112i \(-0.547015\pi\)
−0.147165 + 0.989112i \(0.547015\pi\)
\(812\) 0 0
\(813\) 0.763932 0.0267923
\(814\) 0 0
\(815\) −2.94427 −0.103133
\(816\) 0 0
\(817\) 50.1246 1.75364
\(818\) 0 0
\(819\) −7.05573 −0.246547
\(820\) 0 0
\(821\) 30.5410 1.06589 0.532944 0.846150i \(-0.321085\pi\)
0.532944 + 0.846150i \(0.321085\pi\)
\(822\) 0 0
\(823\) −23.5967 −0.822531 −0.411265 0.911516i \(-0.634913\pi\)
−0.411265 + 0.911516i \(0.634913\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −39.3820 −1.36945 −0.684723 0.728804i \(-0.740077\pi\)
−0.684723 + 0.728804i \(0.740077\pi\)
\(828\) 0 0
\(829\) 31.0557 1.07861 0.539305 0.842111i \(-0.318687\pi\)
0.539305 + 0.842111i \(0.318687\pi\)
\(830\) 0 0
\(831\) 9.05573 0.314140
\(832\) 0 0
\(833\) 1.85410 0.0642408
\(834\) 0 0
\(835\) 47.7771 1.65339
\(836\) 0 0
\(837\) −4.47214 −0.154580
\(838\) 0 0
\(839\) −12.1115 −0.418134 −0.209067 0.977901i \(-0.567043\pi\)
−0.209067 + 0.977901i \(0.567043\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 6.14590 0.211676
\(844\) 0 0
\(845\) −37.1246 −1.27713
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 9.16718 0.314617
\(850\) 0 0
\(851\) 4.58359 0.157124
\(852\) 0 0
\(853\) −30.4721 −1.04335 −0.521673 0.853146i \(-0.674692\pi\)
−0.521673 + 0.853146i \(0.674692\pi\)
\(854\) 0 0
\(855\) −54.0689 −1.84912
\(856\) 0 0
\(857\) −10.7426 −0.366962 −0.183481 0.983023i \(-0.558737\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(858\) 0 0
\(859\) −46.5066 −1.58678 −0.793392 0.608711i \(-0.791687\pi\)
−0.793392 + 0.608711i \(0.791687\pi\)
\(860\) 0 0
\(861\) −4.29180 −0.146264
\(862\) 0 0
\(863\) 33.2361 1.13137 0.565684 0.824622i \(-0.308612\pi\)
0.565684 + 0.824622i \(0.308612\pi\)
\(864\) 0 0
\(865\) 70.8328 2.40839
\(866\) 0 0
\(867\) 6.34752 0.215573
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −13.7082 −0.464485
\(872\) 0 0
\(873\) −20.3951 −0.690270
\(874\) 0 0
\(875\) 3.05573 0.103302
\(876\) 0 0
\(877\) −28.1803 −0.951582 −0.475791 0.879558i \(-0.657838\pi\)
−0.475791 + 0.879558i \(0.657838\pi\)
\(878\) 0 0
\(879\) 10.8328 0.365382
\(880\) 0 0
\(881\) −46.3394 −1.56121 −0.780607 0.625022i \(-0.785090\pi\)
−0.780607 + 0.625022i \(0.785090\pi\)
\(882\) 0 0
\(883\) 3.43769 0.115688 0.0578438 0.998326i \(-0.481577\pi\)
0.0578438 + 0.998326i \(0.481577\pi\)
\(884\) 0 0
\(885\) −10.6525 −0.358079
\(886\) 0 0
\(887\) 37.7771 1.26843 0.634215 0.773157i \(-0.281323\pi\)
0.634215 + 0.773157i \(0.281323\pi\)
\(888\) 0 0
\(889\) 21.8885 0.734118
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 37.8885 1.26789
\(894\) 0 0
\(895\) 27.8885 0.932211
\(896\) 0 0
\(897\) 0.583592 0.0194856
\(898\) 0 0
\(899\) −8.94427 −0.298308
\(900\) 0 0
\(901\) 0.944272 0.0314583
\(902\) 0 0
\(903\) −6.54102 −0.217672
\(904\) 0 0
\(905\) −13.5279 −0.449681
\(906\) 0 0
\(907\) −10.4377 −0.346578 −0.173289 0.984871i \(-0.555439\pi\)
−0.173289 + 0.984871i \(0.555439\pi\)
\(908\) 0 0
\(909\) 11.9311 0.395730
\(910\) 0 0
\(911\) −18.1803 −0.602342 −0.301171 0.953570i \(-0.597377\pi\)
−0.301171 + 0.953570i \(0.597377\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 3.05573 0.101019
\(916\) 0 0
\(917\) −13.5967 −0.449004
\(918\) 0 0
\(919\) −43.4164 −1.43218 −0.716088 0.698010i \(-0.754069\pi\)
−0.716088 + 0.698010i \(0.754069\pi\)
\(920\) 0 0
\(921\) 10.6180 0.349876
\(922\) 0 0
\(923\) 6.47214 0.213033
\(924\) 0 0
\(925\) −20.2918 −0.667190
\(926\) 0 0
\(927\) 44.8328 1.47250
\(928\) 0 0
\(929\) −16.2574 −0.533386 −0.266693 0.963781i \(-0.585931\pi\)
−0.266693 + 0.963781i \(0.585931\pi\)
\(930\) 0 0
\(931\) −17.5623 −0.575581
\(932\) 0 0
\(933\) 9.95743 0.325992
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −37.8541 −1.23664 −0.618320 0.785927i \(-0.712186\pi\)
−0.618320 + 0.785927i \(0.712186\pi\)
\(938\) 0 0
\(939\) −1.65248 −0.0539265
\(940\) 0 0
\(941\) 48.1803 1.57063 0.785317 0.619094i \(-0.212500\pi\)
0.785317 + 0.619094i \(0.212500\pi\)
\(942\) 0 0
\(943\) −6.94427 −0.226137
\(944\) 0 0
\(945\) 14.4721 0.470779
\(946\) 0 0
\(947\) 30.2148 0.981848 0.490924 0.871202i \(-0.336659\pi\)
0.490924 + 0.871202i \(0.336659\pi\)
\(948\) 0 0
\(949\) 12.8328 0.416571
\(950\) 0 0
\(951\) 1.41641 0.0459302
\(952\) 0 0
\(953\) −11.3262 −0.366893 −0.183446 0.983030i \(-0.558725\pi\)
−0.183446 + 0.983030i \(0.558725\pi\)
\(954\) 0 0
\(955\) −15.4164 −0.498863
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 32.1803 1.03916
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −3.27051 −0.105391
\(964\) 0 0
\(965\) 56.3607 1.81431
\(966\) 0 0
\(967\) −38.0000 −1.22200 −0.610999 0.791632i \(-0.709232\pi\)
−0.610999 + 0.791632i \(0.709232\pi\)
\(968\) 0 0
\(969\) 1.38197 0.0443951
\(970\) 0 0
\(971\) 10.1115 0.324492 0.162246 0.986750i \(-0.448126\pi\)
0.162246 + 0.986750i \(0.448126\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −2.58359 −0.0827412
\(976\) 0 0
\(977\) −43.3050 −1.38545 −0.692724 0.721203i \(-0.743590\pi\)
−0.692724 + 0.721203i \(0.743590\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −54.0689 −1.72629
\(982\) 0 0
\(983\) 6.00000 0.191370 0.0956851 0.995412i \(-0.469496\pi\)
0.0956851 + 0.995412i \(0.469496\pi\)
\(984\) 0 0
\(985\) −67.7771 −2.15956
\(986\) 0 0
\(987\) −4.94427 −0.157378
\(988\) 0 0
\(989\) −10.5836 −0.336539
\(990\) 0 0
\(991\) −30.5410 −0.970167 −0.485084 0.874468i \(-0.661211\pi\)
−0.485084 + 0.874468i \(0.661211\pi\)
\(992\) 0 0
\(993\) 2.39512 0.0760069
\(994\) 0 0
\(995\) 61.3050 1.94350
\(996\) 0 0
\(997\) 8.65248 0.274027 0.137013 0.990569i \(-0.456250\pi\)
0.137013 + 0.990569i \(0.456250\pi\)
\(998\) 0 0
\(999\) −8.29180 −0.262341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.2.a.o.1.2 2
4.3 odd 2 242.2.a.f.1.1 2
8.3 odd 2 7744.2.a.bm.1.2 2
8.5 even 2 7744.2.a.cz.1.1 2
11.5 even 5 176.2.m.c.113.1 4
11.9 even 5 176.2.m.c.81.1 4
11.10 odd 2 1936.2.a.n.1.2 2
12.11 even 2 2178.2.a.p.1.1 2
20.19 odd 2 6050.2.a.bs.1.2 2
44.3 odd 10 242.2.c.a.9.1 4
44.7 even 10 242.2.c.d.27.1 4
44.15 odd 10 242.2.c.a.27.1 4
44.19 even 10 242.2.c.d.9.1 4
44.27 odd 10 22.2.c.a.3.1 4
44.31 odd 10 22.2.c.a.15.1 yes 4
44.35 even 10 242.2.c.c.81.1 4
44.39 even 10 242.2.c.c.3.1 4
44.43 even 2 242.2.a.d.1.1 2
88.5 even 10 704.2.m.a.641.1 4
88.21 odd 2 7744.2.a.cy.1.1 2
88.27 odd 10 704.2.m.h.641.1 4
88.43 even 2 7744.2.a.bn.1.2 2
88.53 even 10 704.2.m.a.257.1 4
88.75 odd 10 704.2.m.h.257.1 4
132.71 even 10 198.2.f.e.91.1 4
132.119 even 10 198.2.f.e.37.1 4
132.131 odd 2 2178.2.a.x.1.1 2
220.27 even 20 550.2.ba.c.399.1 8
220.119 odd 10 550.2.h.h.301.1 4
220.159 odd 10 550.2.h.h.201.1 4
220.163 even 20 550.2.ba.c.499.1 8
220.203 even 20 550.2.ba.c.399.2 8
220.207 even 20 550.2.ba.c.499.2 8
220.219 even 2 6050.2.a.ci.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.2.c.a.3.1 4 44.27 odd 10
22.2.c.a.15.1 yes 4 44.31 odd 10
176.2.m.c.81.1 4 11.9 even 5
176.2.m.c.113.1 4 11.5 even 5
198.2.f.e.37.1 4 132.119 even 10
198.2.f.e.91.1 4 132.71 even 10
242.2.a.d.1.1 2 44.43 even 2
242.2.a.f.1.1 2 4.3 odd 2
242.2.c.a.9.1 4 44.3 odd 10
242.2.c.a.27.1 4 44.15 odd 10
242.2.c.c.3.1 4 44.39 even 10
242.2.c.c.81.1 4 44.35 even 10
242.2.c.d.9.1 4 44.19 even 10
242.2.c.d.27.1 4 44.7 even 10
550.2.h.h.201.1 4 220.159 odd 10
550.2.h.h.301.1 4 220.119 odd 10
550.2.ba.c.399.1 8 220.27 even 20
550.2.ba.c.399.2 8 220.203 even 20
550.2.ba.c.499.1 8 220.163 even 20
550.2.ba.c.499.2 8 220.207 even 20
704.2.m.a.257.1 4 88.53 even 10
704.2.m.a.641.1 4 88.5 even 10
704.2.m.h.257.1 4 88.75 odd 10
704.2.m.h.641.1 4 88.27 odd 10
1936.2.a.n.1.2 2 11.10 odd 2
1936.2.a.o.1.2 2 1.1 even 1 trivial
2178.2.a.p.1.1 2 12.11 even 2
2178.2.a.x.1.1 2 132.131 odd 2
6050.2.a.bs.1.2 2 20.19 odd 2
6050.2.a.ci.1.2 2 220.219 even 2
7744.2.a.bm.1.2 2 8.3 odd 2
7744.2.a.bn.1.2 2 88.43 even 2
7744.2.a.cy.1.1 2 88.21 odd 2
7744.2.a.cz.1.1 2 8.5 even 2