Properties

Label 1936.2.a.o.1.1
Level $1936$
Weight $2$
Character 1936.1
Self dual yes
Analytic conductor $15.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1936,2,Mod(1,1936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1936.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.4590378313\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803 q^{3} -1.23607 q^{5} +2.00000 q^{7} +3.85410 q^{9} -3.23607 q^{13} +3.23607 q^{15} +1.61803 q^{17} -0.854102 q^{19} -5.23607 q^{21} +3.23607 q^{23} -3.47214 q^{25} -2.23607 q^{27} -4.47214 q^{29} -2.00000 q^{31} -2.47214 q^{35} +9.70820 q^{37} +8.47214 q^{39} +3.38197 q^{41} -11.5623 q^{43} -4.76393 q^{45} -2.47214 q^{47} -3.00000 q^{49} -4.23607 q^{51} -10.4721 q^{53} +2.23607 q^{57} +6.38197 q^{59} +6.47214 q^{61} +7.70820 q^{63} +4.00000 q^{65} +0.0901699 q^{67} -8.47214 q^{69} +0.763932 q^{71} +12.6180 q^{73} +9.09017 q^{75} +13.4164 q^{79} -5.70820 q^{81} +6.32624 q^{83} -2.00000 q^{85} +11.7082 q^{87} +3.09017 q^{89} -6.47214 q^{91} +5.23607 q^{93} +1.05573 q^{95} +13.8541 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + 2 q^{5} + 4 q^{7} + q^{9} - 2 q^{13} + 2 q^{15} + q^{17} + 5 q^{19} - 6 q^{21} + 2 q^{23} + 2 q^{25} - 4 q^{31} + 4 q^{35} + 6 q^{37} + 8 q^{39} + 9 q^{41} - 3 q^{43} - 14 q^{45} + 4 q^{47}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.61803 −1.51152 −0.755761 0.654847i \(-0.772733\pi\)
−0.755761 + 0.654847i \(0.772733\pi\)
\(4\) 0 0
\(5\) −1.23607 −0.552786 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 3.85410 1.28470
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.23607 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(14\) 0 0
\(15\) 3.23607 0.835549
\(16\) 0 0
\(17\) 1.61803 0.392431 0.196215 0.980561i \(-0.437135\pi\)
0.196215 + 0.980561i \(0.437135\pi\)
\(18\) 0 0
\(19\) −0.854102 −0.195944 −0.0979722 0.995189i \(-0.531236\pi\)
−0.0979722 + 0.995189i \(0.531236\pi\)
\(20\) 0 0
\(21\) −5.23607 −1.14260
\(22\) 0 0
\(23\) 3.23607 0.674767 0.337383 0.941367i \(-0.390458\pi\)
0.337383 + 0.941367i \(0.390458\pi\)
\(24\) 0 0
\(25\) −3.47214 −0.694427
\(26\) 0 0
\(27\) −2.23607 −0.430331
\(28\) 0 0
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.47214 −0.417867
\(36\) 0 0
\(37\) 9.70820 1.59602 0.798009 0.602645i \(-0.205886\pi\)
0.798009 + 0.602645i \(0.205886\pi\)
\(38\) 0 0
\(39\) 8.47214 1.35663
\(40\) 0 0
\(41\) 3.38197 0.528174 0.264087 0.964499i \(-0.414929\pi\)
0.264087 + 0.964499i \(0.414929\pi\)
\(42\) 0 0
\(43\) −11.5623 −1.76324 −0.881618 0.471964i \(-0.843545\pi\)
−0.881618 + 0.471964i \(0.843545\pi\)
\(44\) 0 0
\(45\) −4.76393 −0.710165
\(46\) 0 0
\(47\) −2.47214 −0.360598 −0.180299 0.983612i \(-0.557707\pi\)
−0.180299 + 0.983612i \(0.557707\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −4.23607 −0.593168
\(52\) 0 0
\(53\) −10.4721 −1.43846 −0.719229 0.694773i \(-0.755505\pi\)
−0.719229 + 0.694773i \(0.755505\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.23607 0.296174
\(58\) 0 0
\(59\) 6.38197 0.830861 0.415431 0.909625i \(-0.363631\pi\)
0.415431 + 0.909625i \(0.363631\pi\)
\(60\) 0 0
\(61\) 6.47214 0.828672 0.414336 0.910124i \(-0.364014\pi\)
0.414336 + 0.910124i \(0.364014\pi\)
\(62\) 0 0
\(63\) 7.70820 0.971142
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 0.0901699 0.0110160 0.00550801 0.999985i \(-0.498247\pi\)
0.00550801 + 0.999985i \(0.498247\pi\)
\(68\) 0 0
\(69\) −8.47214 −1.01993
\(70\) 0 0
\(71\) 0.763932 0.0906621 0.0453310 0.998972i \(-0.485566\pi\)
0.0453310 + 0.998972i \(0.485566\pi\)
\(72\) 0 0
\(73\) 12.6180 1.47683 0.738415 0.674347i \(-0.235575\pi\)
0.738415 + 0.674347i \(0.235575\pi\)
\(74\) 0 0
\(75\) 9.09017 1.04964
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.4164 1.50946 0.754732 0.656033i \(-0.227767\pi\)
0.754732 + 0.656033i \(0.227767\pi\)
\(80\) 0 0
\(81\) −5.70820 −0.634245
\(82\) 0 0
\(83\) 6.32624 0.694395 0.347197 0.937792i \(-0.387133\pi\)
0.347197 + 0.937792i \(0.387133\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 11.7082 1.25525
\(88\) 0 0
\(89\) 3.09017 0.327557 0.163779 0.986497i \(-0.447632\pi\)
0.163779 + 0.986497i \(0.447632\pi\)
\(90\) 0 0
\(91\) −6.47214 −0.678464
\(92\) 0 0
\(93\) 5.23607 0.542955
\(94\) 0 0
\(95\) 1.05573 0.108315
\(96\) 0 0
\(97\) 13.8541 1.40667 0.703335 0.710858i \(-0.251693\pi\)
0.703335 + 0.710858i \(0.251693\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.1803 1.80901 0.904506 0.426461i \(-0.140240\pi\)
0.904506 + 0.426461i \(0.140240\pi\)
\(102\) 0 0
\(103\) −2.29180 −0.225817 −0.112909 0.993605i \(-0.536017\pi\)
−0.112909 + 0.993605i \(0.536017\pi\)
\(104\) 0 0
\(105\) 6.47214 0.631616
\(106\) 0 0
\(107\) 7.85410 0.759285 0.379642 0.925133i \(-0.376047\pi\)
0.379642 + 0.925133i \(0.376047\pi\)
\(108\) 0 0
\(109\) 1.05573 0.101120 0.0505602 0.998721i \(-0.483899\pi\)
0.0505602 + 0.998721i \(0.483899\pi\)
\(110\) 0 0
\(111\) −25.4164 −2.41242
\(112\) 0 0
\(113\) 4.85410 0.456636 0.228318 0.973587i \(-0.426677\pi\)
0.228318 + 0.973587i \(0.426677\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) −12.4721 −1.15305
\(118\) 0 0
\(119\) 3.23607 0.296650
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −8.85410 −0.798347
\(124\) 0 0
\(125\) 10.4721 0.936656
\(126\) 0 0
\(127\) −6.94427 −0.616204 −0.308102 0.951353i \(-0.599694\pi\)
−0.308102 + 0.951353i \(0.599694\pi\)
\(128\) 0 0
\(129\) 30.2705 2.66517
\(130\) 0 0
\(131\) 17.7984 1.55505 0.777526 0.628851i \(-0.216475\pi\)
0.777526 + 0.628851i \(0.216475\pi\)
\(132\) 0 0
\(133\) −1.70820 −0.148120
\(134\) 0 0
\(135\) 2.76393 0.237881
\(136\) 0 0
\(137\) 4.90983 0.419475 0.209738 0.977758i \(-0.432739\pi\)
0.209738 + 0.977758i \(0.432739\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 6.47214 0.545052
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.52786 0.459064
\(146\) 0 0
\(147\) 7.85410 0.647795
\(148\) 0 0
\(149\) 16.1803 1.32555 0.662773 0.748821i \(-0.269380\pi\)
0.662773 + 0.748821i \(0.269380\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 6.23607 0.504156
\(154\) 0 0
\(155\) 2.47214 0.198567
\(156\) 0 0
\(157\) −3.70820 −0.295947 −0.147973 0.988991i \(-0.547275\pi\)
−0.147973 + 0.988991i \(0.547275\pi\)
\(158\) 0 0
\(159\) 27.4164 2.17426
\(160\) 0 0
\(161\) 6.47214 0.510076
\(162\) 0 0
\(163\) −12.0902 −0.946975 −0.473488 0.880800i \(-0.657005\pi\)
−0.473488 + 0.880800i \(0.657005\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.2361 1.48853 0.744266 0.667884i \(-0.232800\pi\)
0.744266 + 0.667884i \(0.232800\pi\)
\(168\) 0 0
\(169\) −2.52786 −0.194451
\(170\) 0 0
\(171\) −3.29180 −0.251730
\(172\) 0 0
\(173\) −13.8885 −1.05593 −0.527963 0.849267i \(-0.677044\pi\)
−0.527963 + 0.849267i \(0.677044\pi\)
\(174\) 0 0
\(175\) −6.94427 −0.524938
\(176\) 0 0
\(177\) −16.7082 −1.25587
\(178\) 0 0
\(179\) 6.38197 0.477011 0.238505 0.971141i \(-0.423343\pi\)
0.238505 + 0.971141i \(0.423343\pi\)
\(180\) 0 0
\(181\) 18.1803 1.35133 0.675667 0.737207i \(-0.263856\pi\)
0.675667 + 0.737207i \(0.263856\pi\)
\(182\) 0 0
\(183\) −16.9443 −1.25256
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.47214 −0.325300
\(190\) 0 0
\(191\) −9.23607 −0.668298 −0.334149 0.942520i \(-0.608449\pi\)
−0.334149 + 0.942520i \(0.608449\pi\)
\(192\) 0 0
\(193\) −9.41641 −0.677808 −0.338904 0.940821i \(-0.610056\pi\)
−0.338904 + 0.940821i \(0.610056\pi\)
\(194\) 0 0
\(195\) −10.4721 −0.749925
\(196\) 0 0
\(197\) −3.05573 −0.217712 −0.108856 0.994058i \(-0.534719\pi\)
−0.108856 + 0.994058i \(0.534719\pi\)
\(198\) 0 0
\(199\) 1.05573 0.0748386 0.0374193 0.999300i \(-0.488086\pi\)
0.0374193 + 0.999300i \(0.488086\pi\)
\(200\) 0 0
\(201\) −0.236068 −0.0166510
\(202\) 0 0
\(203\) −8.94427 −0.627765
\(204\) 0 0
\(205\) −4.18034 −0.291968
\(206\) 0 0
\(207\) 12.4721 0.866873
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5.09017 −0.350422 −0.175211 0.984531i \(-0.556061\pi\)
−0.175211 + 0.984531i \(0.556061\pi\)
\(212\) 0 0
\(213\) −2.00000 −0.137038
\(214\) 0 0
\(215\) 14.2918 0.974692
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) −33.0344 −2.23226
\(220\) 0 0
\(221\) −5.23607 −0.352216
\(222\) 0 0
\(223\) −12.2918 −0.823120 −0.411560 0.911383i \(-0.635016\pi\)
−0.411560 + 0.911383i \(0.635016\pi\)
\(224\) 0 0
\(225\) −13.3820 −0.892131
\(226\) 0 0
\(227\) 23.5066 1.56019 0.780093 0.625663i \(-0.215172\pi\)
0.780093 + 0.625663i \(0.215172\pi\)
\(228\) 0 0
\(229\) −11.7082 −0.773700 −0.386850 0.922143i \(-0.626437\pi\)
−0.386850 + 0.922143i \(0.626437\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.38197 −0.483609 −0.241804 0.970325i \(-0.577739\pi\)
−0.241804 + 0.970325i \(0.577739\pi\)
\(234\) 0 0
\(235\) 3.05573 0.199334
\(236\) 0 0
\(237\) −35.1246 −2.28159
\(238\) 0 0
\(239\) 8.29180 0.536352 0.268176 0.963370i \(-0.413579\pi\)
0.268176 + 0.963370i \(0.413579\pi\)
\(240\) 0 0
\(241\) 0.0901699 0.00580836 0.00290418 0.999996i \(-0.499076\pi\)
0.00290418 + 0.999996i \(0.499076\pi\)
\(242\) 0 0
\(243\) 21.6525 1.38901
\(244\) 0 0
\(245\) 3.70820 0.236908
\(246\) 0 0
\(247\) 2.76393 0.175865
\(248\) 0 0
\(249\) −16.5623 −1.04959
\(250\) 0 0
\(251\) −3.05573 −0.192876 −0.0964379 0.995339i \(-0.530745\pi\)
−0.0964379 + 0.995339i \(0.530745\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 5.23607 0.327895
\(256\) 0 0
\(257\) −3.38197 −0.210961 −0.105481 0.994421i \(-0.533638\pi\)
−0.105481 + 0.994421i \(0.533638\pi\)
\(258\) 0 0
\(259\) 19.4164 1.20648
\(260\) 0 0
\(261\) −17.2361 −1.06689
\(262\) 0 0
\(263\) 18.7639 1.15703 0.578517 0.815670i \(-0.303632\pi\)
0.578517 + 0.815670i \(0.303632\pi\)
\(264\) 0 0
\(265\) 12.9443 0.795160
\(266\) 0 0
\(267\) −8.09017 −0.495110
\(268\) 0 0
\(269\) −16.1803 −0.986533 −0.493266 0.869878i \(-0.664197\pi\)
−0.493266 + 0.869878i \(0.664197\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 0 0
\(273\) 16.9443 1.02551
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10.2918 −0.618374 −0.309187 0.951001i \(-0.600057\pi\)
−0.309187 + 0.951001i \(0.600057\pi\)
\(278\) 0 0
\(279\) −7.70820 −0.461478
\(280\) 0 0
\(281\) −4.90983 −0.292896 −0.146448 0.989218i \(-0.546784\pi\)
−0.146448 + 0.989218i \(0.546784\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) −2.76393 −0.163721
\(286\) 0 0
\(287\) 6.76393 0.399262
\(288\) 0 0
\(289\) −14.3820 −0.845998
\(290\) 0 0
\(291\) −36.2705 −2.12621
\(292\) 0 0
\(293\) 16.3607 0.955801 0.477901 0.878414i \(-0.341398\pi\)
0.477901 + 0.878414i \(0.341398\pi\)
\(294\) 0 0
\(295\) −7.88854 −0.459289
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.4721 −0.605619
\(300\) 0 0
\(301\) −23.1246 −1.33288
\(302\) 0 0
\(303\) −47.5967 −2.73436
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) −3.20163 −0.182726 −0.0913632 0.995818i \(-0.529122\pi\)
−0.0913632 + 0.995818i \(0.529122\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 32.0689 1.81846 0.909230 0.416295i \(-0.136672\pi\)
0.909230 + 0.416295i \(0.136672\pi\)
\(312\) 0 0
\(313\) −11.3262 −0.640197 −0.320098 0.947384i \(-0.603716\pi\)
−0.320098 + 0.947384i \(0.603716\pi\)
\(314\) 0 0
\(315\) −9.52786 −0.536834
\(316\) 0 0
\(317\) 9.70820 0.545267 0.272634 0.962118i \(-0.412105\pi\)
0.272634 + 0.962118i \(0.412105\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −20.5623 −1.14768
\(322\) 0 0
\(323\) −1.38197 −0.0768946
\(324\) 0 0
\(325\) 11.2361 0.623265
\(326\) 0 0
\(327\) −2.76393 −0.152846
\(328\) 0 0
\(329\) −4.94427 −0.272587
\(330\) 0 0
\(331\) 27.2705 1.49892 0.749461 0.662048i \(-0.230313\pi\)
0.749461 + 0.662048i \(0.230313\pi\)
\(332\) 0 0
\(333\) 37.4164 2.05041
\(334\) 0 0
\(335\) −0.111456 −0.00608950
\(336\) 0 0
\(337\) −2.20163 −0.119930 −0.0599651 0.998200i \(-0.519099\pi\)
−0.0599651 + 0.998200i \(0.519099\pi\)
\(338\) 0 0
\(339\) −12.7082 −0.690215
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 10.4721 0.563801
\(346\) 0 0
\(347\) −14.3820 −0.772064 −0.386032 0.922485i \(-0.626155\pi\)
−0.386032 + 0.922485i \(0.626155\pi\)
\(348\) 0 0
\(349\) 29.5967 1.58428 0.792139 0.610341i \(-0.208968\pi\)
0.792139 + 0.610341i \(0.208968\pi\)
\(350\) 0 0
\(351\) 7.23607 0.386233
\(352\) 0 0
\(353\) 30.3820 1.61707 0.808534 0.588449i \(-0.200261\pi\)
0.808534 + 0.588449i \(0.200261\pi\)
\(354\) 0 0
\(355\) −0.944272 −0.0501167
\(356\) 0 0
\(357\) −8.47214 −0.448393
\(358\) 0 0
\(359\) 35.1246 1.85381 0.926903 0.375301i \(-0.122461\pi\)
0.926903 + 0.375301i \(0.122461\pi\)
\(360\) 0 0
\(361\) −18.2705 −0.961606
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −15.5967 −0.816371
\(366\) 0 0
\(367\) −6.29180 −0.328429 −0.164215 0.986425i \(-0.552509\pi\)
−0.164215 + 0.986425i \(0.552509\pi\)
\(368\) 0 0
\(369\) 13.0344 0.678546
\(370\) 0 0
\(371\) −20.9443 −1.08737
\(372\) 0 0
\(373\) −17.7082 −0.916896 −0.458448 0.888721i \(-0.651594\pi\)
−0.458448 + 0.888721i \(0.651594\pi\)
\(374\) 0 0
\(375\) −27.4164 −1.41578
\(376\) 0 0
\(377\) 14.4721 0.745353
\(378\) 0 0
\(379\) 19.2705 0.989860 0.494930 0.868933i \(-0.335194\pi\)
0.494930 + 0.868933i \(0.335194\pi\)
\(380\) 0 0
\(381\) 18.1803 0.931407
\(382\) 0 0
\(383\) −16.3607 −0.835992 −0.417996 0.908449i \(-0.637267\pi\)
−0.417996 + 0.908449i \(0.637267\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −44.5623 −2.26523
\(388\) 0 0
\(389\) 20.6525 1.04712 0.523561 0.851988i \(-0.324603\pi\)
0.523561 + 0.851988i \(0.324603\pi\)
\(390\) 0 0
\(391\) 5.23607 0.264799
\(392\) 0 0
\(393\) −46.5967 −2.35049
\(394\) 0 0
\(395\) −16.5836 −0.834411
\(396\) 0 0
\(397\) 23.1246 1.16059 0.580295 0.814406i \(-0.302937\pi\)
0.580295 + 0.814406i \(0.302937\pi\)
\(398\) 0 0
\(399\) 4.47214 0.223887
\(400\) 0 0
\(401\) 6.79837 0.339495 0.169747 0.985488i \(-0.445705\pi\)
0.169747 + 0.985488i \(0.445705\pi\)
\(402\) 0 0
\(403\) 6.47214 0.322400
\(404\) 0 0
\(405\) 7.05573 0.350602
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 13.4164 0.663399 0.331699 0.943385i \(-0.392378\pi\)
0.331699 + 0.943385i \(0.392378\pi\)
\(410\) 0 0
\(411\) −12.8541 −0.634046
\(412\) 0 0
\(413\) 12.7639 0.628072
\(414\) 0 0
\(415\) −7.81966 −0.383852
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.14590 0.202540 0.101270 0.994859i \(-0.467709\pi\)
0.101270 + 0.994859i \(0.467709\pi\)
\(420\) 0 0
\(421\) −4.58359 −0.223391 −0.111695 0.993743i \(-0.535628\pi\)
−0.111695 + 0.993743i \(0.535628\pi\)
\(422\) 0 0
\(423\) −9.52786 −0.463261
\(424\) 0 0
\(425\) −5.61803 −0.272515
\(426\) 0 0
\(427\) 12.9443 0.626417
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.944272 −0.0454840 −0.0227420 0.999741i \(-0.507240\pi\)
−0.0227420 + 0.999741i \(0.507240\pi\)
\(432\) 0 0
\(433\) −14.7426 −0.708486 −0.354243 0.935153i \(-0.615261\pi\)
−0.354243 + 0.935153i \(0.615261\pi\)
\(434\) 0 0
\(435\) −14.4721 −0.693886
\(436\) 0 0
\(437\) −2.76393 −0.132217
\(438\) 0 0
\(439\) 33.4164 1.59488 0.797439 0.603399i \(-0.206188\pi\)
0.797439 + 0.603399i \(0.206188\pi\)
\(440\) 0 0
\(441\) −11.5623 −0.550586
\(442\) 0 0
\(443\) −11.5623 −0.549342 −0.274671 0.961538i \(-0.588569\pi\)
−0.274671 + 0.961538i \(0.588569\pi\)
\(444\) 0 0
\(445\) −3.81966 −0.181069
\(446\) 0 0
\(447\) −42.3607 −2.00359
\(448\) 0 0
\(449\) −24.2705 −1.14540 −0.572698 0.819766i \(-0.694103\pi\)
−0.572698 + 0.819766i \(0.694103\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −20.9443 −0.984048
\(454\) 0 0
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) −29.5623 −1.38287 −0.691433 0.722440i \(-0.743020\pi\)
−0.691433 + 0.722440i \(0.743020\pi\)
\(458\) 0 0
\(459\) −3.61803 −0.168875
\(460\) 0 0
\(461\) 32.6525 1.52078 0.760389 0.649468i \(-0.225008\pi\)
0.760389 + 0.649468i \(0.225008\pi\)
\(462\) 0 0
\(463\) −7.41641 −0.344670 −0.172335 0.985038i \(-0.555131\pi\)
−0.172335 + 0.985038i \(0.555131\pi\)
\(464\) 0 0
\(465\) −6.47214 −0.300138
\(466\) 0 0
\(467\) −29.3050 −1.35607 −0.678036 0.735029i \(-0.737169\pi\)
−0.678036 + 0.735029i \(0.737169\pi\)
\(468\) 0 0
\(469\) 0.180340 0.00832732
\(470\) 0 0
\(471\) 9.70820 0.447330
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.96556 0.136069
\(476\) 0 0
\(477\) −40.3607 −1.84799
\(478\) 0 0
\(479\) 25.5279 1.16640 0.583199 0.812329i \(-0.301801\pi\)
0.583199 + 0.812329i \(0.301801\pi\)
\(480\) 0 0
\(481\) −31.4164 −1.43246
\(482\) 0 0
\(483\) −16.9443 −0.770991
\(484\) 0 0
\(485\) −17.1246 −0.777589
\(486\) 0 0
\(487\) 32.6525 1.47962 0.739812 0.672813i \(-0.234914\pi\)
0.739812 + 0.672813i \(0.234914\pi\)
\(488\) 0 0
\(489\) 31.6525 1.43137
\(490\) 0 0
\(491\) −16.1459 −0.728654 −0.364327 0.931271i \(-0.618701\pi\)
−0.364327 + 0.931271i \(0.618701\pi\)
\(492\) 0 0
\(493\) −7.23607 −0.325896
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.52786 0.0685341
\(498\) 0 0
\(499\) 24.1459 1.08092 0.540459 0.841370i \(-0.318250\pi\)
0.540459 + 0.841370i \(0.318250\pi\)
\(500\) 0 0
\(501\) −50.3607 −2.24995
\(502\) 0 0
\(503\) −1.23607 −0.0551135 −0.0275568 0.999620i \(-0.508773\pi\)
−0.0275568 + 0.999620i \(0.508773\pi\)
\(504\) 0 0
\(505\) −22.4721 −0.999997
\(506\) 0 0
\(507\) 6.61803 0.293917
\(508\) 0 0
\(509\) −21.7082 −0.962199 −0.481100 0.876666i \(-0.659762\pi\)
−0.481100 + 0.876666i \(0.659762\pi\)
\(510\) 0 0
\(511\) 25.2361 1.11638
\(512\) 0 0
\(513\) 1.90983 0.0843211
\(514\) 0 0
\(515\) 2.83282 0.124829
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 36.3607 1.59606
\(520\) 0 0
\(521\) 9.03444 0.395806 0.197903 0.980222i \(-0.436587\pi\)
0.197903 + 0.980222i \(0.436587\pi\)
\(522\) 0 0
\(523\) −33.7984 −1.47790 −0.738950 0.673760i \(-0.764678\pi\)
−0.738950 + 0.673760i \(0.764678\pi\)
\(524\) 0 0
\(525\) 18.1803 0.793455
\(526\) 0 0
\(527\) −3.23607 −0.140965
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) 0 0
\(531\) 24.5967 1.06741
\(532\) 0 0
\(533\) −10.9443 −0.474049
\(534\) 0 0
\(535\) −9.70820 −0.419722
\(536\) 0 0
\(537\) −16.7082 −0.721012
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 37.1246 1.59611 0.798056 0.602583i \(-0.205862\pi\)
0.798056 + 0.602583i \(0.205862\pi\)
\(542\) 0 0
\(543\) −47.5967 −2.04257
\(544\) 0 0
\(545\) −1.30495 −0.0558980
\(546\) 0 0
\(547\) 7.32624 0.313247 0.156624 0.987658i \(-0.449939\pi\)
0.156624 + 0.987658i \(0.449939\pi\)
\(548\) 0 0
\(549\) 24.9443 1.06460
\(550\) 0 0
\(551\) 3.81966 0.162723
\(552\) 0 0
\(553\) 26.8328 1.14105
\(554\) 0 0
\(555\) 31.4164 1.33355
\(556\) 0 0
\(557\) 30.7639 1.30351 0.651755 0.758430i \(-0.274033\pi\)
0.651755 + 0.758430i \(0.274033\pi\)
\(558\) 0 0
\(559\) 37.4164 1.58255
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.61803 −0.110337 −0.0551685 0.998477i \(-0.517570\pi\)
−0.0551685 + 0.998477i \(0.517570\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) 0 0
\(567\) −11.4164 −0.479444
\(568\) 0 0
\(569\) −13.2148 −0.553992 −0.276996 0.960871i \(-0.589339\pi\)
−0.276996 + 0.960871i \(0.589339\pi\)
\(570\) 0 0
\(571\) −6.47214 −0.270850 −0.135425 0.990788i \(-0.543240\pi\)
−0.135425 + 0.990788i \(0.543240\pi\)
\(572\) 0 0
\(573\) 24.1803 1.01015
\(574\) 0 0
\(575\) −11.2361 −0.468576
\(576\) 0 0
\(577\) 17.7984 0.740956 0.370478 0.928841i \(-0.379194\pi\)
0.370478 + 0.928841i \(0.379194\pi\)
\(578\) 0 0
\(579\) 24.6525 1.02452
\(580\) 0 0
\(581\) 12.6525 0.524913
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 15.4164 0.637390
\(586\) 0 0
\(587\) −28.8541 −1.19094 −0.595468 0.803379i \(-0.703033\pi\)
−0.595468 + 0.803379i \(0.703033\pi\)
\(588\) 0 0
\(589\) 1.70820 0.0703853
\(590\) 0 0
\(591\) 8.00000 0.329076
\(592\) 0 0
\(593\) 31.6869 1.30123 0.650613 0.759410i \(-0.274512\pi\)
0.650613 + 0.759410i \(0.274512\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) 0 0
\(597\) −2.76393 −0.113120
\(598\) 0 0
\(599\) −13.4164 −0.548180 −0.274090 0.961704i \(-0.588377\pi\)
−0.274090 + 0.961704i \(0.588377\pi\)
\(600\) 0 0
\(601\) −33.8541 −1.38094 −0.690469 0.723362i \(-0.742596\pi\)
−0.690469 + 0.723362i \(0.742596\pi\)
\(602\) 0 0
\(603\) 0.347524 0.0141523
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.1246 0.695067 0.347533 0.937668i \(-0.387019\pi\)
0.347533 + 0.937668i \(0.387019\pi\)
\(608\) 0 0
\(609\) 23.4164 0.948881
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 22.2918 0.900357 0.450179 0.892939i \(-0.351360\pi\)
0.450179 + 0.892939i \(0.351360\pi\)
\(614\) 0 0
\(615\) 10.9443 0.441316
\(616\) 0 0
\(617\) −32.4508 −1.30642 −0.653211 0.757176i \(-0.726579\pi\)
−0.653211 + 0.757176i \(0.726579\pi\)
\(618\) 0 0
\(619\) −29.7984 −1.19770 −0.598849 0.800862i \(-0.704375\pi\)
−0.598849 + 0.800862i \(0.704375\pi\)
\(620\) 0 0
\(621\) −7.23607 −0.290373
\(622\) 0 0
\(623\) 6.18034 0.247610
\(624\) 0 0
\(625\) 4.41641 0.176656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.7082 0.626327
\(630\) 0 0
\(631\) −10.2918 −0.409710 −0.204855 0.978792i \(-0.565672\pi\)
−0.204855 + 0.978792i \(0.565672\pi\)
\(632\) 0 0
\(633\) 13.3262 0.529670
\(634\) 0 0
\(635\) 8.58359 0.340629
\(636\) 0 0
\(637\) 9.70820 0.384653
\(638\) 0 0
\(639\) 2.94427 0.116474
\(640\) 0 0
\(641\) 32.3262 1.27681 0.638405 0.769701i \(-0.279595\pi\)
0.638405 + 0.769701i \(0.279595\pi\)
\(642\) 0 0
\(643\) 6.97871 0.275214 0.137607 0.990487i \(-0.456059\pi\)
0.137607 + 0.990487i \(0.456059\pi\)
\(644\) 0 0
\(645\) −37.4164 −1.47327
\(646\) 0 0
\(647\) −46.9443 −1.84557 −0.922785 0.385316i \(-0.874093\pi\)
−0.922785 + 0.385316i \(0.874093\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 10.4721 0.410435
\(652\) 0 0
\(653\) −46.6525 −1.82565 −0.912826 0.408348i \(-0.866105\pi\)
−0.912826 + 0.408348i \(0.866105\pi\)
\(654\) 0 0
\(655\) −22.0000 −0.859611
\(656\) 0 0
\(657\) 48.6312 1.89728
\(658\) 0 0
\(659\) 28.0902 1.09424 0.547119 0.837055i \(-0.315725\pi\)
0.547119 + 0.837055i \(0.315725\pi\)
\(660\) 0 0
\(661\) −12.4721 −0.485110 −0.242555 0.970138i \(-0.577985\pi\)
−0.242555 + 0.970138i \(0.577985\pi\)
\(662\) 0 0
\(663\) 13.7082 0.532383
\(664\) 0 0
\(665\) 2.11146 0.0818788
\(666\) 0 0
\(667\) −14.4721 −0.560363
\(668\) 0 0
\(669\) 32.1803 1.24416
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 3.14590 0.121265 0.0606327 0.998160i \(-0.480688\pi\)
0.0606327 + 0.998160i \(0.480688\pi\)
\(674\) 0 0
\(675\) 7.76393 0.298834
\(676\) 0 0
\(677\) 30.3607 1.16686 0.583428 0.812165i \(-0.301711\pi\)
0.583428 + 0.812165i \(0.301711\pi\)
\(678\) 0 0
\(679\) 27.7082 1.06334
\(680\) 0 0
\(681\) −61.5410 −2.35826
\(682\) 0 0
\(683\) −9.52786 −0.364574 −0.182287 0.983245i \(-0.558350\pi\)
−0.182287 + 0.983245i \(0.558350\pi\)
\(684\) 0 0
\(685\) −6.06888 −0.231880
\(686\) 0 0
\(687\) 30.6525 1.16946
\(688\) 0 0
\(689\) 33.8885 1.29105
\(690\) 0 0
\(691\) −25.2148 −0.959216 −0.479608 0.877483i \(-0.659221\pi\)
−0.479608 + 0.877483i \(0.659221\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.47214 0.207272
\(698\) 0 0
\(699\) 19.3262 0.730985
\(700\) 0 0
\(701\) 38.8328 1.46670 0.733348 0.679854i \(-0.237957\pi\)
0.733348 + 0.679854i \(0.237957\pi\)
\(702\) 0 0
\(703\) −8.29180 −0.312731
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 36.3607 1.36748
\(708\) 0 0
\(709\) 15.5279 0.583161 0.291581 0.956546i \(-0.405819\pi\)
0.291581 + 0.956546i \(0.405819\pi\)
\(710\) 0 0
\(711\) 51.7082 1.93921
\(712\) 0 0
\(713\) −6.47214 −0.242383
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −21.7082 −0.810708
\(718\) 0 0
\(719\) 26.8328 1.00070 0.500348 0.865825i \(-0.333206\pi\)
0.500348 + 0.865825i \(0.333206\pi\)
\(720\) 0 0
\(721\) −4.58359 −0.170702
\(722\) 0 0
\(723\) −0.236068 −0.00877946
\(724\) 0 0
\(725\) 15.5279 0.576690
\(726\) 0 0
\(727\) −43.1246 −1.59940 −0.799702 0.600398i \(-0.795009\pi\)
−0.799702 + 0.600398i \(0.795009\pi\)
\(728\) 0 0
\(729\) −39.5623 −1.46527
\(730\) 0 0
\(731\) −18.7082 −0.691948
\(732\) 0 0
\(733\) 17.4164 0.643290 0.321645 0.946860i \(-0.395764\pi\)
0.321645 + 0.946860i \(0.395764\pi\)
\(734\) 0 0
\(735\) −9.70820 −0.358092
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 17.4377 0.641456 0.320728 0.947171i \(-0.396072\pi\)
0.320728 + 0.947171i \(0.396072\pi\)
\(740\) 0 0
\(741\) −7.23607 −0.265824
\(742\) 0 0
\(743\) 13.2361 0.485584 0.242792 0.970078i \(-0.421937\pi\)
0.242792 + 0.970078i \(0.421937\pi\)
\(744\) 0 0
\(745\) −20.0000 −0.732743
\(746\) 0 0
\(747\) 24.3820 0.892089
\(748\) 0 0
\(749\) 15.7082 0.573965
\(750\) 0 0
\(751\) −37.7771 −1.37851 −0.689253 0.724521i \(-0.742061\pi\)
−0.689253 + 0.724521i \(0.742061\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) −9.88854 −0.359881
\(756\) 0 0
\(757\) 28.6525 1.04139 0.520696 0.853742i \(-0.325673\pi\)
0.520696 + 0.853742i \(0.325673\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −46.7426 −1.69442 −0.847210 0.531258i \(-0.821719\pi\)
−0.847210 + 0.531258i \(0.821719\pi\)
\(762\) 0 0
\(763\) 2.11146 0.0764398
\(764\) 0 0
\(765\) −7.70820 −0.278691
\(766\) 0 0
\(767\) −20.6525 −0.745718
\(768\) 0 0
\(769\) −13.4164 −0.483808 −0.241904 0.970300i \(-0.577772\pi\)
−0.241904 + 0.970300i \(0.577772\pi\)
\(770\) 0 0
\(771\) 8.85410 0.318873
\(772\) 0 0
\(773\) 31.8885 1.14695 0.573476 0.819223i \(-0.305595\pi\)
0.573476 + 0.819223i \(0.305595\pi\)
\(774\) 0 0
\(775\) 6.94427 0.249446
\(776\) 0 0
\(777\) −50.8328 −1.82362
\(778\) 0 0
\(779\) −2.88854 −0.103493
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 10.0000 0.357371
\(784\) 0 0
\(785\) 4.58359 0.163595
\(786\) 0 0
\(787\) 25.2148 0.898810 0.449405 0.893328i \(-0.351636\pi\)
0.449405 + 0.893328i \(0.351636\pi\)
\(788\) 0 0
\(789\) −49.1246 −1.74888
\(790\) 0 0
\(791\) 9.70820 0.345184
\(792\) 0 0
\(793\) −20.9443 −0.743753
\(794\) 0 0
\(795\) −33.8885 −1.20190
\(796\) 0 0
\(797\) −29.2361 −1.03559 −0.517797 0.855503i \(-0.673248\pi\)
−0.517797 + 0.855503i \(0.673248\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) 11.9098 0.420813
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) 42.3607 1.49117
\(808\) 0 0
\(809\) 28.0902 0.987598 0.493799 0.869576i \(-0.335608\pi\)
0.493799 + 0.869576i \(0.335608\pi\)
\(810\) 0 0
\(811\) −10.6180 −0.372850 −0.186425 0.982469i \(-0.559690\pi\)
−0.186425 + 0.982469i \(0.559690\pi\)
\(812\) 0 0
\(813\) 5.23607 0.183637
\(814\) 0 0
\(815\) 14.9443 0.523475
\(816\) 0 0
\(817\) 9.87539 0.345496
\(818\) 0 0
\(819\) −24.9443 −0.871623
\(820\) 0 0
\(821\) −36.5410 −1.27529 −0.637645 0.770330i \(-0.720091\pi\)
−0.637645 + 0.770330i \(0.720091\pi\)
\(822\) 0 0
\(823\) 25.5967 0.892247 0.446123 0.894972i \(-0.352804\pi\)
0.446123 + 0.894972i \(0.352804\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −41.6180 −1.44720 −0.723600 0.690219i \(-0.757514\pi\)
−0.723600 + 0.690219i \(0.757514\pi\)
\(828\) 0 0
\(829\) 48.9443 1.69990 0.849952 0.526859i \(-0.176631\pi\)
0.849952 + 0.526859i \(0.176631\pi\)
\(830\) 0 0
\(831\) 26.9443 0.934686
\(832\) 0 0
\(833\) −4.85410 −0.168185
\(834\) 0 0
\(835\) −23.7771 −0.822840
\(836\) 0 0
\(837\) 4.47214 0.154580
\(838\) 0 0
\(839\) −47.8885 −1.65330 −0.826648 0.562719i \(-0.809755\pi\)
−0.826648 + 0.562719i \(0.809755\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 12.8541 0.442719
\(844\) 0 0
\(845\) 3.12461 0.107490
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 62.8328 2.15642
\(850\) 0 0
\(851\) 31.4164 1.07694
\(852\) 0 0
\(853\) −21.5279 −0.737100 −0.368550 0.929608i \(-0.620146\pi\)
−0.368550 + 0.929608i \(0.620146\pi\)
\(854\) 0 0
\(855\) 4.06888 0.139153
\(856\) 0 0
\(857\) 31.7426 1.08431 0.542154 0.840279i \(-0.317609\pi\)
0.542154 + 0.840279i \(0.317609\pi\)
\(858\) 0 0
\(859\) −8.49342 −0.289792 −0.144896 0.989447i \(-0.546285\pi\)
−0.144896 + 0.989447i \(0.546285\pi\)
\(860\) 0 0
\(861\) −17.7082 −0.603494
\(862\) 0 0
\(863\) 28.7639 0.979136 0.489568 0.871965i \(-0.337155\pi\)
0.489568 + 0.871965i \(0.337155\pi\)
\(864\) 0 0
\(865\) 17.1672 0.583702
\(866\) 0 0
\(867\) 37.6525 1.27875
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −0.291796 −0.00988713
\(872\) 0 0
\(873\) 53.3951 1.80715
\(874\) 0 0
\(875\) 20.9443 0.708046
\(876\) 0 0
\(877\) −5.81966 −0.196516 −0.0982580 0.995161i \(-0.531327\pi\)
−0.0982580 + 0.995161i \(0.531327\pi\)
\(878\) 0 0
\(879\) −42.8328 −1.44472
\(880\) 0 0
\(881\) 45.3394 1.52752 0.763761 0.645499i \(-0.223350\pi\)
0.763761 + 0.645499i \(0.223350\pi\)
\(882\) 0 0
\(883\) 23.5623 0.792935 0.396467 0.918049i \(-0.370236\pi\)
0.396467 + 0.918049i \(0.370236\pi\)
\(884\) 0 0
\(885\) 20.6525 0.694225
\(886\) 0 0
\(887\) −33.7771 −1.13412 −0.567062 0.823675i \(-0.691920\pi\)
−0.567062 + 0.823675i \(0.691920\pi\)
\(888\) 0 0
\(889\) −13.8885 −0.465807
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.11146 0.0706572
\(894\) 0 0
\(895\) −7.88854 −0.263685
\(896\) 0 0
\(897\) 27.4164 0.915407
\(898\) 0 0
\(899\) 8.94427 0.298308
\(900\) 0 0
\(901\) −16.9443 −0.564496
\(902\) 0 0
\(903\) 60.5410 2.01468
\(904\) 0 0
\(905\) −22.4721 −0.746999
\(906\) 0 0
\(907\) −30.5623 −1.01480 −0.507402 0.861709i \(-0.669394\pi\)
−0.507402 + 0.861709i \(0.669394\pi\)
\(908\) 0 0
\(909\) 70.0689 2.32404
\(910\) 0 0
\(911\) 4.18034 0.138501 0.0692504 0.997599i \(-0.477939\pi\)
0.0692504 + 0.997599i \(0.477939\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 20.9443 0.692396
\(916\) 0 0
\(917\) 35.5967 1.17551
\(918\) 0 0
\(919\) −16.5836 −0.547042 −0.273521 0.961866i \(-0.588188\pi\)
−0.273521 + 0.961866i \(0.588188\pi\)
\(920\) 0 0
\(921\) 8.38197 0.276195
\(922\) 0 0
\(923\) −2.47214 −0.0813713
\(924\) 0 0
\(925\) −33.7082 −1.10832
\(926\) 0 0
\(927\) −8.83282 −0.290108
\(928\) 0 0
\(929\) −58.7426 −1.92728 −0.963642 0.267197i \(-0.913902\pi\)
−0.963642 + 0.267197i \(0.913902\pi\)
\(930\) 0 0
\(931\) 2.56231 0.0839762
\(932\) 0 0
\(933\) −83.9574 −2.74864
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −31.1459 −1.01749 −0.508746 0.860917i \(-0.669891\pi\)
−0.508746 + 0.860917i \(0.669891\pi\)
\(938\) 0 0
\(939\) 29.6525 0.967672
\(940\) 0 0
\(941\) 25.8197 0.841697 0.420848 0.907131i \(-0.361732\pi\)
0.420848 + 0.907131i \(0.361732\pi\)
\(942\) 0 0
\(943\) 10.9443 0.356395
\(944\) 0 0
\(945\) 5.52786 0.179821
\(946\) 0 0
\(947\) −21.2148 −0.689388 −0.344694 0.938715i \(-0.612017\pi\)
−0.344694 + 0.938715i \(0.612017\pi\)
\(948\) 0 0
\(949\) −40.8328 −1.32549
\(950\) 0 0
\(951\) −25.4164 −0.824183
\(952\) 0 0
\(953\) 4.32624 0.140141 0.0700703 0.997542i \(-0.477678\pi\)
0.0700703 + 0.997542i \(0.477678\pi\)
\(954\) 0 0
\(955\) 11.4164 0.369426
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.81966 0.317093
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 30.2705 0.975454
\(964\) 0 0
\(965\) 11.6393 0.374683
\(966\) 0 0
\(967\) −38.0000 −1.22200 −0.610999 0.791632i \(-0.709232\pi\)
−0.610999 + 0.791632i \(0.709232\pi\)
\(968\) 0 0
\(969\) 3.61803 0.116228
\(970\) 0 0
\(971\) 45.8885 1.47263 0.736317 0.676637i \(-0.236563\pi\)
0.736317 + 0.676637i \(0.236563\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −29.4164 −0.942079
\(976\) 0 0
\(977\) 19.3050 0.617620 0.308810 0.951124i \(-0.400069\pi\)
0.308810 + 0.951124i \(0.400069\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 4.06888 0.129909
\(982\) 0 0
\(983\) 6.00000 0.191370 0.0956851 0.995412i \(-0.469496\pi\)
0.0956851 + 0.995412i \(0.469496\pi\)
\(984\) 0 0
\(985\) 3.77709 0.120348
\(986\) 0 0
\(987\) 12.9443 0.412021
\(988\) 0 0
\(989\) −37.4164 −1.18977
\(990\) 0 0
\(991\) 36.5410 1.16076 0.580382 0.814344i \(-0.302903\pi\)
0.580382 + 0.814344i \(0.302903\pi\)
\(992\) 0 0
\(993\) −71.3951 −2.26566
\(994\) 0 0
\(995\) −1.30495 −0.0413697
\(996\) 0 0
\(997\) −22.6525 −0.717411 −0.358706 0.933451i \(-0.616782\pi\)
−0.358706 + 0.933451i \(0.616782\pi\)
\(998\) 0 0
\(999\) −21.7082 −0.686817
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.2.a.o.1.1 2
4.3 odd 2 242.2.a.f.1.2 2
8.3 odd 2 7744.2.a.bm.1.1 2
8.5 even 2 7744.2.a.cz.1.2 2
11.3 even 5 176.2.m.c.97.1 4
11.4 even 5 176.2.m.c.49.1 4
11.10 odd 2 1936.2.a.n.1.1 2
12.11 even 2 2178.2.a.p.1.2 2
20.19 odd 2 6050.2.a.bs.1.1 2
44.3 odd 10 22.2.c.a.9.1 yes 4
44.7 even 10 242.2.c.c.27.1 4
44.15 odd 10 22.2.c.a.5.1 4
44.19 even 10 242.2.c.c.9.1 4
44.27 odd 10 242.2.c.a.3.1 4
44.31 odd 10 242.2.c.a.81.1 4
44.35 even 10 242.2.c.d.81.1 4
44.39 even 10 242.2.c.d.3.1 4
44.43 even 2 242.2.a.d.1.2 2
88.3 odd 10 704.2.m.h.449.1 4
88.21 odd 2 7744.2.a.cy.1.2 2
88.37 even 10 704.2.m.a.577.1 4
88.43 even 2 7744.2.a.bn.1.1 2
88.59 odd 10 704.2.m.h.577.1 4
88.69 even 10 704.2.m.a.449.1 4
132.47 even 10 198.2.f.e.163.1 4
132.59 even 10 198.2.f.e.181.1 4
132.131 odd 2 2178.2.a.x.1.2 2
220.3 even 20 550.2.ba.c.449.1 8
220.47 even 20 550.2.ba.c.449.2 8
220.59 odd 10 550.2.h.h.401.1 4
220.103 even 20 550.2.ba.c.49.2 8
220.147 even 20 550.2.ba.c.49.1 8
220.179 odd 10 550.2.h.h.251.1 4
220.219 even 2 6050.2.a.ci.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.2.c.a.5.1 4 44.15 odd 10
22.2.c.a.9.1 yes 4 44.3 odd 10
176.2.m.c.49.1 4 11.4 even 5
176.2.m.c.97.1 4 11.3 even 5
198.2.f.e.163.1 4 132.47 even 10
198.2.f.e.181.1 4 132.59 even 10
242.2.a.d.1.2 2 44.43 even 2
242.2.a.f.1.2 2 4.3 odd 2
242.2.c.a.3.1 4 44.27 odd 10
242.2.c.a.81.1 4 44.31 odd 10
242.2.c.c.9.1 4 44.19 even 10
242.2.c.c.27.1 4 44.7 even 10
242.2.c.d.3.1 4 44.39 even 10
242.2.c.d.81.1 4 44.35 even 10
550.2.h.h.251.1 4 220.179 odd 10
550.2.h.h.401.1 4 220.59 odd 10
550.2.ba.c.49.1 8 220.147 even 20
550.2.ba.c.49.2 8 220.103 even 20
550.2.ba.c.449.1 8 220.3 even 20
550.2.ba.c.449.2 8 220.47 even 20
704.2.m.a.449.1 4 88.69 even 10
704.2.m.a.577.1 4 88.37 even 10
704.2.m.h.449.1 4 88.3 odd 10
704.2.m.h.577.1 4 88.59 odd 10
1936.2.a.n.1.1 2 11.10 odd 2
1936.2.a.o.1.1 2 1.1 even 1 trivial
2178.2.a.p.1.2 2 12.11 even 2
2178.2.a.x.1.2 2 132.131 odd 2
6050.2.a.bs.1.1 2 20.19 odd 2
6050.2.a.ci.1.1 2 220.219 even 2
7744.2.a.bm.1.1 2 8.3 odd 2
7744.2.a.bn.1.1 2 88.43 even 2
7744.2.a.cy.1.2 2 88.21 odd 2
7744.2.a.cz.1.2 2 8.5 even 2