Properties

Label 1936.2.a.b.1.1
Level $1936$
Weight $2$
Character 1936.1
Self dual yes
Analytic conductor $15.459$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1936,2,Mod(1,1936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1936.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-2,0,1,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.4590378313\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 121)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1936.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{3} +1.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} +1.00000 q^{13} -2.00000 q^{15} -5.00000 q^{17} -6.00000 q^{19} -4.00000 q^{21} -2.00000 q^{23} -4.00000 q^{25} +4.00000 q^{27} +9.00000 q^{29} +2.00000 q^{31} +2.00000 q^{35} -3.00000 q^{37} -2.00000 q^{39} -5.00000 q^{41} +1.00000 q^{45} -2.00000 q^{47} -3.00000 q^{49} +10.0000 q^{51} +9.00000 q^{53} +12.0000 q^{57} -8.00000 q^{59} +6.00000 q^{61} +2.00000 q^{63} +1.00000 q^{65} -2.00000 q^{67} +4.00000 q^{69} -12.0000 q^{71} -2.00000 q^{73} +8.00000 q^{75} +10.0000 q^{79} -11.0000 q^{81} -6.00000 q^{83} -5.00000 q^{85} -18.0000 q^{87} -9.00000 q^{89} +2.00000 q^{91} -4.00000 q^{93} -6.00000 q^{95} -13.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 10.0000 1.40028
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.0000 1.58944
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 8.00000 0.923760
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) 0 0
\(87\) −18.0000 −1.92980
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) −9.00000 −0.846649 −0.423324 0.905978i \(-0.639137\pi\)
−0.423324 + 0.905978i \(0.639137\pi\)
\(114\) 0 0
\(115\) −2.00000 −0.186501
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) −10.0000 −0.916698
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 10.0000 0.901670
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 0 0
\(141\) 4.00000 0.336861
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 9.00000 0.747409
\(146\) 0 0
\(147\) 6.00000 0.494872
\(148\) 0 0
\(149\) 17.0000 1.39269 0.696347 0.717705i \(-0.254807\pi\)
0.696347 + 0.717705i \(0.254807\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) −5.00000 −0.404226
\(154\) 0 0
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) −18.0000 −1.42749
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) −8.00000 −0.604743
\(176\) 0 0
\(177\) 16.0000 1.20263
\(178\) 0 0
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 1.00000 0.0743294 0.0371647 0.999309i \(-0.488167\pi\)
0.0371647 + 0.999309i \(0.488167\pi\)
\(182\) 0 0
\(183\) −12.0000 −0.887066
\(184\) 0 0
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 8.00000 0.581914
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 18.0000 1.26335
\(204\) 0 0
\(205\) −5.00000 −0.349215
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 24.0000 1.64445
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −5.00000 −0.336336
\(222\) 0 0
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) 9.00000 0.594737 0.297368 0.954763i \(-0.403891\pi\)
0.297368 + 0.954763i \(0.403891\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) 0 0
\(235\) −2.00000 −0.130466
\(236\) 0 0
\(237\) −20.0000 −1.29914
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 10.0000 0.626224
\(256\) 0 0
\(257\) 19.0000 1.18519 0.592594 0.805502i \(-0.298104\pi\)
0.592594 + 0.805502i \(0.298104\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 9.00000 0.557086
\(262\) 0 0
\(263\) 22.0000 1.35658 0.678289 0.734795i \(-0.262722\pi\)
0.678289 + 0.734795i \(0.262722\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 18.0000 1.10158
\(268\) 0 0
\(269\) 1.00000 0.0609711 0.0304855 0.999535i \(-0.490295\pi\)
0.0304855 + 0.999535i \(0.490295\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.00000 0.0600842 0.0300421 0.999549i \(-0.490436\pi\)
0.0300421 + 0.999549i \(0.490436\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 0 0
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) −10.0000 −0.590281
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 26.0000 1.52415
\(292\) 0 0
\(293\) 9.00000 0.525786 0.262893 0.964825i \(-0.415323\pi\)
0.262893 + 0.964825i \(0.415323\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 20.0000 1.14897
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) 0 0
\(315\) 2.00000 0.112687
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 30.0000 1.66924
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 22.0000 1.21660
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) −3.00000 −0.164399
\(334\) 0 0
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 4.00000 0.215353
\(346\) 0 0
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) 20.0000 1.05851
\(358\) 0 0
\(359\) 2.00000 0.105556 0.0527780 0.998606i \(-0.483192\pi\)
0.0527780 + 0.998606i \(0.483192\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) 14.0000 0.730794 0.365397 0.930852i \(-0.380933\pi\)
0.365397 + 0.930852i \(0.380933\pi\)
\(368\) 0 0
\(369\) −5.00000 −0.260290
\(370\) 0 0
\(371\) 18.0000 0.934513
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 18.0000 0.929516
\(376\) 0 0
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) 32.0000 1.64373 0.821865 0.569683i \(-0.192934\pi\)
0.821865 + 0.569683i \(0.192934\pi\)
\(380\) 0 0
\(381\) −32.0000 −1.63941
\(382\) 0 0
\(383\) −20.0000 −1.02195 −0.510976 0.859595i \(-0.670716\pi\)
−0.510976 + 0.859595i \(0.670716\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.00000 −0.152106 −0.0760530 0.997104i \(-0.524232\pi\)
−0.0760530 + 0.997104i \(0.524232\pi\)
\(390\) 0 0
\(391\) 10.0000 0.505722
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) 13.0000 0.652451 0.326226 0.945292i \(-0.394223\pi\)
0.326226 + 0.945292i \(0.394223\pi\)
\(398\) 0 0
\(399\) 24.0000 1.20150
\(400\) 0 0
\(401\) 23.0000 1.14857 0.574283 0.818657i \(-0.305281\pi\)
0.574283 + 0.818657i \(0.305281\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 0 0
\(405\) −11.0000 −0.546594
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −21.0000 −1.03838 −0.519192 0.854658i \(-0.673767\pi\)
−0.519192 + 0.854658i \(0.673767\pi\)
\(410\) 0 0
\(411\) 20.0000 0.986527
\(412\) 0 0
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) −2.00000 −0.0977064 −0.0488532 0.998806i \(-0.515557\pi\)
−0.0488532 + 0.998806i \(0.515557\pi\)
\(420\) 0 0
\(421\) 13.0000 0.633581 0.316791 0.948495i \(-0.397395\pi\)
0.316791 + 0.948495i \(0.397395\pi\)
\(422\) 0 0
\(423\) −2.00000 −0.0972433
\(424\) 0 0
\(425\) 20.0000 0.970143
\(426\) 0 0
\(427\) 12.0000 0.580721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 19.0000 0.913082 0.456541 0.889702i \(-0.349088\pi\)
0.456541 + 0.889702i \(0.349088\pi\)
\(434\) 0 0
\(435\) −18.0000 −0.863034
\(436\) 0 0
\(437\) 12.0000 0.574038
\(438\) 0 0
\(439\) −22.0000 −1.05000 −0.525001 0.851101i \(-0.675935\pi\)
−0.525001 + 0.851101i \(0.675935\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) −9.00000 −0.426641
\(446\) 0 0
\(447\) −34.0000 −1.60814
\(448\) 0 0
\(449\) −13.0000 −0.613508 −0.306754 0.951789i \(-0.599243\pi\)
−0.306754 + 0.951789i \(0.599243\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −32.0000 −1.50349
\(454\) 0 0
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) 39.0000 1.82434 0.912172 0.409809i \(-0.134405\pi\)
0.912172 + 0.409809i \(0.134405\pi\)
\(458\) 0 0
\(459\) −20.0000 −0.933520
\(460\) 0 0
\(461\) 33.0000 1.53696 0.768482 0.639872i \(-0.221013\pi\)
0.768482 + 0.639872i \(0.221013\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) −4.00000 −0.185496
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 24.0000 1.10120
\(476\) 0 0
\(477\) 9.00000 0.412082
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) −13.0000 −0.590300
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 0 0
\(493\) −45.0000 −2.02670
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) 38.0000 1.69434 0.847168 0.531325i \(-0.178306\pi\)
0.847168 + 0.531325i \(0.178306\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) 24.0000 1.06588
\(508\) 0 0
\(509\) −42.0000 −1.86162 −0.930809 0.365507i \(-0.880896\pi\)
−0.930809 + 0.365507i \(0.880896\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 0 0
\(513\) −24.0000 −1.05963
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) 16.0000 0.698297
\(526\) 0 0
\(527\) −10.0000 −0.435607
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) −5.00000 −0.216574
\(534\) 0 0
\(535\) −6.00000 −0.259403
\(536\) 0 0
\(537\) 48.0000 2.07135
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) −11.0000 −0.471188
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −54.0000 −2.30048
\(552\) 0 0
\(553\) 20.0000 0.850487
\(554\) 0 0
\(555\) 6.00000 0.254686
\(556\) 0 0
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −34.0000 −1.43293 −0.716465 0.697623i \(-0.754241\pi\)
−0.716465 + 0.697623i \(0.754241\pi\)
\(564\) 0 0
\(565\) −9.00000 −0.378633
\(566\) 0 0
\(567\) −22.0000 −0.923913
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) −21.0000 −0.874241 −0.437121 0.899403i \(-0.644002\pi\)
−0.437121 + 0.899403i \(0.644002\pi\)
\(578\) 0 0
\(579\) 10.0000 0.415586
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.00000 0.0413449
\(586\) 0 0
\(587\) 14.0000 0.577842 0.288921 0.957353i \(-0.406704\pi\)
0.288921 + 0.957353i \(0.406704\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) 22.0000 0.904959
\(592\) 0 0
\(593\) 11.0000 0.451716 0.225858 0.974160i \(-0.427481\pi\)
0.225858 + 0.974160i \(0.427481\pi\)
\(594\) 0 0
\(595\) −10.0000 −0.409960
\(596\) 0 0
\(597\) 48.0000 1.96451
\(598\) 0 0
\(599\) −34.0000 −1.38920 −0.694601 0.719395i \(-0.744419\pi\)
−0.694601 + 0.719395i \(0.744419\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 10.0000 0.405887 0.202944 0.979190i \(-0.434949\pi\)
0.202944 + 0.979190i \(0.434949\pi\)
\(608\) 0 0
\(609\) −36.0000 −1.45879
\(610\) 0 0
\(611\) −2.00000 −0.0809113
\(612\) 0 0
\(613\) 17.0000 0.686624 0.343312 0.939222i \(-0.388451\pi\)
0.343312 + 0.939222i \(0.388451\pi\)
\(614\) 0 0
\(615\) 10.0000 0.403239
\(616\) 0 0
\(617\) −9.00000 −0.362326 −0.181163 0.983453i \(-0.557986\pi\)
−0.181163 + 0.983453i \(0.557986\pi\)
\(618\) 0 0
\(619\) −2.00000 −0.0803868 −0.0401934 0.999192i \(-0.512797\pi\)
−0.0401934 + 0.999192i \(0.512797\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 0 0
\(623\) −18.0000 −0.721155
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.0000 0.598089
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) 0 0
\(633\) 24.0000 0.953914
\(634\) 0 0
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −9.00000 −0.355479 −0.177739 0.984078i \(-0.556878\pi\)
−0.177739 + 0.984078i \(0.556878\pi\)
\(642\) 0 0
\(643\) 10.0000 0.394362 0.197181 0.980367i \(-0.436821\pi\)
0.197181 + 0.980367i \(0.436821\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.0000 −0.786281 −0.393141 0.919478i \(-0.628611\pi\)
−0.393141 + 0.919478i \(0.628611\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −22.0000 −0.856998 −0.428499 0.903542i \(-0.640958\pi\)
−0.428499 + 0.903542i \(0.640958\pi\)
\(660\) 0 0
\(661\) 13.0000 0.505641 0.252821 0.967513i \(-0.418642\pi\)
0.252821 + 0.967513i \(0.418642\pi\)
\(662\) 0 0
\(663\) 10.0000 0.388368
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) 0 0
\(669\) −40.0000 −1.54649
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) −16.0000 −0.615840
\(676\) 0 0
\(677\) −27.0000 −1.03769 −0.518847 0.854867i \(-0.673639\pi\)
−0.518847 + 0.854867i \(0.673639\pi\)
\(678\) 0 0
\(679\) −26.0000 −0.997788
\(680\) 0 0
\(681\) −48.0000 −1.83936
\(682\) 0 0
\(683\) −2.00000 −0.0765279 −0.0382639 0.999268i \(-0.512183\pi\)
−0.0382639 + 0.999268i \(0.512183\pi\)
\(684\) 0 0
\(685\) −10.0000 −0.382080
\(686\) 0 0
\(687\) −18.0000 −0.686743
\(688\) 0 0
\(689\) 9.00000 0.342873
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000 0.0758643
\(696\) 0 0
\(697\) 25.0000 0.946943
\(698\) 0 0
\(699\) 42.0000 1.58859
\(700\) 0 0
\(701\) 17.0000 0.642081 0.321041 0.947065i \(-0.395967\pi\)
0.321041 + 0.947065i \(0.395967\pi\)
\(702\) 0 0
\(703\) 18.0000 0.678883
\(704\) 0 0
\(705\) 4.00000 0.150649
\(706\) 0 0
\(707\) −20.0000 −0.752177
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) −4.00000 −0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) −44.0000 −1.63638
\(724\) 0 0
\(725\) −36.0000 −1.33701
\(726\) 0 0
\(727\) 42.0000 1.55769 0.778847 0.627214i \(-0.215805\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 9.00000 0.332423 0.166211 0.986090i \(-0.446847\pi\)
0.166211 + 0.986090i \(0.446847\pi\)
\(734\) 0 0
\(735\) 6.00000 0.221313
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) 12.0000 0.440831
\(742\) 0 0
\(743\) 38.0000 1.39408 0.697042 0.717030i \(-0.254499\pi\)
0.697042 + 0.717030i \(0.254499\pi\)
\(744\) 0 0
\(745\) 17.0000 0.622832
\(746\) 0 0
\(747\) −6.00000 −0.219529
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) 0 0
\(753\) −4.00000 −0.145768
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 53.0000 1.92632 0.963159 0.268933i \(-0.0866710\pi\)
0.963159 + 0.268933i \(0.0866710\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 −0.761249 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(762\) 0 0
\(763\) −22.0000 −0.796453
\(764\) 0 0
\(765\) −5.00000 −0.180775
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) 0 0
\(771\) −38.0000 −1.36854
\(772\) 0 0
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 12.0000 0.430498
\(778\) 0 0
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 36.0000 1.28654
\(784\) 0 0
\(785\) 2.00000 0.0713831
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) −44.0000 −1.56644
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 0 0
\(795\) −18.0000 −0.638394
\(796\) 0 0
\(797\) −10.0000 −0.354218 −0.177109 0.984191i \(-0.556675\pi\)
−0.177109 + 0.984191i \(0.556675\pi\)
\(798\) 0 0
\(799\) 10.0000 0.353775
\(800\) 0 0
\(801\) −9.00000 −0.317999
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) −2.00000 −0.0704033
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 40.0000 1.40286
\(814\) 0 0
\(815\) 2.00000 0.0700569
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.0000 0.347734 0.173867 0.984769i \(-0.444374\pi\)
0.173867 + 0.984769i \(0.444374\pi\)
\(828\) 0 0
\(829\) −47.0000 −1.63238 −0.816189 0.577785i \(-0.803917\pi\)
−0.816189 + 0.577785i \(0.803917\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) 15.0000 0.519719
\(834\) 0 0
\(835\) −12.0000 −0.415277
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) −46.0000 −1.58810 −0.794048 0.607855i \(-0.792030\pi\)
−0.794048 + 0.607855i \(0.792030\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) −12.0000 −0.413302
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 56.0000 1.92192
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) 17.0000 0.582069 0.291034 0.956713i \(-0.406001\pi\)
0.291034 + 0.956713i \(0.406001\pi\)
\(854\) 0 0
\(855\) −6.00000 −0.205196
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) −24.0000 −0.818869 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(860\) 0 0
\(861\) 20.0000 0.681598
\(862\) 0 0
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) −16.0000 −0.543388
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −2.00000 −0.0677674
\(872\) 0 0
\(873\) −13.0000 −0.439983
\(874\) 0 0
\(875\) −18.0000 −0.608511
\(876\) 0 0
\(877\) −27.0000 −0.911725 −0.455863 0.890050i \(-0.650669\pi\)
−0.455863 + 0.890050i \(0.650669\pi\)
\(878\) 0 0
\(879\) −18.0000 −0.607125
\(880\) 0 0
\(881\) 35.0000 1.17918 0.589590 0.807703i \(-0.299289\pi\)
0.589590 + 0.807703i \(0.299289\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 16.0000 0.537834
\(886\) 0 0
\(887\) 46.0000 1.54453 0.772264 0.635301i \(-0.219124\pi\)
0.772264 + 0.635301i \(0.219124\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 0 0
\(899\) 18.0000 0.600334
\(900\) 0 0
\(901\) −45.0000 −1.49917
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.00000 0.0332411
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −12.0000 −0.396708
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −28.0000 −0.923635 −0.461817 0.886975i \(-0.652802\pi\)
−0.461817 + 0.886975i \(0.652802\pi\)
\(920\) 0 0
\(921\) −44.0000 −1.44985
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) 12.0000 0.394558
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −21.0000 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 0 0
\(933\) 48.0000 1.57145
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 23.0000 0.751377 0.375689 0.926746i \(-0.377406\pi\)
0.375689 + 0.926746i \(0.377406\pi\)
\(938\) 0 0
\(939\) −46.0000 −1.50115
\(940\) 0 0
\(941\) −27.0000 −0.880175 −0.440087 0.897955i \(-0.645053\pi\)
−0.440087 + 0.897955i \(0.645053\pi\)
\(942\) 0 0
\(943\) 10.0000 0.325645
\(944\) 0 0
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) 42.0000 1.36482 0.682408 0.730971i \(-0.260933\pi\)
0.682408 + 0.730971i \(0.260933\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) 4.00000 0.129709
\(952\) 0 0
\(953\) 31.0000 1.00419 0.502094 0.864813i \(-0.332563\pi\)
0.502094 + 0.864813i \(0.332563\pi\)
\(954\) 0 0
\(955\) −8.00000 −0.258874
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −20.0000 −0.645834
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) −5.00000 −0.160956
\(966\) 0 0
\(967\) −22.0000 −0.707472 −0.353736 0.935345i \(-0.615089\pi\)
−0.353736 + 0.935345i \(0.615089\pi\)
\(968\) 0 0
\(969\) −60.0000 −1.92748
\(970\) 0 0
\(971\) −2.00000 −0.0641831 −0.0320915 0.999485i \(-0.510217\pi\)
−0.0320915 + 0.999485i \(0.510217\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) 8.00000 0.256205
\(976\) 0 0
\(977\) −57.0000 −1.82359 −0.911796 0.410644i \(-0.865304\pi\)
−0.911796 + 0.410644i \(0.865304\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −11.0000 −0.351203
\(982\) 0 0
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) −11.0000 −0.350489
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) −40.0000 −1.26936
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) 53.0000 1.67853 0.839263 0.543725i \(-0.182987\pi\)
0.839263 + 0.543725i \(0.182987\pi\)
\(998\) 0 0
\(999\) −12.0000 −0.379663
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.2.a.b.1.1 1
4.3 odd 2 121.2.a.c.1.1 yes 1
8.3 odd 2 7744.2.a.c.1.1 1
8.5 even 2 7744.2.a.bf.1.1 1
11.10 odd 2 1936.2.a.a.1.1 1
12.11 even 2 1089.2.a.c.1.1 1
20.19 odd 2 3025.2.a.b.1.1 1
28.27 even 2 5929.2.a.g.1.1 1
44.3 odd 10 121.2.c.b.9.1 4
44.7 even 10 121.2.c.d.27.1 4
44.15 odd 10 121.2.c.b.27.1 4
44.19 even 10 121.2.c.d.9.1 4
44.27 odd 10 121.2.c.b.3.1 4
44.31 odd 10 121.2.c.b.81.1 4
44.35 even 10 121.2.c.d.81.1 4
44.39 even 10 121.2.c.d.3.1 4
44.43 even 2 121.2.a.a.1.1 1
88.21 odd 2 7744.2.a.be.1.1 1
88.43 even 2 7744.2.a.f.1.1 1
132.131 odd 2 1089.2.a.i.1.1 1
220.219 even 2 3025.2.a.e.1.1 1
308.307 odd 2 5929.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.2.a.a.1.1 1 44.43 even 2
121.2.a.c.1.1 yes 1 4.3 odd 2
121.2.c.b.3.1 4 44.27 odd 10
121.2.c.b.9.1 4 44.3 odd 10
121.2.c.b.27.1 4 44.15 odd 10
121.2.c.b.81.1 4 44.31 odd 10
121.2.c.d.3.1 4 44.39 even 10
121.2.c.d.9.1 4 44.19 even 10
121.2.c.d.27.1 4 44.7 even 10
121.2.c.d.81.1 4 44.35 even 10
1089.2.a.c.1.1 1 12.11 even 2
1089.2.a.i.1.1 1 132.131 odd 2
1936.2.a.a.1.1 1 11.10 odd 2
1936.2.a.b.1.1 1 1.1 even 1 trivial
3025.2.a.b.1.1 1 20.19 odd 2
3025.2.a.e.1.1 1 220.219 even 2
5929.2.a.a.1.1 1 308.307 odd 2
5929.2.a.g.1.1 1 28.27 even 2
7744.2.a.c.1.1 1 8.3 odd 2
7744.2.a.f.1.1 1 88.43 even 2
7744.2.a.be.1.1 1 88.21 odd 2
7744.2.a.bf.1.1 1 8.5 even 2