Properties

Label 1936.2.a
Level $1936$
Weight $2$
Character orbit 1936.a
Rep. character $\chi_{1936}(1,\cdot)$
Character field $\Q$
Dimension $50$
Newform subspaces $29$
Sturm bound $528$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 29 \)
Sturm bound: \(528\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1936))\).

Total New Old
Modular forms 300 59 241
Cusp forms 229 50 179
Eisenstein series 71 9 62

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(12\)
\(+\)\(-\)\(-\)\(15\)
\(-\)\(+\)\(-\)\(13\)
\(-\)\(-\)\(+\)\(10\)
Plus space\(+\)\(22\)
Minus space\(-\)\(28\)

Trace form

\( 50 q - 2 q^{3} + 2 q^{5} - 4 q^{7} + 40 q^{9} + 2 q^{13} + 4 q^{15} - 2 q^{17} + 4 q^{19} + 8 q^{21} + 16 q^{23} + 28 q^{25} + 4 q^{27} + 10 q^{29} - 2 q^{31} + 12 q^{35} + 10 q^{37} + 8 q^{39} - 2 q^{41}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1936))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 11
1936.2.a.a 1936.a 1.a $1$ $15.459$ \(\Q\) None 121.2.a.a \(0\) \(-2\) \(1\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}-2q^{7}+q^{9}-q^{13}-2q^{15}+\cdots\)
1936.2.a.b 1936.a 1.a $1$ $15.459$ \(\Q\) None 121.2.a.a \(0\) \(-2\) \(1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}+2q^{7}+q^{9}+q^{13}-2q^{15}+\cdots\)
1936.2.a.c 1936.a 1.a $1$ $15.459$ \(\Q\) None 44.2.a.a \(0\) \(-1\) \(-3\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}+2q^{7}-2q^{9}+4q^{13}+\cdots\)
1936.2.a.d 1936.a 1.a $1$ $15.459$ \(\Q\) None 968.2.a.d \(0\) \(-1\) \(1\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-4q^{7}-2q^{9}+4q^{13}+\cdots\)
1936.2.a.e 1936.a 1.a $1$ $15.459$ \(\Q\) None 968.2.a.d \(0\) \(-1\) \(1\) \(4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+4q^{7}-2q^{9}-4q^{13}+\cdots\)
1936.2.a.f 1936.a 1.a $1$ $15.459$ \(\Q\) None 968.2.a.b \(0\) \(0\) \(3\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}-4q^{7}-3q^{9}+3q^{13}+3q^{17}+\cdots\)
1936.2.a.g 1936.a 1.a $1$ $15.459$ \(\Q\) None 968.2.a.b \(0\) \(0\) \(3\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}+4q^{7}-3q^{9}-3q^{13}-3q^{17}+\cdots\)
1936.2.a.h 1936.a 1.a $1$ $15.459$ \(\Q\) \(\Q(\sqrt{-11}) \) 121.2.a.b \(0\) \(1\) \(-3\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+q^{3}-3q^{5}-2q^{9}-3q^{15}+9q^{23}+\cdots\)
1936.2.a.i 1936.a 1.a $1$ $15.459$ \(\Q\) None 11.2.a.a \(0\) \(1\) \(1\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{7}-2q^{9}-4q^{13}+\cdots\)
1936.2.a.j 1936.a 1.a $1$ $15.459$ \(\Q\) None 242.2.a.a \(0\) \(2\) \(-3\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-3q^{5}-2q^{7}+q^{9}+5q^{13}+\cdots\)
1936.2.a.k 1936.a 1.a $1$ $15.459$ \(\Q\) None 242.2.a.a \(0\) \(2\) \(-3\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-3q^{5}+2q^{7}+q^{9}-5q^{13}+\cdots\)
1936.2.a.l 1936.a 1.a $1$ $15.459$ \(\Q\) None 88.2.a.a \(0\) \(3\) \(-3\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-3q^{5}-2q^{7}+6q^{9}-9q^{15}+\cdots\)
1936.2.a.m 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{3}) \) None 484.2.a.e \(0\) \(-4\) \(6\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+3q^{5}+2\beta q^{7}+q^{9}+3\beta q^{13}+\cdots\)
1936.2.a.n 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 22.2.c.a \(0\) \(-3\) \(2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}+(2-2\beta )q^{5}-2q^{7}+\cdots\)
1936.2.a.o 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 22.2.c.a \(0\) \(-3\) \(2\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}+(2-2\beta )q^{5}+2q^{7}+\cdots\)
1936.2.a.p 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{3}) \) None 968.2.a.k \(0\) \(-2\) \(-4\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}+(-2+\beta )q^{5}+(-1+\cdots)q^{7}+\cdots\)
1936.2.a.q 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{3}) \) None 968.2.a.k \(0\) \(-2\) \(-4\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}+(-2+\beta )q^{5}+(1-\beta )q^{7}+\cdots\)
1936.2.a.r 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{17}) \) None 88.2.a.b \(0\) \(-1\) \(3\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(2-\beta )q^{5}-2\beta q^{7}+(1+\beta )q^{9}+\cdots\)
1936.2.a.s 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{33}) \) \(\Q(\sqrt{-11}) \) 484.2.a.d \(0\) \(-1\) \(3\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-\beta q^{3}+(2-\beta )q^{5}+(5+\beta )q^{9}+(8-\beta )q^{15}+\cdots\)
1936.2.a.t 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 88.2.i.a \(0\) \(1\) \(-1\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-1+\beta )q^{5}-\beta q^{7}+(-2+\cdots)q^{9}+\cdots\)
1936.2.a.u 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 88.2.i.a \(0\) \(1\) \(-1\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-1+\beta )q^{5}+\beta q^{7}+(-2+\cdots)q^{9}+\cdots\)
1936.2.a.v 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{3}) \) None 242.2.a.c \(0\) \(2\) \(0\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+\beta q^{5}+(-3+\beta )q^{7}+(1+\cdots)q^{9}+\cdots\)
1936.2.a.w 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 968.2.a.f \(0\) \(2\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+\beta q^{5}+(-1-\beta )q^{7}+(3+\cdots)q^{9}+\cdots\)
1936.2.a.x 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 968.2.a.f \(0\) \(2\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+\beta q^{5}+(1+\beta )q^{7}+(3+2\beta )q^{9}+\cdots\)
1936.2.a.y 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{3}) \) None 242.2.a.c \(0\) \(2\) \(0\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+\beta q^{5}+(3-\beta )q^{7}+(1+2\beta )q^{9}+\cdots\)
1936.2.a.z 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 44.2.e.a \(0\) \(3\) \(-1\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-\beta q^{5}+(1-3\beta )q^{7}+(-1+\cdots)q^{9}+\cdots\)
1936.2.a.ba 1936.a 1.a $2$ $15.459$ \(\Q(\sqrt{5}) \) None 44.2.e.a \(0\) \(3\) \(-1\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-\beta q^{5}+(-1+3\beta )q^{7}+\cdots\)
1936.2.a.bb 1936.a 1.a $4$ $15.459$ 4.4.5225.1 None 88.2.i.b \(0\) \(-2\) \(1\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{3}+(-1+\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)
1936.2.a.bc 1936.a 1.a $4$ $15.459$ 4.4.5225.1 None 88.2.i.b \(0\) \(-2\) \(1\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{3}+(-1+\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1936))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1936)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 2}\)