Defining parameters
Level: | \( N \) | \(=\) | \( 19275 = 3 \cdot 5^{2} \cdot 257 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 19275.a (trivial) |
Character field: | \(\Q\) | ||
Sturm bound: | \(5160\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(19275))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2592 | 810 | 1782 |
Cusp forms | 2569 | 810 | 1759 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(257\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(94\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(100\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(112\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(100\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(98\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(92\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(101\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(113\) |
Plus space | \(+\) | \(387\) | ||
Minus space | \(-\) | \(423\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(19275))\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(19275))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(19275)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(257))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(771))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3855))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6425))\)\(^{\oplus 2}\)