Properties

Label 19275.2.a
Level $19275$
Weight $2$
Character orbit 19275.a
Rep. character $\chi_{19275}(1,\cdot)$
Character field $\Q$
Dimension $810$
Sturm bound $5160$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 19275 = 3 \cdot 5^{2} \cdot 257 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 19275.a (trivial)
Character field: \(\Q\)
Sturm bound: \(5160\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(19275))\).

Total New Old
Modular forms 2592 810 1782
Cusp forms 2569 810 1759
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(257\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(94\)
\(+\)\(+\)\(-\)\(-\)\(100\)
\(+\)\(-\)\(+\)\(-\)\(112\)
\(+\)\(-\)\(-\)\(+\)\(100\)
\(-\)\(+\)\(+\)\(-\)\(98\)
\(-\)\(+\)\(-\)\(+\)\(92\)
\(-\)\(-\)\(+\)\(+\)\(101\)
\(-\)\(-\)\(-\)\(-\)\(113\)
Plus space\(+\)\(387\)
Minus space\(-\)\(423\)

Trace form

\( 810 q - 4 q^{2} - 2 q^{3} + 804 q^{4} + 2 q^{6} - 12 q^{8} + 810 q^{9} + 2 q^{12} - 8 q^{13} + 20 q^{14} + 816 q^{16} - 4 q^{18} + 8 q^{19} - 16 q^{21} - 8 q^{22} + 12 q^{23} - 6 q^{24} + 4 q^{26} - 2 q^{27}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(19275))\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(19275))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(19275)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(257))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(771))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3855))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6425))\)\(^{\oplus 2}\)