Properties

Label 1925.4.a.r.1.2
Level $1925$
Weight $4$
Character 1925.1
Self dual yes
Analytic conductor $113.579$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1925,4,Mod(1,1925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1925.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.578676761\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.44399\) of defining polynomial
Character \(\chi\) \(=\) 1925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.44399 q^{2} -8.26395 q^{3} +11.7491 q^{4} +36.7249 q^{6} -7.00000 q^{7} -16.6609 q^{8} +41.2928 q^{9} +11.0000 q^{11} -97.0937 q^{12} +51.5769 q^{13} +31.1080 q^{14} -19.9519 q^{16} +26.5590 q^{17} -183.505 q^{18} +99.6432 q^{19} +57.8476 q^{21} -48.8839 q^{22} -28.1455 q^{23} +137.684 q^{24} -229.207 q^{26} -118.115 q^{27} -82.2435 q^{28} -43.9369 q^{29} -83.8402 q^{31} +221.953 q^{32} -90.9034 q^{33} -118.028 q^{34} +485.152 q^{36} -306.353 q^{37} -442.814 q^{38} -426.228 q^{39} +200.991 q^{41} -257.074 q^{42} +13.7546 q^{43} +129.240 q^{44} +125.079 q^{46} +266.533 q^{47} +164.881 q^{48} +49.0000 q^{49} -219.482 q^{51} +605.980 q^{52} -308.867 q^{53} +524.903 q^{54} +116.626 q^{56} -823.446 q^{57} +195.255 q^{58} -622.446 q^{59} -87.3303 q^{61} +372.585 q^{62} -289.050 q^{63} -826.742 q^{64} +403.974 q^{66} -608.395 q^{67} +312.044 q^{68} +232.593 q^{69} -464.926 q^{71} -687.974 q^{72} +255.407 q^{73} +1361.43 q^{74} +1170.72 q^{76} -77.0000 q^{77} +1894.16 q^{78} +261.237 q^{79} -138.809 q^{81} -893.204 q^{82} -953.986 q^{83} +679.656 q^{84} -61.1255 q^{86} +363.092 q^{87} -183.269 q^{88} -839.910 q^{89} -361.038 q^{91} -330.684 q^{92} +692.851 q^{93} -1184.47 q^{94} -1834.21 q^{96} +349.146 q^{97} -217.756 q^{98} +454.221 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 2 q^{3} + 45 q^{4} + 4 q^{6} - 35 q^{7} - 57 q^{8} + 63 q^{9} + 55 q^{11} - 24 q^{12} + 50 q^{13} + 7 q^{14} + 433 q^{16} - 222 q^{17} - 245 q^{18} + 160 q^{19} + 14 q^{21} - 11 q^{22} - 54 q^{23}+ \cdots + 693 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.44399 −1.57119 −0.785594 0.618742i \(-0.787643\pi\)
−0.785594 + 0.618742i \(0.787643\pi\)
\(3\) −8.26395 −1.59040 −0.795199 0.606349i \(-0.792633\pi\)
−0.795199 + 0.606349i \(0.792633\pi\)
\(4\) 11.7491 1.46863
\(5\) 0 0
\(6\) 36.7249 2.49881
\(7\) −7.00000 −0.377964
\(8\) −16.6609 −0.736313
\(9\) 41.2928 1.52936
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) −97.0937 −2.33571
\(13\) 51.5769 1.10037 0.550186 0.835042i \(-0.314557\pi\)
0.550186 + 0.835042i \(0.314557\pi\)
\(14\) 31.1080 0.593854
\(15\) 0 0
\(16\) −19.9519 −0.311748
\(17\) 26.5590 0.378912 0.189456 0.981889i \(-0.439328\pi\)
0.189456 + 0.981889i \(0.439328\pi\)
\(18\) −183.505 −2.40292
\(19\) 99.6432 1.20314 0.601571 0.798819i \(-0.294542\pi\)
0.601571 + 0.798819i \(0.294542\pi\)
\(20\) 0 0
\(21\) 57.8476 0.601114
\(22\) −48.8839 −0.473731
\(23\) −28.1455 −0.255163 −0.127582 0.991828i \(-0.540721\pi\)
−0.127582 + 0.991828i \(0.540721\pi\)
\(24\) 137.684 1.17103
\(25\) 0 0
\(26\) −229.207 −1.72889
\(27\) −118.115 −0.841899
\(28\) −82.2435 −0.555092
\(29\) −43.9369 −0.281340 −0.140670 0.990057i \(-0.544926\pi\)
−0.140670 + 0.990057i \(0.544926\pi\)
\(30\) 0 0
\(31\) −83.8402 −0.485747 −0.242873 0.970058i \(-0.578090\pi\)
−0.242873 + 0.970058i \(0.578090\pi\)
\(32\) 221.953 1.22613
\(33\) −90.9034 −0.479523
\(34\) −118.028 −0.595342
\(35\) 0 0
\(36\) 485.152 2.24608
\(37\) −306.353 −1.36119 −0.680596 0.732659i \(-0.738279\pi\)
−0.680596 + 0.732659i \(0.738279\pi\)
\(38\) −442.814 −1.89036
\(39\) −426.228 −1.75003
\(40\) 0 0
\(41\) 200.991 0.765599 0.382800 0.923831i \(-0.374960\pi\)
0.382800 + 0.923831i \(0.374960\pi\)
\(42\) −257.074 −0.944463
\(43\) 13.7546 0.0487805 0.0243903 0.999703i \(-0.492236\pi\)
0.0243903 + 0.999703i \(0.492236\pi\)
\(44\) 129.240 0.442810
\(45\) 0 0
\(46\) 125.079 0.400909
\(47\) 266.533 0.827189 0.413594 0.910461i \(-0.364273\pi\)
0.413594 + 0.910461i \(0.364273\pi\)
\(48\) 164.881 0.495803
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −219.482 −0.602621
\(52\) 605.980 1.61605
\(53\) −308.867 −0.800493 −0.400247 0.916407i \(-0.631076\pi\)
−0.400247 + 0.916407i \(0.631076\pi\)
\(54\) 524.903 1.32278
\(55\) 0 0
\(56\) 116.626 0.278300
\(57\) −823.446 −1.91348
\(58\) 195.255 0.442039
\(59\) −622.446 −1.37348 −0.686742 0.726901i \(-0.740960\pi\)
−0.686742 + 0.726901i \(0.740960\pi\)
\(60\) 0 0
\(61\) −87.3303 −0.183303 −0.0916516 0.995791i \(-0.529215\pi\)
−0.0916516 + 0.995791i \(0.529215\pi\)
\(62\) 372.585 0.763200
\(63\) −289.050 −0.578045
\(64\) −826.742 −1.61473
\(65\) 0 0
\(66\) 403.974 0.753421
\(67\) −608.395 −1.10936 −0.554681 0.832063i \(-0.687160\pi\)
−0.554681 + 0.832063i \(0.687160\pi\)
\(68\) 312.044 0.556483
\(69\) 232.593 0.405811
\(70\) 0 0
\(71\) −464.926 −0.777135 −0.388567 0.921420i \(-0.627030\pi\)
−0.388567 + 0.921420i \(0.627030\pi\)
\(72\) −687.974 −1.12609
\(73\) 255.407 0.409495 0.204747 0.978815i \(-0.434363\pi\)
0.204747 + 0.978815i \(0.434363\pi\)
\(74\) 1361.43 2.13869
\(75\) 0 0
\(76\) 1170.72 1.76698
\(77\) −77.0000 −0.113961
\(78\) 1894.16 2.74963
\(79\) 261.237 0.372043 0.186022 0.982546i \(-0.440441\pi\)
0.186022 + 0.982546i \(0.440441\pi\)
\(80\) 0 0
\(81\) −138.809 −0.190410
\(82\) −893.204 −1.20290
\(83\) −953.986 −1.26161 −0.630804 0.775942i \(-0.717275\pi\)
−0.630804 + 0.775942i \(0.717275\pi\)
\(84\) 679.656 0.882816
\(85\) 0 0
\(86\) −61.1255 −0.0766434
\(87\) 363.092 0.447443
\(88\) −183.269 −0.222007
\(89\) −839.910 −1.00034 −0.500170 0.865927i \(-0.666729\pi\)
−0.500170 + 0.865927i \(0.666729\pi\)
\(90\) 0 0
\(91\) −361.038 −0.415902
\(92\) −330.684 −0.374741
\(93\) 692.851 0.772530
\(94\) −1184.47 −1.29967
\(95\) 0 0
\(96\) −1834.21 −1.95003
\(97\) 349.146 0.365468 0.182734 0.983162i \(-0.441505\pi\)
0.182734 + 0.983162i \(0.441505\pi\)
\(98\) −217.756 −0.224456
\(99\) 454.221 0.461121
\(100\) 0 0
\(101\) 1492.44 1.47033 0.735163 0.677890i \(-0.237106\pi\)
0.735163 + 0.677890i \(0.237106\pi\)
\(102\) 975.377 0.946831
\(103\) −558.687 −0.534457 −0.267228 0.963633i \(-0.586108\pi\)
−0.267228 + 0.963633i \(0.586108\pi\)
\(104\) −859.314 −0.810218
\(105\) 0 0
\(106\) 1372.60 1.25773
\(107\) 694.047 0.627066 0.313533 0.949577i \(-0.398487\pi\)
0.313533 + 0.949577i \(0.398487\pi\)
\(108\) −1387.74 −1.23644
\(109\) −341.005 −0.299654 −0.149827 0.988712i \(-0.547872\pi\)
−0.149827 + 0.988712i \(0.547872\pi\)
\(110\) 0 0
\(111\) 2531.68 2.16484
\(112\) 139.663 0.117830
\(113\) 990.910 0.824929 0.412464 0.910974i \(-0.364668\pi\)
0.412464 + 0.910974i \(0.364668\pi\)
\(114\) 3659.39 3.00643
\(115\) 0 0
\(116\) −516.218 −0.413186
\(117\) 2129.75 1.68287
\(118\) 2766.15 2.15800
\(119\) −185.913 −0.143215
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 388.095 0.288004
\(123\) −1660.98 −1.21761
\(124\) −985.045 −0.713384
\(125\) 0 0
\(126\) 1284.54 0.908218
\(127\) 666.090 0.465401 0.232700 0.972548i \(-0.425244\pi\)
0.232700 + 0.972548i \(0.425244\pi\)
\(128\) 1898.41 1.31092
\(129\) −113.668 −0.0775804
\(130\) 0 0
\(131\) 30.4356 0.0202990 0.0101495 0.999948i \(-0.496769\pi\)
0.0101495 + 0.999948i \(0.496769\pi\)
\(132\) −1068.03 −0.704244
\(133\) −697.502 −0.454745
\(134\) 2703.70 1.74302
\(135\) 0 0
\(136\) −442.496 −0.278998
\(137\) 2810.25 1.75252 0.876262 0.481836i \(-0.160030\pi\)
0.876262 + 0.481836i \(0.160030\pi\)
\(138\) −1033.64 −0.637605
\(139\) 3110.49 1.89804 0.949021 0.315212i \(-0.102076\pi\)
0.949021 + 0.315212i \(0.102076\pi\)
\(140\) 0 0
\(141\) −2202.62 −1.31556
\(142\) 2066.13 1.22103
\(143\) 567.345 0.331775
\(144\) −823.869 −0.476776
\(145\) 0 0
\(146\) −1135.03 −0.643394
\(147\) −404.933 −0.227200
\(148\) −3599.36 −1.99909
\(149\) 1916.92 1.05396 0.526979 0.849878i \(-0.323325\pi\)
0.526979 + 0.849878i \(0.323325\pi\)
\(150\) 0 0
\(151\) −2289.28 −1.23377 −0.616883 0.787055i \(-0.711605\pi\)
−0.616883 + 0.787055i \(0.711605\pi\)
\(152\) −1660.14 −0.885889
\(153\) 1096.70 0.579494
\(154\) 342.187 0.179054
\(155\) 0 0
\(156\) −5007.79 −2.57015
\(157\) −280.036 −0.142352 −0.0711762 0.997464i \(-0.522675\pi\)
−0.0711762 + 0.997464i \(0.522675\pi\)
\(158\) −1160.93 −0.584550
\(159\) 2552.46 1.27310
\(160\) 0 0
\(161\) 197.019 0.0964426
\(162\) 616.865 0.299170
\(163\) 866.571 0.416411 0.208206 0.978085i \(-0.433238\pi\)
0.208206 + 0.978085i \(0.433238\pi\)
\(164\) 2361.46 1.12439
\(165\) 0 0
\(166\) 4239.51 1.98223
\(167\) 1965.18 0.910600 0.455300 0.890338i \(-0.349532\pi\)
0.455300 + 0.890338i \(0.349532\pi\)
\(168\) −963.791 −0.442608
\(169\) 463.173 0.210820
\(170\) 0 0
\(171\) 4114.55 1.84004
\(172\) 161.604 0.0716407
\(173\) −3956.88 −1.73894 −0.869469 0.493988i \(-0.835539\pi\)
−0.869469 + 0.493988i \(0.835539\pi\)
\(174\) −1613.58 −0.703018
\(175\) 0 0
\(176\) −219.471 −0.0939956
\(177\) 5143.86 2.18439
\(178\) 3732.55 1.57172
\(179\) −3143.58 −1.31264 −0.656318 0.754484i \(-0.727887\pi\)
−0.656318 + 0.754484i \(0.727887\pi\)
\(180\) 0 0
\(181\) 683.772 0.280798 0.140399 0.990095i \(-0.455162\pi\)
0.140399 + 0.990095i \(0.455162\pi\)
\(182\) 1604.45 0.653460
\(183\) 721.693 0.291525
\(184\) 468.929 0.187880
\(185\) 0 0
\(186\) −3079.03 −1.21379
\(187\) 292.149 0.114246
\(188\) 3131.52 1.21484
\(189\) 826.806 0.318208
\(190\) 0 0
\(191\) 2739.68 1.03789 0.518944 0.854809i \(-0.326325\pi\)
0.518944 + 0.854809i \(0.326325\pi\)
\(192\) 6832.15 2.56806
\(193\) −2651.93 −0.989067 −0.494534 0.869159i \(-0.664661\pi\)
−0.494534 + 0.869159i \(0.664661\pi\)
\(194\) −1551.60 −0.574219
\(195\) 0 0
\(196\) 575.705 0.209805
\(197\) 1879.52 0.679749 0.339874 0.940471i \(-0.389615\pi\)
0.339874 + 0.940471i \(0.389615\pi\)
\(198\) −2018.56 −0.724507
\(199\) −3119.39 −1.11119 −0.555597 0.831452i \(-0.687510\pi\)
−0.555597 + 0.831452i \(0.687510\pi\)
\(200\) 0 0
\(201\) 5027.75 1.76433
\(202\) −6632.37 −2.31016
\(203\) 307.558 0.106337
\(204\) −2578.71 −0.885029
\(205\) 0 0
\(206\) 2482.80 0.839733
\(207\) −1162.21 −0.390237
\(208\) −1029.05 −0.343039
\(209\) 1096.08 0.362761
\(210\) 0 0
\(211\) −520.718 −0.169894 −0.0849472 0.996385i \(-0.527072\pi\)
−0.0849472 + 0.996385i \(0.527072\pi\)
\(212\) −3628.90 −1.17563
\(213\) 3842.12 1.23595
\(214\) −3084.34 −0.985238
\(215\) 0 0
\(216\) 1967.90 0.619901
\(217\) 586.881 0.183595
\(218\) 1515.42 0.470814
\(219\) −2110.67 −0.651260
\(220\) 0 0
\(221\) 1369.83 0.416944
\(222\) −11250.8 −3.40137
\(223\) −2101.08 −0.630935 −0.315467 0.948936i \(-0.602161\pi\)
−0.315467 + 0.948936i \(0.602161\pi\)
\(224\) −1553.67 −0.463433
\(225\) 0 0
\(226\) −4403.60 −1.29612
\(227\) 6051.96 1.76953 0.884764 0.466040i \(-0.154320\pi\)
0.884764 + 0.466040i \(0.154320\pi\)
\(228\) −9674.73 −2.81020
\(229\) −2995.73 −0.864470 −0.432235 0.901761i \(-0.642275\pi\)
−0.432235 + 0.901761i \(0.642275\pi\)
\(230\) 0 0
\(231\) 636.324 0.181243
\(232\) 732.026 0.207155
\(233\) 65.3656 0.0183787 0.00918936 0.999958i \(-0.497075\pi\)
0.00918936 + 0.999958i \(0.497075\pi\)
\(234\) −9464.61 −2.64411
\(235\) 0 0
\(236\) −7313.17 −2.01715
\(237\) −2158.85 −0.591697
\(238\) 826.196 0.225018
\(239\) −1102.33 −0.298343 −0.149171 0.988811i \(-0.547661\pi\)
−0.149171 + 0.988811i \(0.547661\pi\)
\(240\) 0 0
\(241\) 5297.43 1.41592 0.707962 0.706250i \(-0.249615\pi\)
0.707962 + 0.706250i \(0.249615\pi\)
\(242\) −537.723 −0.142835
\(243\) 4336.22 1.14473
\(244\) −1026.05 −0.269205
\(245\) 0 0
\(246\) 7381.39 1.91309
\(247\) 5139.28 1.32391
\(248\) 1396.85 0.357661
\(249\) 7883.69 2.00646
\(250\) 0 0
\(251\) 177.964 0.0447530 0.0223765 0.999750i \(-0.492877\pi\)
0.0223765 + 0.999750i \(0.492877\pi\)
\(252\) −3396.07 −0.848937
\(253\) −309.601 −0.0769346
\(254\) −2960.10 −0.731232
\(255\) 0 0
\(256\) −1822.59 −0.444969
\(257\) −3496.69 −0.848707 −0.424354 0.905497i \(-0.639499\pi\)
−0.424354 + 0.905497i \(0.639499\pi\)
\(258\) 505.138 0.121893
\(259\) 2144.47 0.514482
\(260\) 0 0
\(261\) −1814.28 −0.430272
\(262\) −135.256 −0.0318936
\(263\) −5747.94 −1.34766 −0.673828 0.738889i \(-0.735351\pi\)
−0.673828 + 0.738889i \(0.735351\pi\)
\(264\) 1514.53 0.353079
\(265\) 0 0
\(266\) 3099.70 0.714491
\(267\) 6940.97 1.59094
\(268\) −7148.08 −1.62925
\(269\) 235.217 0.0533140 0.0266570 0.999645i \(-0.491514\pi\)
0.0266570 + 0.999645i \(0.491514\pi\)
\(270\) 0 0
\(271\) −1179.58 −0.264406 −0.132203 0.991223i \(-0.542205\pi\)
−0.132203 + 0.991223i \(0.542205\pi\)
\(272\) −529.902 −0.118125
\(273\) 2983.60 0.661449
\(274\) −12488.7 −2.75354
\(275\) 0 0
\(276\) 2732.76 0.595988
\(277\) 3638.98 0.789331 0.394666 0.918825i \(-0.370860\pi\)
0.394666 + 0.918825i \(0.370860\pi\)
\(278\) −13823.0 −2.98218
\(279\) −3462.00 −0.742883
\(280\) 0 0
\(281\) 3236.81 0.687160 0.343580 0.939123i \(-0.388360\pi\)
0.343580 + 0.939123i \(0.388360\pi\)
\(282\) 9788.42 2.06699
\(283\) −8303.78 −1.74420 −0.872100 0.489328i \(-0.837242\pi\)
−0.872100 + 0.489328i \(0.837242\pi\)
\(284\) −5462.45 −1.14133
\(285\) 0 0
\(286\) −2521.28 −0.521281
\(287\) −1406.94 −0.289369
\(288\) 9165.06 1.87520
\(289\) −4207.62 −0.856426
\(290\) 0 0
\(291\) −2885.32 −0.581239
\(292\) 3000.80 0.601398
\(293\) 1894.16 0.377672 0.188836 0.982009i \(-0.439529\pi\)
0.188836 + 0.982009i \(0.439529\pi\)
\(294\) 1799.52 0.356974
\(295\) 0 0
\(296\) 5104.10 1.00226
\(297\) −1299.27 −0.253842
\(298\) −8518.76 −1.65597
\(299\) −1451.66 −0.280775
\(300\) 0 0
\(301\) −96.2825 −0.0184373
\(302\) 10173.5 1.93848
\(303\) −12333.4 −2.33840
\(304\) −1988.07 −0.375077
\(305\) 0 0
\(306\) −4873.71 −0.910495
\(307\) −6596.30 −1.22629 −0.613144 0.789971i \(-0.710096\pi\)
−0.613144 + 0.789971i \(0.710096\pi\)
\(308\) −904.679 −0.167366
\(309\) 4616.96 0.849999
\(310\) 0 0
\(311\) −5242.26 −0.955824 −0.477912 0.878408i \(-0.658606\pi\)
−0.477912 + 0.878408i \(0.658606\pi\)
\(312\) 7101.33 1.28857
\(313\) −5338.75 −0.964103 −0.482051 0.876143i \(-0.660108\pi\)
−0.482051 + 0.876143i \(0.660108\pi\)
\(314\) 1244.48 0.223662
\(315\) 0 0
\(316\) 3069.29 0.546395
\(317\) 5807.21 1.02891 0.514456 0.857517i \(-0.327994\pi\)
0.514456 + 0.857517i \(0.327994\pi\)
\(318\) −11343.1 −2.00028
\(319\) −483.306 −0.0848273
\(320\) 0 0
\(321\) −5735.56 −0.997283
\(322\) −875.550 −0.151530
\(323\) 2646.42 0.455885
\(324\) −1630.87 −0.279642
\(325\) 0 0
\(326\) −3851.03 −0.654261
\(327\) 2818.04 0.476570
\(328\) −3348.69 −0.563720
\(329\) −1865.73 −0.312648
\(330\) 0 0
\(331\) −1366.51 −0.226919 −0.113460 0.993543i \(-0.536193\pi\)
−0.113460 + 0.993543i \(0.536193\pi\)
\(332\) −11208.4 −1.85284
\(333\) −12650.2 −2.08176
\(334\) −8733.25 −1.43072
\(335\) 0 0
\(336\) −1154.17 −0.187396
\(337\) 3363.75 0.543724 0.271862 0.962336i \(-0.412361\pi\)
0.271862 + 0.962336i \(0.412361\pi\)
\(338\) −2058.34 −0.331239
\(339\) −8188.83 −1.31196
\(340\) 0 0
\(341\) −922.242 −0.146458
\(342\) −18285.0 −2.89106
\(343\) −343.000 −0.0539949
\(344\) −229.164 −0.0359177
\(345\) 0 0
\(346\) 17584.4 2.73220
\(347\) −2984.97 −0.461791 −0.230896 0.972979i \(-0.574166\pi\)
−0.230896 + 0.972979i \(0.574166\pi\)
\(348\) 4265.99 0.657130
\(349\) 1286.08 0.197255 0.0986276 0.995124i \(-0.468555\pi\)
0.0986276 + 0.995124i \(0.468555\pi\)
\(350\) 0 0
\(351\) −6092.01 −0.926403
\(352\) 2441.48 0.369691
\(353\) −8417.60 −1.26919 −0.634594 0.772846i \(-0.718833\pi\)
−0.634594 + 0.772846i \(0.718833\pi\)
\(354\) −22859.3 −3.43208
\(355\) 0 0
\(356\) −9868.16 −1.46913
\(357\) 1536.38 0.227769
\(358\) 13970.0 2.06240
\(359\) 7483.47 1.10017 0.550087 0.835108i \(-0.314595\pi\)
0.550087 + 0.835108i \(0.314595\pi\)
\(360\) 0 0
\(361\) 3069.76 0.447553
\(362\) −3038.68 −0.441186
\(363\) −999.938 −0.144582
\(364\) −4241.86 −0.610808
\(365\) 0 0
\(366\) −3207.20 −0.458041
\(367\) −8588.73 −1.22160 −0.610801 0.791784i \(-0.709153\pi\)
−0.610801 + 0.791784i \(0.709153\pi\)
\(368\) 561.556 0.0795466
\(369\) 8299.50 1.17088
\(370\) 0 0
\(371\) 2162.07 0.302558
\(372\) 8140.36 1.13456
\(373\) −11833.0 −1.64260 −0.821298 0.570500i \(-0.806749\pi\)
−0.821298 + 0.570500i \(0.806749\pi\)
\(374\) −1298.31 −0.179502
\(375\) 0 0
\(376\) −4440.67 −0.609070
\(377\) −2266.13 −0.309579
\(378\) −3674.32 −0.499965
\(379\) 5056.39 0.685301 0.342651 0.939463i \(-0.388675\pi\)
0.342651 + 0.939463i \(0.388675\pi\)
\(380\) 0 0
\(381\) −5504.53 −0.740172
\(382\) −12175.1 −1.63072
\(383\) −6457.09 −0.861467 −0.430733 0.902479i \(-0.641745\pi\)
−0.430733 + 0.902479i \(0.641745\pi\)
\(384\) −15688.4 −2.08488
\(385\) 0 0
\(386\) 11785.1 1.55401
\(387\) 567.968 0.0746032
\(388\) 4102.14 0.536739
\(389\) 12444.5 1.62201 0.811004 0.585040i \(-0.198921\pi\)
0.811004 + 0.585040i \(0.198921\pi\)
\(390\) 0 0
\(391\) −747.518 −0.0966844
\(392\) −816.382 −0.105188
\(393\) −251.518 −0.0322835
\(394\) −8352.59 −1.06801
\(395\) 0 0
\(396\) 5336.68 0.677217
\(397\) 619.207 0.0782799 0.0391400 0.999234i \(-0.487538\pi\)
0.0391400 + 0.999234i \(0.487538\pi\)
\(398\) 13862.5 1.74589
\(399\) 5764.12 0.723226
\(400\) 0 0
\(401\) 9731.89 1.21194 0.605969 0.795488i \(-0.292785\pi\)
0.605969 + 0.795488i \(0.292785\pi\)
\(402\) −22343.3 −2.77209
\(403\) −4324.22 −0.534502
\(404\) 17534.7 2.15937
\(405\) 0 0
\(406\) −1366.79 −0.167075
\(407\) −3369.88 −0.410415
\(408\) 3656.76 0.443717
\(409\) 4621.43 0.558717 0.279358 0.960187i \(-0.409878\pi\)
0.279358 + 0.960187i \(0.409878\pi\)
\(410\) 0 0
\(411\) −23223.7 −2.78721
\(412\) −6564.05 −0.784922
\(413\) 4357.12 0.519128
\(414\) 5164.85 0.613137
\(415\) 0 0
\(416\) 11447.6 1.34920
\(417\) −25704.9 −3.01864
\(418\) −4870.95 −0.569966
\(419\) 186.428 0.0217365 0.0108682 0.999941i \(-0.496540\pi\)
0.0108682 + 0.999941i \(0.496540\pi\)
\(420\) 0 0
\(421\) 2670.29 0.309126 0.154563 0.987983i \(-0.450603\pi\)
0.154563 + 0.987983i \(0.450603\pi\)
\(422\) 2314.07 0.266936
\(423\) 11005.9 1.26507
\(424\) 5145.99 0.589413
\(425\) 0 0
\(426\) −17074.4 −1.94192
\(427\) 611.312 0.0692821
\(428\) 8154.40 0.920930
\(429\) −4688.51 −0.527654
\(430\) 0 0
\(431\) −12514.9 −1.39866 −0.699328 0.714801i \(-0.746517\pi\)
−0.699328 + 0.714801i \(0.746517\pi\)
\(432\) 2356.62 0.262460
\(433\) 16651.2 1.84805 0.924025 0.382332i \(-0.124879\pi\)
0.924025 + 0.382332i \(0.124879\pi\)
\(434\) −2608.10 −0.288462
\(435\) 0 0
\(436\) −4006.49 −0.440083
\(437\) −2804.51 −0.306998
\(438\) 9379.80 1.02325
\(439\) 6033.38 0.655940 0.327970 0.944688i \(-0.393636\pi\)
0.327970 + 0.944688i \(0.393636\pi\)
\(440\) 0 0
\(441\) 2023.35 0.218481
\(442\) −6087.51 −0.655098
\(443\) −6320.03 −0.677819 −0.338910 0.940819i \(-0.610058\pi\)
−0.338910 + 0.940819i \(0.610058\pi\)
\(444\) 29744.9 3.17935
\(445\) 0 0
\(446\) 9337.17 0.991318
\(447\) −15841.3 −1.67621
\(448\) 5787.19 0.610311
\(449\) −17893.6 −1.88074 −0.940368 0.340159i \(-0.889519\pi\)
−0.940368 + 0.340159i \(0.889519\pi\)
\(450\) 0 0
\(451\) 2210.90 0.230837
\(452\) 11642.3 1.21152
\(453\) 18918.5 1.96218
\(454\) −26894.9 −2.78026
\(455\) 0 0
\(456\) 13719.3 1.40892
\(457\) −6208.00 −0.635444 −0.317722 0.948184i \(-0.602918\pi\)
−0.317722 + 0.948184i \(0.602918\pi\)
\(458\) 13313.0 1.35825
\(459\) −3137.02 −0.319006
\(460\) 0 0
\(461\) 7981.28 0.806346 0.403173 0.915124i \(-0.367907\pi\)
0.403173 + 0.915124i \(0.367907\pi\)
\(462\) −2827.82 −0.284766
\(463\) 7495.19 0.752334 0.376167 0.926552i \(-0.377242\pi\)
0.376167 + 0.926552i \(0.377242\pi\)
\(464\) 876.623 0.0877073
\(465\) 0 0
\(466\) −290.484 −0.0288765
\(467\) −1519.39 −0.150555 −0.0752773 0.997163i \(-0.523984\pi\)
−0.0752773 + 0.997163i \(0.523984\pi\)
\(468\) 25022.6 2.47152
\(469\) 4258.77 0.419300
\(470\) 0 0
\(471\) 2314.20 0.226397
\(472\) 10370.5 1.01131
\(473\) 151.301 0.0147079
\(474\) 9593.90 0.929667
\(475\) 0 0
\(476\) −2184.31 −0.210331
\(477\) −12754.0 −1.22425
\(478\) 4898.75 0.468753
\(479\) −16394.2 −1.56382 −0.781909 0.623393i \(-0.785754\pi\)
−0.781909 + 0.623393i \(0.785754\pi\)
\(480\) 0 0
\(481\) −15800.7 −1.49782
\(482\) −23541.8 −2.22468
\(483\) −1628.15 −0.153382
\(484\) 1421.64 0.133512
\(485\) 0 0
\(486\) −19270.1 −1.79858
\(487\) −2275.01 −0.211685 −0.105843 0.994383i \(-0.533754\pi\)
−0.105843 + 0.994383i \(0.533754\pi\)
\(488\) 1455.00 0.134968
\(489\) −7161.29 −0.662259
\(490\) 0 0
\(491\) −14629.2 −1.34462 −0.672308 0.740272i \(-0.734697\pi\)
−0.672308 + 0.740272i \(0.734697\pi\)
\(492\) −19515.0 −1.78822
\(493\) −1166.92 −0.106603
\(494\) −22838.9 −2.08011
\(495\) 0 0
\(496\) 1672.77 0.151431
\(497\) 3254.48 0.293729
\(498\) −35035.1 −3.15253
\(499\) 3534.01 0.317042 0.158521 0.987356i \(-0.449327\pi\)
0.158521 + 0.987356i \(0.449327\pi\)
\(500\) 0 0
\(501\) −16240.1 −1.44822
\(502\) −790.872 −0.0703155
\(503\) 9233.35 0.818479 0.409239 0.912427i \(-0.365794\pi\)
0.409239 + 0.912427i \(0.365794\pi\)
\(504\) 4815.82 0.425622
\(505\) 0 0
\(506\) 1375.86 0.120879
\(507\) −3827.63 −0.335288
\(508\) 7825.93 0.683503
\(509\) 11565.3 1.00712 0.503560 0.863960i \(-0.332023\pi\)
0.503560 + 0.863960i \(0.332023\pi\)
\(510\) 0 0
\(511\) −1787.85 −0.154775
\(512\) −7087.70 −0.611787
\(513\) −11769.4 −1.01292
\(514\) 15539.3 1.33348
\(515\) 0 0
\(516\) −1335.49 −0.113937
\(517\) 2931.87 0.249407
\(518\) −9530.01 −0.808349
\(519\) 32699.5 2.76560
\(520\) 0 0
\(521\) −2440.24 −0.205200 −0.102600 0.994723i \(-0.532716\pi\)
−0.102600 + 0.994723i \(0.532716\pi\)
\(522\) 8062.64 0.676038
\(523\) 911.213 0.0761847 0.0380923 0.999274i \(-0.487872\pi\)
0.0380923 + 0.999274i \(0.487872\pi\)
\(524\) 357.590 0.0298119
\(525\) 0 0
\(526\) 25543.8 2.11742
\(527\) −2226.71 −0.184055
\(528\) 1813.69 0.149490
\(529\) −11374.8 −0.934892
\(530\) 0 0
\(531\) −25702.6 −2.10056
\(532\) −8195.01 −0.667854
\(533\) 10366.5 0.842445
\(534\) −30845.6 −2.49966
\(535\) 0 0
\(536\) 10136.4 0.816838
\(537\) 25978.3 2.08761
\(538\) −1045.30 −0.0837663
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 12277.5 0.975692 0.487846 0.872930i \(-0.337783\pi\)
0.487846 + 0.872930i \(0.337783\pi\)
\(542\) 5242.02 0.415432
\(543\) −5650.65 −0.446580
\(544\) 5894.84 0.464594
\(545\) 0 0
\(546\) −13259.1 −1.03926
\(547\) 12539.2 0.980141 0.490071 0.871683i \(-0.336971\pi\)
0.490071 + 0.871683i \(0.336971\pi\)
\(548\) 33017.8 2.57382
\(549\) −3606.11 −0.280337
\(550\) 0 0
\(551\) −4378.01 −0.338493
\(552\) −3875.20 −0.298804
\(553\) −1828.66 −0.140619
\(554\) −16171.6 −1.24019
\(555\) 0 0
\(556\) 36545.3 2.78753
\(557\) 14212.8 1.08118 0.540588 0.841287i \(-0.318202\pi\)
0.540588 + 0.841287i \(0.318202\pi\)
\(558\) 15385.1 1.16721
\(559\) 709.421 0.0536768
\(560\) 0 0
\(561\) −2414.30 −0.181697
\(562\) −14384.4 −1.07966
\(563\) −4446.83 −0.332880 −0.166440 0.986052i \(-0.553227\pi\)
−0.166440 + 0.986052i \(0.553227\pi\)
\(564\) −25878.7 −1.93207
\(565\) 0 0
\(566\) 36901.9 2.74047
\(567\) 971.661 0.0719681
\(568\) 7746.07 0.572214
\(569\) 11258.8 0.829511 0.414756 0.909933i \(-0.363867\pi\)
0.414756 + 0.909933i \(0.363867\pi\)
\(570\) 0 0
\(571\) −16450.6 −1.20567 −0.602835 0.797866i \(-0.705962\pi\)
−0.602835 + 0.797866i \(0.705962\pi\)
\(572\) 6665.78 0.487256
\(573\) −22640.6 −1.65065
\(574\) 6252.43 0.454654
\(575\) 0 0
\(576\) −34138.5 −2.46951
\(577\) −10175.6 −0.734173 −0.367086 0.930187i \(-0.619645\pi\)
−0.367086 + 0.930187i \(0.619645\pi\)
\(578\) 18698.6 1.34561
\(579\) 21915.4 1.57301
\(580\) 0 0
\(581\) 6677.90 0.476843
\(582\) 12822.4 0.913237
\(583\) −3397.54 −0.241358
\(584\) −4255.30 −0.301516
\(585\) 0 0
\(586\) −8417.62 −0.593394
\(587\) 5123.98 0.360289 0.180144 0.983640i \(-0.442344\pi\)
0.180144 + 0.983640i \(0.442344\pi\)
\(588\) −4757.59 −0.333673
\(589\) −8354.11 −0.584423
\(590\) 0 0
\(591\) −15532.3 −1.08107
\(592\) 6112.31 0.424349
\(593\) 23816.7 1.64930 0.824650 0.565643i \(-0.191372\pi\)
0.824650 + 0.565643i \(0.191372\pi\)
\(594\) 5773.93 0.398834
\(595\) 0 0
\(596\) 22522.0 1.54788
\(597\) 25778.4 1.76724
\(598\) 6451.16 0.441150
\(599\) 11801.0 0.804965 0.402482 0.915428i \(-0.368147\pi\)
0.402482 + 0.915428i \(0.368147\pi\)
\(600\) 0 0
\(601\) −10944.5 −0.742820 −0.371410 0.928469i \(-0.621125\pi\)
−0.371410 + 0.928469i \(0.621125\pi\)
\(602\) 427.879 0.0289685
\(603\) −25122.4 −1.69662
\(604\) −26896.9 −1.81195
\(605\) 0 0
\(606\) 54809.6 3.67407
\(607\) 1280.36 0.0856150 0.0428075 0.999083i \(-0.486370\pi\)
0.0428075 + 0.999083i \(0.486370\pi\)
\(608\) 22116.1 1.47521
\(609\) −2541.64 −0.169118
\(610\) 0 0
\(611\) 13747.0 0.910216
\(612\) 12885.2 0.851065
\(613\) 11029.9 0.726744 0.363372 0.931644i \(-0.381625\pi\)
0.363372 + 0.931644i \(0.381625\pi\)
\(614\) 29313.9 1.92673
\(615\) 0 0
\(616\) 1282.89 0.0839106
\(617\) 20861.3 1.36117 0.680586 0.732668i \(-0.261725\pi\)
0.680586 + 0.732668i \(0.261725\pi\)
\(618\) −20517.7 −1.33551
\(619\) −16877.9 −1.09593 −0.547966 0.836501i \(-0.684598\pi\)
−0.547966 + 0.836501i \(0.684598\pi\)
\(620\) 0 0
\(621\) 3324.42 0.214822
\(622\) 23296.6 1.50178
\(623\) 5879.37 0.378093
\(624\) 8504.06 0.545568
\(625\) 0 0
\(626\) 23725.4 1.51479
\(627\) −9057.91 −0.576935
\(628\) −3290.17 −0.209064
\(629\) −8136.43 −0.515772
\(630\) 0 0
\(631\) −1332.58 −0.0840719 −0.0420359 0.999116i \(-0.513384\pi\)
−0.0420359 + 0.999116i \(0.513384\pi\)
\(632\) −4352.42 −0.273940
\(633\) 4303.19 0.270200
\(634\) −25807.2 −1.61662
\(635\) 0 0
\(636\) 29989.0 1.86972
\(637\) 2527.27 0.157196
\(638\) 2147.81 0.133280
\(639\) −19198.1 −1.18852
\(640\) 0 0
\(641\) 20472.2 1.26147 0.630736 0.775998i \(-0.282753\pi\)
0.630736 + 0.775998i \(0.282753\pi\)
\(642\) 25488.8 1.56692
\(643\) −27140.3 −1.66455 −0.832276 0.554361i \(-0.812963\pi\)
−0.832276 + 0.554361i \(0.812963\pi\)
\(644\) 2314.79 0.141639
\(645\) 0 0
\(646\) −11760.7 −0.716282
\(647\) −13662.1 −0.830159 −0.415079 0.909785i \(-0.636246\pi\)
−0.415079 + 0.909785i \(0.636246\pi\)
\(648\) 2312.67 0.140201
\(649\) −6846.91 −0.414121
\(650\) 0 0
\(651\) −4849.96 −0.291989
\(652\) 10181.4 0.611556
\(653\) −1607.56 −0.0963379 −0.0481689 0.998839i \(-0.515339\pi\)
−0.0481689 + 0.998839i \(0.515339\pi\)
\(654\) −12523.4 −0.748781
\(655\) 0 0
\(656\) −4010.15 −0.238674
\(657\) 10546.5 0.626267
\(658\) 8291.30 0.491229
\(659\) 27361.6 1.61738 0.808692 0.588233i \(-0.200176\pi\)
0.808692 + 0.588233i \(0.200176\pi\)
\(660\) 0 0
\(661\) −5117.29 −0.301119 −0.150559 0.988601i \(-0.548107\pi\)
−0.150559 + 0.988601i \(0.548107\pi\)
\(662\) 6072.76 0.356533
\(663\) −11320.2 −0.663107
\(664\) 15894.2 0.928939
\(665\) 0 0
\(666\) 56217.3 3.27083
\(667\) 1236.63 0.0717877
\(668\) 23089.0 1.33734
\(669\) 17363.2 1.00344
\(670\) 0 0
\(671\) −960.633 −0.0552680
\(672\) 12839.4 0.737042
\(673\) −11605.6 −0.664729 −0.332365 0.943151i \(-0.607846\pi\)
−0.332365 + 0.943151i \(0.607846\pi\)
\(674\) −14948.5 −0.854292
\(675\) 0 0
\(676\) 5441.85 0.309618
\(677\) −32514.6 −1.84584 −0.922922 0.384986i \(-0.874206\pi\)
−0.922922 + 0.384986i \(0.874206\pi\)
\(678\) 36391.1 2.06134
\(679\) −2444.02 −0.138134
\(680\) 0 0
\(681\) −50013.1 −2.81425
\(682\) 4098.44 0.230113
\(683\) −7201.06 −0.403427 −0.201714 0.979445i \(-0.564651\pi\)
−0.201714 + 0.979445i \(0.564651\pi\)
\(684\) 48342.1 2.70235
\(685\) 0 0
\(686\) 1524.29 0.0848362
\(687\) 24756.6 1.37485
\(688\) −274.431 −0.0152072
\(689\) −15930.4 −0.880841
\(690\) 0 0
\(691\) −32357.7 −1.78140 −0.890698 0.454596i \(-0.849784\pi\)
−0.890698 + 0.454596i \(0.849784\pi\)
\(692\) −46489.7 −2.55386
\(693\) −3179.55 −0.174287
\(694\) 13265.2 0.725562
\(695\) 0 0
\(696\) −6049.42 −0.329458
\(697\) 5338.13 0.290095
\(698\) −5715.31 −0.309925
\(699\) −540.178 −0.0292295
\(700\) 0 0
\(701\) 11077.3 0.596838 0.298419 0.954435i \(-0.403541\pi\)
0.298419 + 0.954435i \(0.403541\pi\)
\(702\) 27072.8 1.45555
\(703\) −30526.0 −1.63771
\(704\) −9094.16 −0.486859
\(705\) 0 0
\(706\) 37407.7 1.99413
\(707\) −10447.1 −0.555731
\(708\) 60435.6 3.20806
\(709\) −28594.0 −1.51463 −0.757314 0.653051i \(-0.773489\pi\)
−0.757314 + 0.653051i \(0.773489\pi\)
\(710\) 0 0
\(711\) 10787.2 0.568990
\(712\) 13993.6 0.736563
\(713\) 2359.73 0.123945
\(714\) −6827.64 −0.357868
\(715\) 0 0
\(716\) −36934.1 −1.92778
\(717\) 9109.61 0.474483
\(718\) −33256.5 −1.72858
\(719\) 18240.5 0.946114 0.473057 0.881032i \(-0.343150\pi\)
0.473057 + 0.881032i \(0.343150\pi\)
\(720\) 0 0
\(721\) 3910.81 0.202006
\(722\) −13642.0 −0.703190
\(723\) −43777.7 −2.25188
\(724\) 8033.68 0.412389
\(725\) 0 0
\(726\) 4443.72 0.227165
\(727\) 9792.53 0.499566 0.249783 0.968302i \(-0.419641\pi\)
0.249783 + 0.968302i \(0.419641\pi\)
\(728\) 6015.20 0.306234
\(729\) −32086.4 −1.63016
\(730\) 0 0
\(731\) 365.309 0.0184835
\(732\) 8479.22 0.428143
\(733\) 22723.8 1.14505 0.572525 0.819887i \(-0.305964\pi\)
0.572525 + 0.819887i \(0.305964\pi\)
\(734\) 38168.3 1.91937
\(735\) 0 0
\(736\) −6246.98 −0.312863
\(737\) −6692.35 −0.334485
\(738\) −36882.9 −1.83967
\(739\) −24063.6 −1.19783 −0.598913 0.800814i \(-0.704401\pi\)
−0.598913 + 0.800814i \(0.704401\pi\)
\(740\) 0 0
\(741\) −42470.8 −2.10554
\(742\) −9608.22 −0.475376
\(743\) 29211.6 1.44235 0.721177 0.692751i \(-0.243601\pi\)
0.721177 + 0.692751i \(0.243601\pi\)
\(744\) −11543.5 −0.568824
\(745\) 0 0
\(746\) 52585.6 2.58083
\(747\) −39392.8 −1.92946
\(748\) 3432.48 0.167786
\(749\) −4858.33 −0.237008
\(750\) 0 0
\(751\) 1880.93 0.0913931 0.0456965 0.998955i \(-0.485449\pi\)
0.0456965 + 0.998955i \(0.485449\pi\)
\(752\) −5317.84 −0.257874
\(753\) −1470.69 −0.0711751
\(754\) 10070.6 0.486408
\(755\) 0 0
\(756\) 9714.21 0.467331
\(757\) 36218.7 1.73896 0.869480 0.493968i \(-0.164454\pi\)
0.869480 + 0.493968i \(0.164454\pi\)
\(758\) −22470.5 −1.07674
\(759\) 2558.53 0.122357
\(760\) 0 0
\(761\) 36966.4 1.76088 0.880441 0.474156i \(-0.157247\pi\)
0.880441 + 0.474156i \(0.157247\pi\)
\(762\) 24462.1 1.16295
\(763\) 2387.03 0.113259
\(764\) 32188.7 1.52428
\(765\) 0 0
\(766\) 28695.2 1.35353
\(767\) −32103.8 −1.51135
\(768\) 15061.8 0.707678
\(769\) −38975.5 −1.82769 −0.913845 0.406062i \(-0.866902\pi\)
−0.913845 + 0.406062i \(0.866902\pi\)
\(770\) 0 0
\(771\) 28896.5 1.34978
\(772\) −31157.7 −1.45258
\(773\) −27341.9 −1.27221 −0.636105 0.771603i \(-0.719455\pi\)
−0.636105 + 0.771603i \(0.719455\pi\)
\(774\) −2524.05 −0.117216
\(775\) 0 0
\(776\) −5817.07 −0.269099
\(777\) −17721.8 −0.818231
\(778\) −55303.3 −2.54848
\(779\) 20027.4 0.921125
\(780\) 0 0
\(781\) −5114.19 −0.234315
\(782\) 3321.96 0.151909
\(783\) 5189.61 0.236860
\(784\) −977.642 −0.0445354
\(785\) 0 0
\(786\) 1117.75 0.0507235
\(787\) 18268.5 0.827446 0.413723 0.910403i \(-0.364228\pi\)
0.413723 + 0.910403i \(0.364228\pi\)
\(788\) 22082.7 0.998302
\(789\) 47500.7 2.14331
\(790\) 0 0
\(791\) −6936.37 −0.311794
\(792\) −7567.71 −0.339529
\(793\) −4504.22 −0.201702
\(794\) −2751.75 −0.122993
\(795\) 0 0
\(796\) −36649.9 −1.63194
\(797\) −12717.6 −0.565219 −0.282610 0.959235i \(-0.591200\pi\)
−0.282610 + 0.959235i \(0.591200\pi\)
\(798\) −25615.7 −1.13632
\(799\) 7078.86 0.313432
\(800\) 0 0
\(801\) −34682.2 −1.52988
\(802\) −43248.4 −1.90418
\(803\) 2809.48 0.123467
\(804\) 59071.4 2.59115
\(805\) 0 0
\(806\) 19216.8 0.839804
\(807\) −1943.82 −0.0847904
\(808\) −24865.3 −1.08262
\(809\) 12502.0 0.543322 0.271661 0.962393i \(-0.412427\pi\)
0.271661 + 0.962393i \(0.412427\pi\)
\(810\) 0 0
\(811\) −23431.3 −1.01453 −0.507264 0.861791i \(-0.669343\pi\)
−0.507264 + 0.861791i \(0.669343\pi\)
\(812\) 3613.52 0.156170
\(813\) 9747.95 0.420511
\(814\) 14975.7 0.644839
\(815\) 0 0
\(816\) 4379.08 0.187866
\(817\) 1370.56 0.0586899
\(818\) −20537.6 −0.877850
\(819\) −14908.3 −0.636065
\(820\) 0 0
\(821\) 33116.5 1.40776 0.703881 0.710317i \(-0.251449\pi\)
0.703881 + 0.710317i \(0.251449\pi\)
\(822\) 103206. 4.37923
\(823\) 6383.39 0.270366 0.135183 0.990821i \(-0.456838\pi\)
0.135183 + 0.990821i \(0.456838\pi\)
\(824\) 9308.20 0.393527
\(825\) 0 0
\(826\) −19363.0 −0.815649
\(827\) 27701.3 1.16477 0.582386 0.812912i \(-0.302119\pi\)
0.582386 + 0.812912i \(0.302119\pi\)
\(828\) −13654.9 −0.573116
\(829\) −13160.2 −0.551353 −0.275676 0.961251i \(-0.588902\pi\)
−0.275676 + 0.961251i \(0.588902\pi\)
\(830\) 0 0
\(831\) −30072.3 −1.25535
\(832\) −42640.7 −1.77680
\(833\) 1301.39 0.0541303
\(834\) 114232. 4.74286
\(835\) 0 0
\(836\) 12877.9 0.532763
\(837\) 9902.80 0.408950
\(838\) −828.483 −0.0341521
\(839\) −24842.9 −1.02226 −0.511128 0.859505i \(-0.670772\pi\)
−0.511128 + 0.859505i \(0.670772\pi\)
\(840\) 0 0
\(841\) −22458.6 −0.920848
\(842\) −11866.8 −0.485696
\(843\) −26748.8 −1.09286
\(844\) −6117.95 −0.249513
\(845\) 0 0
\(846\) −48910.2 −1.98767
\(847\) −847.000 −0.0343604
\(848\) 6162.48 0.249552
\(849\) 68622.0 2.77397
\(850\) 0 0
\(851\) 8622.47 0.347326
\(852\) 45141.4 1.81516
\(853\) 10131.6 0.406681 0.203340 0.979108i \(-0.434820\pi\)
0.203340 + 0.979108i \(0.434820\pi\)
\(854\) −2716.67 −0.108855
\(855\) 0 0
\(856\) −11563.4 −0.461716
\(857\) −10115.6 −0.403199 −0.201599 0.979468i \(-0.564614\pi\)
−0.201599 + 0.979468i \(0.564614\pi\)
\(858\) 20835.7 0.829044
\(859\) −27491.4 −1.09196 −0.545980 0.837798i \(-0.683843\pi\)
−0.545980 + 0.837798i \(0.683843\pi\)
\(860\) 0 0
\(861\) 11626.9 0.460212
\(862\) 55616.1 2.19755
\(863\) 117.276 0.00462588 0.00231294 0.999997i \(-0.499264\pi\)
0.00231294 + 0.999997i \(0.499264\pi\)
\(864\) −26216.0 −1.03228
\(865\) 0 0
\(866\) −73997.8 −2.90364
\(867\) 34771.5 1.36206
\(868\) 6895.31 0.269634
\(869\) 2873.60 0.112175
\(870\) 0 0
\(871\) −31379.1 −1.22071
\(872\) 5681.43 0.220639
\(873\) 14417.2 0.558933
\(874\) 12463.2 0.482351
\(875\) 0 0
\(876\) −24798.4 −0.956462
\(877\) −11597.4 −0.446543 −0.223271 0.974756i \(-0.571674\pi\)
−0.223271 + 0.974756i \(0.571674\pi\)
\(878\) −26812.3 −1.03061
\(879\) −15653.2 −0.600648
\(880\) 0 0
\(881\) 7524.18 0.287737 0.143868 0.989597i \(-0.454046\pi\)
0.143868 + 0.989597i \(0.454046\pi\)
\(882\) −8991.75 −0.343274
\(883\) −13467.4 −0.513266 −0.256633 0.966509i \(-0.582613\pi\)
−0.256633 + 0.966509i \(0.582613\pi\)
\(884\) 16094.2 0.612339
\(885\) 0 0
\(886\) 28086.2 1.06498
\(887\) 12955.7 0.490427 0.245214 0.969469i \(-0.421142\pi\)
0.245214 + 0.969469i \(0.421142\pi\)
\(888\) −42180.0 −1.59400
\(889\) −4662.63 −0.175905
\(890\) 0 0
\(891\) −1526.90 −0.0574107
\(892\) −24685.7 −0.926612
\(893\) 26558.2 0.995226
\(894\) 70398.6 2.63365
\(895\) 0 0
\(896\) −13288.9 −0.495480
\(897\) 11996.4 0.446543
\(898\) 79518.9 2.95499
\(899\) 3683.68 0.136660
\(900\) 0 0
\(901\) −8203.20 −0.303317
\(902\) −9825.25 −0.362688
\(903\) 795.673 0.0293226
\(904\) −16509.4 −0.607405
\(905\) 0 0
\(906\) −84073.5 −3.08295
\(907\) −47843.5 −1.75151 −0.875753 0.482759i \(-0.839635\pi\)
−0.875753 + 0.482759i \(0.839635\pi\)
\(908\) 71104.9 2.59879
\(909\) 61626.9 2.24866
\(910\) 0 0
\(911\) 16969.8 0.617162 0.308581 0.951198i \(-0.400146\pi\)
0.308581 + 0.951198i \(0.400146\pi\)
\(912\) 16429.3 0.596522
\(913\) −10493.8 −0.380389
\(914\) 27588.3 0.998402
\(915\) 0 0
\(916\) −35197.1 −1.26959
\(917\) −213.049 −0.00767231
\(918\) 13940.9 0.501218
\(919\) 12095.2 0.434149 0.217075 0.976155i \(-0.430348\pi\)
0.217075 + 0.976155i \(0.430348\pi\)
\(920\) 0 0
\(921\) 54511.4 1.95029
\(922\) −35468.8 −1.26692
\(923\) −23979.4 −0.855138
\(924\) 7476.22 0.266179
\(925\) 0 0
\(926\) −33308.6 −1.18206
\(927\) −23069.8 −0.817379
\(928\) −9751.91 −0.344959
\(929\) −44544.3 −1.57314 −0.786571 0.617499i \(-0.788146\pi\)
−0.786571 + 0.617499i \(0.788146\pi\)
\(930\) 0 0
\(931\) 4882.52 0.171878
\(932\) 767.985 0.0269916
\(933\) 43321.8 1.52014
\(934\) 6752.16 0.236550
\(935\) 0 0
\(936\) −35483.5 −1.23912
\(937\) 49265.8 1.71766 0.858828 0.512264i \(-0.171193\pi\)
0.858828 + 0.512264i \(0.171193\pi\)
\(938\) −18925.9 −0.658799
\(939\) 44119.2 1.53331
\(940\) 0 0
\(941\) −18403.1 −0.637538 −0.318769 0.947832i \(-0.603269\pi\)
−0.318769 + 0.947832i \(0.603269\pi\)
\(942\) −10284.3 −0.355712
\(943\) −5657.01 −0.195353
\(944\) 12419.0 0.428181
\(945\) 0 0
\(946\) −672.381 −0.0231089
\(947\) −17689.3 −0.606996 −0.303498 0.952832i \(-0.598155\pi\)
−0.303498 + 0.952832i \(0.598155\pi\)
\(948\) −25364.4 −0.868986
\(949\) 13173.1 0.450597
\(950\) 0 0
\(951\) −47990.5 −1.63638
\(952\) 3097.47 0.105451
\(953\) 5298.19 0.180090 0.0900448 0.995938i \(-0.471299\pi\)
0.0900448 + 0.995938i \(0.471299\pi\)
\(954\) 56678.7 1.92352
\(955\) 0 0
\(956\) −12951.4 −0.438156
\(957\) 3994.01 0.134909
\(958\) 72855.6 2.45705
\(959\) −19671.7 −0.662392
\(960\) 0 0
\(961\) −22761.8 −0.764050
\(962\) 70218.3 2.35336
\(963\) 28659.1 0.959011
\(964\) 62239.9 2.07947
\(965\) 0 0
\(966\) 7235.50 0.240992
\(967\) −33990.6 −1.13037 −0.565184 0.824965i \(-0.691195\pi\)
−0.565184 + 0.824965i \(0.691195\pi\)
\(968\) −2015.96 −0.0669375
\(969\) −21869.9 −0.725039
\(970\) 0 0
\(971\) 41991.0 1.38780 0.693900 0.720071i \(-0.255891\pi\)
0.693900 + 0.720071i \(0.255891\pi\)
\(972\) 50946.5 1.68118
\(973\) −21773.4 −0.717393
\(974\) 10110.1 0.332597
\(975\) 0 0
\(976\) 1742.40 0.0571444
\(977\) 31233.4 1.02277 0.511384 0.859352i \(-0.329133\pi\)
0.511384 + 0.859352i \(0.329133\pi\)
\(978\) 31824.7 1.04053
\(979\) −9239.00 −0.301614
\(980\) 0 0
\(981\) −14081.0 −0.458281
\(982\) 65012.0 2.11264
\(983\) 45702.5 1.48289 0.741447 0.671012i \(-0.234140\pi\)
0.741447 + 0.671012i \(0.234140\pi\)
\(984\) 27673.4 0.896540
\(985\) 0 0
\(986\) 5185.78 0.167494
\(987\) 15418.3 0.497235
\(988\) 60381.8 1.94433
\(989\) −387.132 −0.0124470
\(990\) 0 0
\(991\) −4310.72 −0.138178 −0.0690890 0.997611i \(-0.522009\pi\)
−0.0690890 + 0.997611i \(0.522009\pi\)
\(992\) −18608.6 −0.595587
\(993\) 11292.8 0.360892
\(994\) −14462.9 −0.461504
\(995\) 0 0
\(996\) 92626.0 2.94675
\(997\) 6103.28 0.193875 0.0969373 0.995290i \(-0.469095\pi\)
0.0969373 + 0.995290i \(0.469095\pi\)
\(998\) −15705.1 −0.498133
\(999\) 36184.9 1.14599
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.4.a.r.1.2 5
5.4 even 2 77.4.a.e.1.4 5
15.14 odd 2 693.4.a.o.1.2 5
20.19 odd 2 1232.4.a.y.1.1 5
35.34 odd 2 539.4.a.h.1.4 5
55.54 odd 2 847.4.a.f.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.4 5 5.4 even 2
539.4.a.h.1.4 5 35.34 odd 2
693.4.a.o.1.2 5 15.14 odd 2
847.4.a.f.1.2 5 55.54 odd 2
1232.4.a.y.1.1 5 20.19 odd 2
1925.4.a.r.1.2 5 1.1 even 1 trivial