Properties

Label 1925.4.a.q.1.3
Level $1925$
Weight $4$
Character 1925.1
Self dual yes
Analytic conductor $113.579$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1925,4,Mod(1,1925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1925.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.578676761\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.11082\) of defining polynomial
Character \(\chi\) \(=\) 1925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.65527 q^{2} -5.17115 q^{3} +5.36103 q^{4} -18.9020 q^{6} +7.00000 q^{7} -9.64616 q^{8} -0.259212 q^{9} +O(q^{10})\) \(q+3.65527 q^{2} -5.17115 q^{3} +5.36103 q^{4} -18.9020 q^{6} +7.00000 q^{7} -9.64616 q^{8} -0.259212 q^{9} +11.0000 q^{11} -27.7227 q^{12} +84.5724 q^{13} +25.5869 q^{14} -78.1476 q^{16} +38.2525 q^{17} -0.947489 q^{18} -127.283 q^{19} -36.1980 q^{21} +40.2080 q^{22} -140.378 q^{23} +49.8817 q^{24} +309.135 q^{26} +140.961 q^{27} +37.5272 q^{28} -116.806 q^{29} +338.709 q^{31} -208.482 q^{32} -56.8826 q^{33} +139.823 q^{34} -1.38964 q^{36} +75.3416 q^{37} -465.256 q^{38} -437.337 q^{39} -22.4446 q^{41} -132.314 q^{42} -181.844 q^{43} +58.9713 q^{44} -513.121 q^{46} -300.530 q^{47} +404.113 q^{48} +49.0000 q^{49} -197.810 q^{51} +453.395 q^{52} +31.8596 q^{53} +515.253 q^{54} -67.5231 q^{56} +658.201 q^{57} -426.958 q^{58} -68.3030 q^{59} -145.315 q^{61} +1238.07 q^{62} -1.81448 q^{63} -136.877 q^{64} -207.922 q^{66} +668.020 q^{67} +205.073 q^{68} +725.916 q^{69} +727.608 q^{71} +2.50040 q^{72} +416.982 q^{73} +275.394 q^{74} -682.370 q^{76} +77.0000 q^{77} -1598.59 q^{78} +458.805 q^{79} -721.934 q^{81} -82.0412 q^{82} -355.737 q^{83} -194.059 q^{84} -664.690 q^{86} +604.022 q^{87} -106.108 q^{88} -1245.97 q^{89} +592.007 q^{91} -752.571 q^{92} -1751.51 q^{93} -1098.52 q^{94} +1078.09 q^{96} +935.338 q^{97} +179.108 q^{98} -2.85133 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 12 q^{3} + 22 q^{4} + 2 q^{6} + 28 q^{7} + 60 q^{8} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 12 q^{3} + 22 q^{4} + 2 q^{6} + 28 q^{7} + 60 q^{8} + 66 q^{9} + 44 q^{11} + 186 q^{12} + 134 q^{13} + 28 q^{14} - 6 q^{16} + 74 q^{17} + 256 q^{18} - 164 q^{19} + 84 q^{21} + 44 q^{22} - 194 q^{23} + 570 q^{24} + 734 q^{26} + 510 q^{27} + 154 q^{28} - 108 q^{29} - 412 q^{31} + 4 q^{32} + 132 q^{33} - 346 q^{34} + 1518 q^{36} - 286 q^{37} - 224 q^{38} - 256 q^{39} - 18 q^{41} + 14 q^{42} + 496 q^{43} + 242 q^{44} - 284 q^{46} - 62 q^{47} + 862 q^{48} + 196 q^{49} - 508 q^{51} + 822 q^{52} + 828 q^{53} + 2420 q^{54} + 420 q^{56} - 700 q^{57} - 1388 q^{58} - 1224 q^{59} - 350 q^{61} + 878 q^{62} + 462 q^{63} - 718 q^{64} + 22 q^{66} + 1498 q^{67} - 1058 q^{68} - 386 q^{69} + 2326 q^{71} + 3000 q^{72} + 1630 q^{73} - 1156 q^{74} - 3152 q^{76} + 308 q^{77} + 2464 q^{78} - 1020 q^{79} + 1128 q^{81} - 2118 q^{82} + 1920 q^{83} + 1302 q^{84} + 1056 q^{86} - 1640 q^{87} + 660 q^{88} + 1550 q^{89} + 938 q^{91} - 2592 q^{92} - 6046 q^{93} - 1042 q^{94} + 4082 q^{96} + 2202 q^{97} + 196 q^{98} + 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.65527 1.29233 0.646167 0.763196i \(-0.276371\pi\)
0.646167 + 0.763196i \(0.276371\pi\)
\(3\) −5.17115 −0.995188 −0.497594 0.867410i \(-0.665783\pi\)
−0.497594 + 0.867410i \(0.665783\pi\)
\(4\) 5.36103 0.670129
\(5\) 0 0
\(6\) −18.9020 −1.28612
\(7\) 7.00000 0.377964
\(8\) −9.64616 −0.426304
\(9\) −0.259212 −0.00960043
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) −27.7227 −0.666904
\(13\) 84.5724 1.80432 0.902161 0.431400i \(-0.141980\pi\)
0.902161 + 0.431400i \(0.141980\pi\)
\(14\) 25.5869 0.488457
\(15\) 0 0
\(16\) −78.1476 −1.22106
\(17\) 38.2525 0.545741 0.272871 0.962051i \(-0.412027\pi\)
0.272871 + 0.962051i \(0.412027\pi\)
\(18\) −0.947489 −0.0124070
\(19\) −127.283 −1.53688 −0.768442 0.639919i \(-0.778968\pi\)
−0.768442 + 0.639919i \(0.778968\pi\)
\(20\) 0 0
\(21\) −36.1980 −0.376146
\(22\) 40.2080 0.389654
\(23\) −140.378 −1.27265 −0.636323 0.771423i \(-0.719545\pi\)
−0.636323 + 0.771423i \(0.719545\pi\)
\(24\) 49.8817 0.424253
\(25\) 0 0
\(26\) 309.135 2.33179
\(27\) 140.961 1.00474
\(28\) 37.5272 0.253285
\(29\) −116.806 −0.747943 −0.373971 0.927440i \(-0.622004\pi\)
−0.373971 + 0.927440i \(0.622004\pi\)
\(30\) 0 0
\(31\) 338.709 1.96238 0.981192 0.193034i \(-0.0618327\pi\)
0.981192 + 0.193034i \(0.0618327\pi\)
\(32\) −208.482 −1.15171
\(33\) −56.8826 −0.300061
\(34\) 139.823 0.705280
\(35\) 0 0
\(36\) −1.38964 −0.00643352
\(37\) 75.3416 0.334759 0.167379 0.985893i \(-0.446469\pi\)
0.167379 + 0.985893i \(0.446469\pi\)
\(38\) −465.256 −1.98617
\(39\) −437.337 −1.79564
\(40\) 0 0
\(41\) −22.4446 −0.0854941 −0.0427471 0.999086i \(-0.513611\pi\)
−0.0427471 + 0.999086i \(0.513611\pi\)
\(42\) −132.314 −0.486106
\(43\) −181.844 −0.644906 −0.322453 0.946585i \(-0.604508\pi\)
−0.322453 + 0.946585i \(0.604508\pi\)
\(44\) 58.9713 0.202051
\(45\) 0 0
\(46\) −513.121 −1.64468
\(47\) −300.530 −0.932698 −0.466349 0.884601i \(-0.654431\pi\)
−0.466349 + 0.884601i \(0.654431\pi\)
\(48\) 404.113 1.21518
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −197.810 −0.543115
\(52\) 453.395 1.20913
\(53\) 31.8596 0.0825708 0.0412854 0.999147i \(-0.486855\pi\)
0.0412854 + 0.999147i \(0.486855\pi\)
\(54\) 515.253 1.29846
\(55\) 0 0
\(56\) −67.5231 −0.161128
\(57\) 658.201 1.52949
\(58\) −426.958 −0.966593
\(59\) −68.3030 −0.150717 −0.0753584 0.997157i \(-0.524010\pi\)
−0.0753584 + 0.997157i \(0.524010\pi\)
\(60\) 0 0
\(61\) −145.315 −0.305012 −0.152506 0.988303i \(-0.548734\pi\)
−0.152506 + 0.988303i \(0.548734\pi\)
\(62\) 1238.07 2.53606
\(63\) −1.81448 −0.00362862
\(64\) −136.877 −0.267337
\(65\) 0 0
\(66\) −207.922 −0.387779
\(67\) 668.020 1.21808 0.609042 0.793138i \(-0.291554\pi\)
0.609042 + 0.793138i \(0.291554\pi\)
\(68\) 205.073 0.365717
\(69\) 725.916 1.26652
\(70\) 0 0
\(71\) 727.608 1.21621 0.608107 0.793855i \(-0.291929\pi\)
0.608107 + 0.793855i \(0.291929\pi\)
\(72\) 2.50040 0.00409270
\(73\) 416.982 0.668548 0.334274 0.942476i \(-0.391509\pi\)
0.334274 + 0.942476i \(0.391509\pi\)
\(74\) 275.394 0.432621
\(75\) 0 0
\(76\) −682.370 −1.02991
\(77\) 77.0000 0.113961
\(78\) −1598.59 −2.32057
\(79\) 458.805 0.653413 0.326707 0.945126i \(-0.394061\pi\)
0.326707 + 0.945126i \(0.394061\pi\)
\(80\) 0 0
\(81\) −721.934 −0.990307
\(82\) −82.0412 −0.110487
\(83\) −355.737 −0.470449 −0.235224 0.971941i \(-0.575582\pi\)
−0.235224 + 0.971941i \(0.575582\pi\)
\(84\) −194.059 −0.252066
\(85\) 0 0
\(86\) −664.690 −0.833435
\(87\) 604.022 0.744344
\(88\) −106.108 −0.128536
\(89\) −1245.97 −1.48396 −0.741980 0.670422i \(-0.766113\pi\)
−0.741980 + 0.670422i \(0.766113\pi\)
\(90\) 0 0
\(91\) 592.007 0.681969
\(92\) −752.571 −0.852837
\(93\) −1751.51 −1.95294
\(94\) −1098.52 −1.20536
\(95\) 0 0
\(96\) 1078.09 1.14617
\(97\) 935.338 0.979063 0.489532 0.871986i \(-0.337168\pi\)
0.489532 + 0.871986i \(0.337168\pi\)
\(98\) 179.108 0.184619
\(99\) −2.85133 −0.00289464
\(100\) 0 0
\(101\) −533.395 −0.525493 −0.262747 0.964865i \(-0.584628\pi\)
−0.262747 + 0.964865i \(0.584628\pi\)
\(102\) −723.048 −0.701887
\(103\) 738.096 0.706086 0.353043 0.935607i \(-0.385147\pi\)
0.353043 + 0.935607i \(0.385147\pi\)
\(104\) −815.800 −0.769190
\(105\) 0 0
\(106\) 116.456 0.106709
\(107\) 2039.07 1.84228 0.921141 0.389229i \(-0.127259\pi\)
0.921141 + 0.389229i \(0.127259\pi\)
\(108\) 755.699 0.673307
\(109\) 1488.69 1.30817 0.654085 0.756421i \(-0.273054\pi\)
0.654085 + 0.756421i \(0.273054\pi\)
\(110\) 0 0
\(111\) −389.603 −0.333148
\(112\) −547.033 −0.461516
\(113\) 532.743 0.443507 0.221753 0.975103i \(-0.428822\pi\)
0.221753 + 0.975103i \(0.428822\pi\)
\(114\) 2405.91 1.97661
\(115\) 0 0
\(116\) −626.201 −0.501218
\(117\) −21.9222 −0.0173223
\(118\) −249.666 −0.194776
\(119\) 267.768 0.206271
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −531.167 −0.394177
\(123\) 116.064 0.0850828
\(124\) 1815.83 1.31505
\(125\) 0 0
\(126\) −6.63242 −0.00468939
\(127\) 2257.44 1.57729 0.788645 0.614849i \(-0.210783\pi\)
0.788645 + 0.614849i \(0.210783\pi\)
\(128\) 1167.53 0.806220
\(129\) 940.343 0.641803
\(130\) 0 0
\(131\) 1174.21 0.783142 0.391571 0.920148i \(-0.371932\pi\)
0.391571 + 0.920148i \(0.371932\pi\)
\(132\) −304.950 −0.201079
\(133\) −890.984 −0.580888
\(134\) 2441.79 1.57417
\(135\) 0 0
\(136\) −368.990 −0.232652
\(137\) −2690.08 −1.67758 −0.838792 0.544451i \(-0.816738\pi\)
−0.838792 + 0.544451i \(0.816738\pi\)
\(138\) 2653.42 1.63677
\(139\) 17.7500 0.0108312 0.00541559 0.999985i \(-0.498276\pi\)
0.00541559 + 0.999985i \(0.498276\pi\)
\(140\) 0 0
\(141\) 1554.09 0.928210
\(142\) 2659.61 1.57175
\(143\) 930.297 0.544023
\(144\) 20.2568 0.0117227
\(145\) 0 0
\(146\) 1524.18 0.863988
\(147\) −253.386 −0.142170
\(148\) 403.908 0.224332
\(149\) 1517.86 0.834550 0.417275 0.908780i \(-0.362985\pi\)
0.417275 + 0.908780i \(0.362985\pi\)
\(150\) 0 0
\(151\) 1948.86 1.05031 0.525153 0.851008i \(-0.324008\pi\)
0.525153 + 0.851008i \(0.324008\pi\)
\(152\) 1227.80 0.655180
\(153\) −9.91550 −0.00523935
\(154\) 281.456 0.147275
\(155\) 0 0
\(156\) −2344.58 −1.20331
\(157\) 1554.20 0.790055 0.395027 0.918669i \(-0.370735\pi\)
0.395027 + 0.918669i \(0.370735\pi\)
\(158\) 1677.06 0.844428
\(159\) −164.751 −0.0821735
\(160\) 0 0
\(161\) −982.647 −0.481015
\(162\) −2638.87 −1.27981
\(163\) 3472.71 1.66873 0.834367 0.551209i \(-0.185833\pi\)
0.834367 + 0.551209i \(0.185833\pi\)
\(164\) −120.326 −0.0572921
\(165\) 0 0
\(166\) −1300.32 −0.607977
\(167\) 2228.90 1.03280 0.516400 0.856347i \(-0.327272\pi\)
0.516400 + 0.856347i \(0.327272\pi\)
\(168\) 349.172 0.160353
\(169\) 4955.50 2.25558
\(170\) 0 0
\(171\) 32.9933 0.0147547
\(172\) −974.872 −0.432170
\(173\) 1008.04 0.443005 0.221502 0.975160i \(-0.428904\pi\)
0.221502 + 0.975160i \(0.428904\pi\)
\(174\) 2207.87 0.961942
\(175\) 0 0
\(176\) −859.624 −0.368162
\(177\) 353.205 0.149992
\(178\) −4554.36 −1.91777
\(179\) −746.246 −0.311603 −0.155802 0.987788i \(-0.549796\pi\)
−0.155802 + 0.987788i \(0.549796\pi\)
\(180\) 0 0
\(181\) −2787.76 −1.14482 −0.572410 0.819968i \(-0.693991\pi\)
−0.572410 + 0.819968i \(0.693991\pi\)
\(182\) 2163.95 0.881333
\(183\) 751.447 0.303544
\(184\) 1354.11 0.542534
\(185\) 0 0
\(186\) −6402.27 −2.52385
\(187\) 420.778 0.164547
\(188\) −1611.15 −0.625028
\(189\) 986.730 0.379757
\(190\) 0 0
\(191\) −911.917 −0.345466 −0.172733 0.984969i \(-0.555260\pi\)
−0.172733 + 0.984969i \(0.555260\pi\)
\(192\) 707.810 0.266051
\(193\) −4454.66 −1.66142 −0.830709 0.556707i \(-0.812065\pi\)
−0.830709 + 0.556707i \(0.812065\pi\)
\(194\) 3418.92 1.26528
\(195\) 0 0
\(196\) 262.690 0.0957327
\(197\) 1377.46 0.498171 0.249086 0.968481i \(-0.419870\pi\)
0.249086 + 0.968481i \(0.419870\pi\)
\(198\) −10.4224 −0.00374084
\(199\) −94.3572 −0.0336121 −0.0168060 0.999859i \(-0.505350\pi\)
−0.0168060 + 0.999859i \(0.505350\pi\)
\(200\) 0 0
\(201\) −3454.43 −1.21222
\(202\) −1949.71 −0.679113
\(203\) −817.643 −0.282696
\(204\) −1060.46 −0.363957
\(205\) 0 0
\(206\) 2697.95 0.912499
\(207\) 36.3876 0.0122179
\(208\) −6609.13 −2.20318
\(209\) −1400.12 −0.463388
\(210\) 0 0
\(211\) 1174.19 0.383101 0.191550 0.981483i \(-0.438648\pi\)
0.191550 + 0.981483i \(0.438648\pi\)
\(212\) 170.800 0.0553330
\(213\) −3762.57 −1.21036
\(214\) 7453.35 2.38084
\(215\) 0 0
\(216\) −1359.74 −0.428326
\(217\) 2370.96 0.741712
\(218\) 5441.56 1.69059
\(219\) −2156.27 −0.665331
\(220\) 0 0
\(221\) 3235.11 0.984692
\(222\) −1424.10 −0.430539
\(223\) −88.5875 −0.0266021 −0.0133010 0.999912i \(-0.504234\pi\)
−0.0133010 + 0.999912i \(0.504234\pi\)
\(224\) −1459.37 −0.435305
\(225\) 0 0
\(226\) 1947.32 0.573159
\(227\) −883.312 −0.258271 −0.129135 0.991627i \(-0.541220\pi\)
−0.129135 + 0.991627i \(0.541220\pi\)
\(228\) 3528.64 1.02495
\(229\) 1240.26 0.357898 0.178949 0.983858i \(-0.442730\pi\)
0.178949 + 0.983858i \(0.442730\pi\)
\(230\) 0 0
\(231\) −398.179 −0.113412
\(232\) 1126.73 0.318851
\(233\) 5479.93 1.54078 0.770392 0.637571i \(-0.220061\pi\)
0.770392 + 0.637571i \(0.220061\pi\)
\(234\) −80.1315 −0.0223861
\(235\) 0 0
\(236\) −366.174 −0.101000
\(237\) −2372.55 −0.650269
\(238\) 978.764 0.266571
\(239\) 594.006 0.160766 0.0803830 0.996764i \(-0.474386\pi\)
0.0803830 + 0.996764i \(0.474386\pi\)
\(240\) 0 0
\(241\) 308.785 0.0825336 0.0412668 0.999148i \(-0.486861\pi\)
0.0412668 + 0.999148i \(0.486861\pi\)
\(242\) 442.288 0.117485
\(243\) −72.7302 −0.0192002
\(244\) −779.039 −0.204397
\(245\) 0 0
\(246\) 424.247 0.109955
\(247\) −10764.7 −2.77303
\(248\) −3267.24 −0.836573
\(249\) 1839.57 0.468185
\(250\) 0 0
\(251\) 3487.59 0.877031 0.438515 0.898724i \(-0.355505\pi\)
0.438515 + 0.898724i \(0.355505\pi\)
\(252\) −9.72748 −0.00243164
\(253\) −1544.16 −0.383717
\(254\) 8251.58 2.03839
\(255\) 0 0
\(256\) 5362.66 1.30924
\(257\) −451.445 −0.109574 −0.0547868 0.998498i \(-0.517448\pi\)
−0.0547868 + 0.998498i \(0.517448\pi\)
\(258\) 3437.21 0.829425
\(259\) 527.391 0.126527
\(260\) 0 0
\(261\) 30.2775 0.00718057
\(262\) 4292.08 1.01208
\(263\) 5878.61 1.37829 0.689146 0.724622i \(-0.257986\pi\)
0.689146 + 0.724622i \(0.257986\pi\)
\(264\) 548.699 0.127917
\(265\) 0 0
\(266\) −3256.79 −0.750701
\(267\) 6443.09 1.47682
\(268\) 3581.27 0.816272
\(269\) −52.8516 −0.0119792 −0.00598962 0.999982i \(-0.501907\pi\)
−0.00598962 + 0.999982i \(0.501907\pi\)
\(270\) 0 0
\(271\) −6822.19 −1.52922 −0.764610 0.644493i \(-0.777069\pi\)
−0.764610 + 0.644493i \(0.777069\pi\)
\(272\) −2989.34 −0.666381
\(273\) −3061.36 −0.678688
\(274\) −9832.98 −2.16800
\(275\) 0 0
\(276\) 3891.66 0.848733
\(277\) −469.032 −0.101738 −0.0508689 0.998705i \(-0.516199\pi\)
−0.0508689 + 0.998705i \(0.516199\pi\)
\(278\) 64.8810 0.0139975
\(279\) −87.7972 −0.0188397
\(280\) 0 0
\(281\) −2305.05 −0.489352 −0.244676 0.969605i \(-0.578682\pi\)
−0.244676 + 0.969605i \(0.578682\pi\)
\(282\) 5680.61 1.19956
\(283\) 7370.80 1.54823 0.774114 0.633046i \(-0.218195\pi\)
0.774114 + 0.633046i \(0.218195\pi\)
\(284\) 3900.73 0.815020
\(285\) 0 0
\(286\) 3400.49 0.703060
\(287\) −157.112 −0.0323137
\(288\) 54.0408 0.0110569
\(289\) −3449.74 −0.702167
\(290\) 0 0
\(291\) −4836.77 −0.974352
\(292\) 2235.45 0.448013
\(293\) −1758.90 −0.350702 −0.175351 0.984506i \(-0.556106\pi\)
−0.175351 + 0.984506i \(0.556106\pi\)
\(294\) −926.197 −0.183731
\(295\) 0 0
\(296\) −726.757 −0.142709
\(297\) 1550.58 0.302941
\(298\) 5548.20 1.07852
\(299\) −11872.1 −2.29626
\(300\) 0 0
\(301\) −1272.91 −0.243752
\(302\) 7123.63 1.35735
\(303\) 2758.27 0.522965
\(304\) 9946.89 1.87662
\(305\) 0 0
\(306\) −36.2439 −0.00677099
\(307\) −3468.10 −0.644739 −0.322369 0.946614i \(-0.604479\pi\)
−0.322369 + 0.946614i \(0.604479\pi\)
\(308\) 412.799 0.0763682
\(309\) −3816.81 −0.702688
\(310\) 0 0
\(311\) 1983.98 0.361741 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(312\) 4218.62 0.765488
\(313\) 10094.2 1.82287 0.911436 0.411443i \(-0.134975\pi\)
0.911436 + 0.411443i \(0.134975\pi\)
\(314\) 5681.03 1.02102
\(315\) 0 0
\(316\) 2459.67 0.437871
\(317\) 3051.34 0.540633 0.270316 0.962772i \(-0.412872\pi\)
0.270316 + 0.962772i \(0.412872\pi\)
\(318\) −602.209 −0.106196
\(319\) −1284.87 −0.225513
\(320\) 0 0
\(321\) −10544.3 −1.83342
\(322\) −3591.84 −0.621632
\(323\) −4868.91 −0.838741
\(324\) −3870.31 −0.663633
\(325\) 0 0
\(326\) 12693.7 2.15656
\(327\) −7698.23 −1.30187
\(328\) 216.504 0.0364465
\(329\) −2103.71 −0.352527
\(330\) 0 0
\(331\) −26.9826 −0.00448066 −0.00224033 0.999997i \(-0.500713\pi\)
−0.00224033 + 0.999997i \(0.500713\pi\)
\(332\) −1907.12 −0.315261
\(333\) −19.5294 −0.00321383
\(334\) 8147.25 1.33472
\(335\) 0 0
\(336\) 2828.79 0.459295
\(337\) −6818.62 −1.10218 −0.551089 0.834447i \(-0.685787\pi\)
−0.551089 + 0.834447i \(0.685787\pi\)
\(338\) 18113.7 2.91496
\(339\) −2754.90 −0.441373
\(340\) 0 0
\(341\) 3725.80 0.591681
\(342\) 120.600 0.0190681
\(343\) 343.000 0.0539949
\(344\) 1754.10 0.274926
\(345\) 0 0
\(346\) 3684.66 0.572510
\(347\) −11907.0 −1.84208 −0.921038 0.389473i \(-0.872657\pi\)
−0.921038 + 0.389473i \(0.872657\pi\)
\(348\) 3238.18 0.498806
\(349\) −4352.72 −0.667609 −0.333805 0.942642i \(-0.608333\pi\)
−0.333805 + 0.942642i \(0.608333\pi\)
\(350\) 0 0
\(351\) 11921.5 1.81288
\(352\) −2293.30 −0.347253
\(353\) 1326.31 0.199978 0.0999891 0.994989i \(-0.468119\pi\)
0.0999891 + 0.994989i \(0.468119\pi\)
\(354\) 1291.06 0.193839
\(355\) 0 0
\(356\) −6679.68 −0.994444
\(357\) −1384.67 −0.205278
\(358\) −2727.73 −0.402696
\(359\) −8292.92 −1.21917 −0.609587 0.792719i \(-0.708665\pi\)
−0.609587 + 0.792719i \(0.708665\pi\)
\(360\) 0 0
\(361\) 9342.06 1.36201
\(362\) −10190.0 −1.47949
\(363\) −625.709 −0.0904717
\(364\) 3173.77 0.457007
\(365\) 0 0
\(366\) 2746.74 0.392280
\(367\) 11027.5 1.56848 0.784241 0.620457i \(-0.213053\pi\)
0.784241 + 0.620457i \(0.213053\pi\)
\(368\) 10970.2 1.55397
\(369\) 5.81790 0.000820780 0
\(370\) 0 0
\(371\) 223.017 0.0312088
\(372\) −9389.92 −1.30872
\(373\) −8245.72 −1.14463 −0.572316 0.820034i \(-0.693955\pi\)
−0.572316 + 0.820034i \(0.693955\pi\)
\(374\) 1538.06 0.212650
\(375\) 0 0
\(376\) 2898.96 0.397613
\(377\) −9878.58 −1.34953
\(378\) 3606.77 0.490773
\(379\) 10163.4 1.37747 0.688734 0.725014i \(-0.258167\pi\)
0.688734 + 0.725014i \(0.258167\pi\)
\(380\) 0 0
\(381\) −11673.6 −1.56970
\(382\) −3333.31 −0.446458
\(383\) −14338.9 −1.91301 −0.956506 0.291714i \(-0.905774\pi\)
−0.956506 + 0.291714i \(0.905774\pi\)
\(384\) −6037.48 −0.802341
\(385\) 0 0
\(386\) −16283.0 −2.14711
\(387\) 47.1361 0.00619138
\(388\) 5014.37 0.656098
\(389\) −2382.91 −0.310587 −0.155294 0.987868i \(-0.549632\pi\)
−0.155294 + 0.987868i \(0.549632\pi\)
\(390\) 0 0
\(391\) −5369.82 −0.694535
\(392\) −472.662 −0.0609006
\(393\) −6072.04 −0.779374
\(394\) 5034.98 0.643804
\(395\) 0 0
\(396\) −15.2860 −0.00193978
\(397\) 9868.22 1.24754 0.623768 0.781609i \(-0.285601\pi\)
0.623768 + 0.781609i \(0.285601\pi\)
\(398\) −344.901 −0.0434380
\(399\) 4607.41 0.578093
\(400\) 0 0
\(401\) −5879.12 −0.732143 −0.366072 0.930587i \(-0.619298\pi\)
−0.366072 + 0.930587i \(0.619298\pi\)
\(402\) −12626.9 −1.56660
\(403\) 28645.4 3.54077
\(404\) −2859.55 −0.352148
\(405\) 0 0
\(406\) −2988.71 −0.365338
\(407\) 828.758 0.100934
\(408\) 1908.10 0.231532
\(409\) 5680.84 0.686796 0.343398 0.939190i \(-0.388422\pi\)
0.343398 + 0.939190i \(0.388422\pi\)
\(410\) 0 0
\(411\) 13910.8 1.66951
\(412\) 3956.96 0.473168
\(413\) −478.121 −0.0569656
\(414\) 133.007 0.0157897
\(415\) 0 0
\(416\) −17631.8 −2.07805
\(417\) −91.7878 −0.0107791
\(418\) −5117.81 −0.598853
\(419\) −1098.50 −0.128079 −0.0640395 0.997947i \(-0.520398\pi\)
−0.0640395 + 0.997947i \(0.520398\pi\)
\(420\) 0 0
\(421\) −5265.06 −0.609509 −0.304754 0.952431i \(-0.598574\pi\)
−0.304754 + 0.952431i \(0.598574\pi\)
\(422\) 4291.97 0.495095
\(423\) 77.9008 0.00895430
\(424\) −307.323 −0.0352003
\(425\) 0 0
\(426\) −13753.2 −1.56419
\(427\) −1017.21 −0.115284
\(428\) 10931.5 1.23457
\(429\) −4810.70 −0.541406
\(430\) 0 0
\(431\) 4273.45 0.477598 0.238799 0.971069i \(-0.423246\pi\)
0.238799 + 0.971069i \(0.423246\pi\)
\(432\) −11015.8 −1.22685
\(433\) 8560.19 0.950061 0.475031 0.879969i \(-0.342437\pi\)
0.475031 + 0.879969i \(0.342437\pi\)
\(434\) 8666.52 0.958539
\(435\) 0 0
\(436\) 7980.90 0.876642
\(437\) 17867.8 1.95591
\(438\) −7881.77 −0.859830
\(439\) 12664.2 1.37684 0.688419 0.725314i \(-0.258305\pi\)
0.688419 + 0.725314i \(0.258305\pi\)
\(440\) 0 0
\(441\) −12.7014 −0.00137149
\(442\) 11825.2 1.27255
\(443\) −12368.9 −1.32656 −0.663279 0.748372i \(-0.730836\pi\)
−0.663279 + 0.748372i \(0.730836\pi\)
\(444\) −2088.67 −0.223252
\(445\) 0 0
\(446\) −323.812 −0.0343788
\(447\) −7849.09 −0.830535
\(448\) −958.136 −0.101044
\(449\) −2092.69 −0.219956 −0.109978 0.993934i \(-0.535078\pi\)
−0.109978 + 0.993934i \(0.535078\pi\)
\(450\) 0 0
\(451\) −246.891 −0.0257775
\(452\) 2856.05 0.297207
\(453\) −10077.9 −1.04525
\(454\) −3228.75 −0.333772
\(455\) 0 0
\(456\) −6349.12 −0.652028
\(457\) −7825.71 −0.801031 −0.400515 0.916290i \(-0.631169\pi\)
−0.400515 + 0.916290i \(0.631169\pi\)
\(458\) 4533.49 0.462525
\(459\) 5392.13 0.548329
\(460\) 0 0
\(461\) 4775.60 0.482477 0.241238 0.970466i \(-0.422446\pi\)
0.241238 + 0.970466i \(0.422446\pi\)
\(462\) −1455.45 −0.146567
\(463\) −11518.3 −1.15615 −0.578077 0.815982i \(-0.696197\pi\)
−0.578077 + 0.815982i \(0.696197\pi\)
\(464\) 9128.12 0.913280
\(465\) 0 0
\(466\) 20030.7 1.99121
\(467\) 7420.17 0.735256 0.367628 0.929973i \(-0.380170\pi\)
0.367628 + 0.929973i \(0.380170\pi\)
\(468\) −117.525 −0.0116081
\(469\) 4676.14 0.460392
\(470\) 0 0
\(471\) −8037.00 −0.786253
\(472\) 658.861 0.0642512
\(473\) −2000.29 −0.194447
\(474\) −8672.32 −0.840365
\(475\) 0 0
\(476\) 1435.51 0.138228
\(477\) −8.25837 −0.000792715 0
\(478\) 2171.26 0.207764
\(479\) 10159.2 0.969076 0.484538 0.874770i \(-0.338988\pi\)
0.484538 + 0.874770i \(0.338988\pi\)
\(480\) 0 0
\(481\) 6371.82 0.604013
\(482\) 1128.69 0.106661
\(483\) 5081.41 0.478701
\(484\) 648.685 0.0609208
\(485\) 0 0
\(486\) −265.849 −0.0248131
\(487\) 12344.9 1.14866 0.574331 0.818623i \(-0.305262\pi\)
0.574331 + 0.818623i \(0.305262\pi\)
\(488\) 1401.73 0.130028
\(489\) −17957.9 −1.66070
\(490\) 0 0
\(491\) 15344.9 1.41040 0.705200 0.709009i \(-0.250857\pi\)
0.705200 + 0.709009i \(0.250857\pi\)
\(492\) 622.225 0.0570164
\(493\) −4468.13 −0.408183
\(494\) −39347.8 −3.58369
\(495\) 0 0
\(496\) −26469.3 −2.39618
\(497\) 5093.26 0.459686
\(498\) 6724.13 0.605051
\(499\) −5022.76 −0.450601 −0.225300 0.974289i \(-0.572336\pi\)
−0.225300 + 0.974289i \(0.572336\pi\)
\(500\) 0 0
\(501\) −11526.0 −1.02783
\(502\) 12748.1 1.13342
\(503\) −8735.90 −0.774383 −0.387191 0.921999i \(-0.626555\pi\)
−0.387191 + 0.921999i \(0.626555\pi\)
\(504\) 17.5028 0.00154690
\(505\) 0 0
\(506\) −5644.33 −0.495891
\(507\) −25625.6 −2.24472
\(508\) 12102.2 1.05699
\(509\) −21805.5 −1.89884 −0.949420 0.314008i \(-0.898328\pi\)
−0.949420 + 0.314008i \(0.898328\pi\)
\(510\) 0 0
\(511\) 2918.87 0.252687
\(512\) 10261.7 0.885760
\(513\) −17942.1 −1.54417
\(514\) −1650.16 −0.141606
\(515\) 0 0
\(516\) 5041.21 0.430091
\(517\) −3305.83 −0.281219
\(518\) 1927.76 0.163515
\(519\) −5212.72 −0.440873
\(520\) 0 0
\(521\) −4732.28 −0.397936 −0.198968 0.980006i \(-0.563759\pi\)
−0.198968 + 0.980006i \(0.563759\pi\)
\(522\) 110.673 0.00927970
\(523\) 7511.23 0.627998 0.313999 0.949423i \(-0.398331\pi\)
0.313999 + 0.949423i \(0.398331\pi\)
\(524\) 6295.00 0.524806
\(525\) 0 0
\(526\) 21487.9 1.78121
\(527\) 12956.5 1.07095
\(528\) 4445.24 0.366391
\(529\) 7539.02 0.619629
\(530\) 0 0
\(531\) 17.7049 0.00144695
\(532\) −4776.59 −0.389270
\(533\) −1898.20 −0.154259
\(534\) 23551.3 1.90855
\(535\) 0 0
\(536\) −6443.82 −0.519274
\(537\) 3858.95 0.310104
\(538\) −193.187 −0.0154812
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −598.410 −0.0475557 −0.0237779 0.999717i \(-0.507569\pi\)
−0.0237779 + 0.999717i \(0.507569\pi\)
\(542\) −24937.0 −1.97626
\(543\) 14415.9 1.13931
\(544\) −7974.95 −0.628535
\(545\) 0 0
\(546\) −11190.1 −0.877092
\(547\) 14042.3 1.09763 0.548816 0.835943i \(-0.315079\pi\)
0.548816 + 0.835943i \(0.315079\pi\)
\(548\) −14421.6 −1.12420
\(549\) 37.6674 0.00292824
\(550\) 0 0
\(551\) 14867.5 1.14950
\(552\) −7002.31 −0.539924
\(553\) 3211.64 0.246967
\(554\) −1714.44 −0.131479
\(555\) 0 0
\(556\) 95.1581 0.00725828
\(557\) −4965.87 −0.377757 −0.188878 0.982000i \(-0.560485\pi\)
−0.188878 + 0.982000i \(0.560485\pi\)
\(558\) −320.923 −0.0243472
\(559\) −15379.0 −1.16362
\(560\) 0 0
\(561\) −2175.90 −0.163755
\(562\) −8425.60 −0.632406
\(563\) 15362.4 1.14999 0.574997 0.818155i \(-0.305003\pi\)
0.574997 + 0.818155i \(0.305003\pi\)
\(564\) 8331.50 0.622020
\(565\) 0 0
\(566\) 26942.3 2.00083
\(567\) −5053.54 −0.374301
\(568\) −7018.62 −0.518477
\(569\) 17735.3 1.30668 0.653341 0.757064i \(-0.273367\pi\)
0.653341 + 0.757064i \(0.273367\pi\)
\(570\) 0 0
\(571\) −19818.8 −1.45252 −0.726262 0.687418i \(-0.758744\pi\)
−0.726262 + 0.687418i \(0.758744\pi\)
\(572\) 4987.35 0.364566
\(573\) 4715.66 0.343804
\(574\) −574.288 −0.0417602
\(575\) 0 0
\(576\) 35.4800 0.00256655
\(577\) −6579.03 −0.474677 −0.237339 0.971427i \(-0.576275\pi\)
−0.237339 + 0.971427i \(0.576275\pi\)
\(578\) −12609.8 −0.907434
\(579\) 23035.7 1.65342
\(580\) 0 0
\(581\) −2490.16 −0.177813
\(582\) −17679.7 −1.25919
\(583\) 350.455 0.0248960
\(584\) −4022.27 −0.285005
\(585\) 0 0
\(586\) −6429.25 −0.453225
\(587\) −13901.5 −0.977470 −0.488735 0.872432i \(-0.662541\pi\)
−0.488735 + 0.872432i \(0.662541\pi\)
\(588\) −1358.41 −0.0952720
\(589\) −43112.0 −3.01596
\(590\) 0 0
\(591\) −7123.03 −0.495774
\(592\) −5887.76 −0.408760
\(593\) −23928.0 −1.65700 −0.828502 0.559986i \(-0.810807\pi\)
−0.828502 + 0.559986i \(0.810807\pi\)
\(594\) 5667.78 0.391501
\(595\) 0 0
\(596\) 8137.30 0.559256
\(597\) 487.935 0.0334503
\(598\) −43395.9 −2.96754
\(599\) 24078.9 1.64247 0.821233 0.570594i \(-0.193287\pi\)
0.821233 + 0.570594i \(0.193287\pi\)
\(600\) 0 0
\(601\) −11806.6 −0.801336 −0.400668 0.916223i \(-0.631222\pi\)
−0.400668 + 0.916223i \(0.631222\pi\)
\(602\) −4652.83 −0.315009
\(603\) −173.158 −0.0116941
\(604\) 10447.9 0.703840
\(605\) 0 0
\(606\) 10082.2 0.675846
\(607\) −1957.71 −0.130908 −0.0654539 0.997856i \(-0.520850\pi\)
−0.0654539 + 0.997856i \(0.520850\pi\)
\(608\) 26536.2 1.77004
\(609\) 4228.15 0.281336
\(610\) 0 0
\(611\) −25416.6 −1.68289
\(612\) −53.1573 −0.00351104
\(613\) 16029.2 1.05614 0.528069 0.849201i \(-0.322916\pi\)
0.528069 + 0.849201i \(0.322916\pi\)
\(614\) −12676.9 −0.833218
\(615\) 0 0
\(616\) −742.754 −0.0485819
\(617\) 7153.99 0.466789 0.233394 0.972382i \(-0.425017\pi\)
0.233394 + 0.972382i \(0.425017\pi\)
\(618\) −13951.5 −0.908108
\(619\) −11035.9 −0.716590 −0.358295 0.933608i \(-0.616642\pi\)
−0.358295 + 0.933608i \(0.616642\pi\)
\(620\) 0 0
\(621\) −19787.9 −1.27868
\(622\) 7252.00 0.467490
\(623\) −8721.78 −0.560884
\(624\) 34176.8 2.19258
\(625\) 0 0
\(626\) 36897.1 2.35576
\(627\) 7240.22 0.461158
\(628\) 8332.11 0.529438
\(629\) 2882.01 0.182692
\(630\) 0 0
\(631\) −4311.46 −0.272007 −0.136004 0.990708i \(-0.543426\pi\)
−0.136004 + 0.990708i \(0.543426\pi\)
\(632\) −4425.71 −0.278553
\(633\) −6071.89 −0.381258
\(634\) 11153.5 0.698678
\(635\) 0 0
\(636\) −883.233 −0.0550668
\(637\) 4144.05 0.257760
\(638\) −4696.54 −0.291439
\(639\) −188.604 −0.0116762
\(640\) 0 0
\(641\) 2692.13 0.165886 0.0829429 0.996554i \(-0.473568\pi\)
0.0829429 + 0.996554i \(0.473568\pi\)
\(642\) −38542.4 −2.36939
\(643\) −19694.3 −1.20788 −0.603941 0.797029i \(-0.706404\pi\)
−0.603941 + 0.797029i \(0.706404\pi\)
\(644\) −5268.00 −0.322342
\(645\) 0 0
\(646\) −17797.2 −1.08393
\(647\) 21225.5 1.28974 0.644870 0.764292i \(-0.276911\pi\)
0.644870 + 0.764292i \(0.276911\pi\)
\(648\) 6963.89 0.422172
\(649\) −751.333 −0.0454428
\(650\) 0 0
\(651\) −12260.6 −0.738143
\(652\) 18617.3 1.11827
\(653\) 12929.7 0.774850 0.387425 0.921901i \(-0.373365\pi\)
0.387425 + 0.921901i \(0.373365\pi\)
\(654\) −28139.1 −1.68246
\(655\) 0 0
\(656\) 1753.99 0.104393
\(657\) −108.086 −0.00641835
\(658\) −7689.64 −0.455582
\(659\) −20835.3 −1.23161 −0.615803 0.787900i \(-0.711168\pi\)
−0.615803 + 0.787900i \(0.711168\pi\)
\(660\) 0 0
\(661\) −1451.06 −0.0853850 −0.0426925 0.999088i \(-0.513594\pi\)
−0.0426925 + 0.999088i \(0.513594\pi\)
\(662\) −98.6288 −0.00579051
\(663\) −16729.2 −0.979954
\(664\) 3431.50 0.200554
\(665\) 0 0
\(666\) −71.3853 −0.00415334
\(667\) 16397.0 0.951867
\(668\) 11949.2 0.692109
\(669\) 458.099 0.0264741
\(670\) 0 0
\(671\) −1598.47 −0.0919645
\(672\) 7546.63 0.433211
\(673\) 28986.0 1.66022 0.830111 0.557598i \(-0.188277\pi\)
0.830111 + 0.557598i \(0.188277\pi\)
\(674\) −24923.9 −1.42438
\(675\) 0 0
\(676\) 26566.6 1.51153
\(677\) −24818.6 −1.40895 −0.704474 0.709730i \(-0.748817\pi\)
−0.704474 + 0.709730i \(0.748817\pi\)
\(678\) −10069.9 −0.570401
\(679\) 6547.36 0.370051
\(680\) 0 0
\(681\) 4567.74 0.257028
\(682\) 13618.8 0.764650
\(683\) 7450.70 0.417413 0.208706 0.977978i \(-0.433075\pi\)
0.208706 + 0.977978i \(0.433075\pi\)
\(684\) 176.878 0.00988758
\(685\) 0 0
\(686\) 1253.76 0.0697795
\(687\) −6413.57 −0.356176
\(688\) 14210.7 0.787467
\(689\) 2694.44 0.148984
\(690\) 0 0
\(691\) −28469.1 −1.56731 −0.783657 0.621193i \(-0.786648\pi\)
−0.783657 + 0.621193i \(0.786648\pi\)
\(692\) 5404.13 0.296870
\(693\) −19.9593 −0.00109407
\(694\) −43523.3 −2.38058
\(695\) 0 0
\(696\) −5826.49 −0.317317
\(697\) −858.563 −0.0466577
\(698\) −15910.4 −0.862775
\(699\) −28337.6 −1.53337
\(700\) 0 0
\(701\) 20045.7 1.08005 0.540027 0.841648i \(-0.318414\pi\)
0.540027 + 0.841648i \(0.318414\pi\)
\(702\) 43576.2 2.34285
\(703\) −9589.73 −0.514486
\(704\) −1505.64 −0.0806052
\(705\) 0 0
\(706\) 4848.02 0.258439
\(707\) −3733.77 −0.198618
\(708\) 1893.54 0.100514
\(709\) 15326.9 0.811868 0.405934 0.913902i \(-0.366946\pi\)
0.405934 + 0.913902i \(0.366946\pi\)
\(710\) 0 0
\(711\) −118.928 −0.00627304
\(712\) 12018.8 0.632618
\(713\) −47547.3 −2.49742
\(714\) −5061.34 −0.265288
\(715\) 0 0
\(716\) −4000.64 −0.208814
\(717\) −3071.70 −0.159992
\(718\) −30312.9 −1.57558
\(719\) −11023.4 −0.571770 −0.285885 0.958264i \(-0.592288\pi\)
−0.285885 + 0.958264i \(0.592288\pi\)
\(720\) 0 0
\(721\) 5166.68 0.266875
\(722\) 34147.8 1.76018
\(723\) −1596.77 −0.0821365
\(724\) −14945.3 −0.767177
\(725\) 0 0
\(726\) −2287.14 −0.116920
\(727\) −28755.9 −1.46698 −0.733492 0.679699i \(-0.762111\pi\)
−0.733492 + 0.679699i \(0.762111\pi\)
\(728\) −5710.60 −0.290726
\(729\) 19868.3 1.00942
\(730\) 0 0
\(731\) −6956.00 −0.351952
\(732\) 4028.53 0.203413
\(733\) −21500.9 −1.08343 −0.541714 0.840563i \(-0.682225\pi\)
−0.541714 + 0.840563i \(0.682225\pi\)
\(734\) 40308.7 2.02700
\(735\) 0 0
\(736\) 29266.3 1.46572
\(737\) 7348.21 0.367266
\(738\) 21.2660 0.00106072
\(739\) −2598.63 −0.129353 −0.0646767 0.997906i \(-0.520602\pi\)
−0.0646767 + 0.997906i \(0.520602\pi\)
\(740\) 0 0
\(741\) 55665.7 2.75969
\(742\) 815.189 0.0403322
\(743\) −29920.5 −1.47736 −0.738678 0.674058i \(-0.764550\pi\)
−0.738678 + 0.674058i \(0.764550\pi\)
\(744\) 16895.4 0.832547
\(745\) 0 0
\(746\) −30140.4 −1.47925
\(747\) 92.2112 0.00451651
\(748\) 2255.80 0.110268
\(749\) 14273.5 0.696317
\(750\) 0 0
\(751\) 17763.1 0.863096 0.431548 0.902090i \(-0.357968\pi\)
0.431548 + 0.902090i \(0.357968\pi\)
\(752\) 23485.7 1.13888
\(753\) −18034.8 −0.872810
\(754\) −36108.9 −1.74404
\(755\) 0 0
\(756\) 5289.89 0.254486
\(757\) −6472.04 −0.310740 −0.155370 0.987856i \(-0.549657\pi\)
−0.155370 + 0.987856i \(0.549657\pi\)
\(758\) 37150.1 1.78015
\(759\) 7985.08 0.381871
\(760\) 0 0
\(761\) −33720.2 −1.60625 −0.803126 0.595809i \(-0.796831\pi\)
−0.803126 + 0.595809i \(0.796831\pi\)
\(762\) −42670.1 −2.02858
\(763\) 10420.8 0.494441
\(764\) −4888.81 −0.231507
\(765\) 0 0
\(766\) −52412.6 −2.47225
\(767\) −5776.55 −0.271941
\(768\) −27731.1 −1.30294
\(769\) −9361.49 −0.438991 −0.219495 0.975614i \(-0.570441\pi\)
−0.219495 + 0.975614i \(0.570441\pi\)
\(770\) 0 0
\(771\) 2334.49 0.109046
\(772\) −23881.6 −1.11336
\(773\) −34886.0 −1.62324 −0.811618 0.584188i \(-0.801413\pi\)
−0.811618 + 0.584188i \(0.801413\pi\)
\(774\) 172.295 0.00800133
\(775\) 0 0
\(776\) −9022.42 −0.417379
\(777\) −2727.22 −0.125918
\(778\) −8710.20 −0.401383
\(779\) 2856.83 0.131395
\(780\) 0 0
\(781\) 8003.69 0.366702
\(782\) −19628.2 −0.897572
\(783\) −16465.2 −0.751490
\(784\) −3829.23 −0.174437
\(785\) 0 0
\(786\) −22195.0 −1.00721
\(787\) 9526.64 0.431497 0.215748 0.976449i \(-0.430781\pi\)
0.215748 + 0.976449i \(0.430781\pi\)
\(788\) 7384.58 0.333839
\(789\) −30399.2 −1.37166
\(790\) 0 0
\(791\) 3729.20 0.167630
\(792\) 27.5044 0.00123400
\(793\) −12289.7 −0.550339
\(794\) 36071.1 1.61223
\(795\) 0 0
\(796\) −505.852 −0.0225244
\(797\) 33267.9 1.47856 0.739278 0.673400i \(-0.235167\pi\)
0.739278 + 0.673400i \(0.235167\pi\)
\(798\) 16841.3 0.747089
\(799\) −11496.0 −0.509012
\(800\) 0 0
\(801\) 322.970 0.0142467
\(802\) −21489.8 −0.946174
\(803\) 4586.80 0.201575
\(804\) −18519.3 −0.812345
\(805\) 0 0
\(806\) 104707. 4.57586
\(807\) 273.303 0.0119216
\(808\) 5145.22 0.224020
\(809\) 17949.6 0.780069 0.390035 0.920800i \(-0.372463\pi\)
0.390035 + 0.920800i \(0.372463\pi\)
\(810\) 0 0
\(811\) 10877.9 0.470991 0.235495 0.971875i \(-0.424329\pi\)
0.235495 + 0.971875i \(0.424329\pi\)
\(812\) −4383.41 −0.189443
\(813\) 35278.6 1.52186
\(814\) 3029.34 0.130440
\(815\) 0 0
\(816\) 15458.3 0.663174
\(817\) 23145.7 0.991147
\(818\) 20765.0 0.887570
\(819\) −153.455 −0.00654720
\(820\) 0 0
\(821\) −4519.04 −0.192102 −0.0960509 0.995376i \(-0.530621\pi\)
−0.0960509 + 0.995376i \(0.530621\pi\)
\(822\) 50847.8 2.15757
\(823\) −36987.7 −1.56660 −0.783300 0.621644i \(-0.786465\pi\)
−0.783300 + 0.621644i \(0.786465\pi\)
\(824\) −7119.80 −0.301007
\(825\) 0 0
\(826\) −1747.66 −0.0736186
\(827\) −15325.3 −0.644392 −0.322196 0.946673i \(-0.604421\pi\)
−0.322196 + 0.946673i \(0.604421\pi\)
\(828\) 195.075 0.00818760
\(829\) 26546.3 1.11217 0.556087 0.831124i \(-0.312302\pi\)
0.556087 + 0.831124i \(0.312302\pi\)
\(830\) 0 0
\(831\) 2425.43 0.101248
\(832\) −11576.0 −0.482362
\(833\) 1874.37 0.0779630
\(834\) −335.509 −0.0139301
\(835\) 0 0
\(836\) −7506.07 −0.310530
\(837\) 47744.9 1.97169
\(838\) −4015.31 −0.165521
\(839\) 11906.5 0.489938 0.244969 0.969531i \(-0.421222\pi\)
0.244969 + 0.969531i \(0.421222\pi\)
\(840\) 0 0
\(841\) −10745.3 −0.440581
\(842\) −19245.2 −0.787689
\(843\) 11919.8 0.486997
\(844\) 6294.85 0.256727
\(845\) 0 0
\(846\) 284.749 0.0115719
\(847\) 847.000 0.0343604
\(848\) −2489.75 −0.100824
\(849\) −38115.5 −1.54078
\(850\) 0 0
\(851\) −10576.3 −0.426030
\(852\) −20171.2 −0.811098
\(853\) 6859.53 0.275341 0.137670 0.990478i \(-0.456039\pi\)
0.137670 + 0.990478i \(0.456039\pi\)
\(854\) −3718.17 −0.148985
\(855\) 0 0
\(856\) −19669.2 −0.785372
\(857\) −5193.59 −0.207013 −0.103506 0.994629i \(-0.533006\pi\)
−0.103506 + 0.994629i \(0.533006\pi\)
\(858\) −17584.4 −0.699677
\(859\) 5265.73 0.209155 0.104578 0.994517i \(-0.466651\pi\)
0.104578 + 0.994517i \(0.466651\pi\)
\(860\) 0 0
\(861\) 812.451 0.0321583
\(862\) 15620.6 0.617216
\(863\) 16016.7 0.631767 0.315884 0.948798i \(-0.397699\pi\)
0.315884 + 0.948798i \(0.397699\pi\)
\(864\) −29387.9 −1.15717
\(865\) 0 0
\(866\) 31289.8 1.22780
\(867\) 17839.1 0.698788
\(868\) 12710.8 0.497042
\(869\) 5046.86 0.197011
\(870\) 0 0
\(871\) 56496.0 2.19781
\(872\) −14360.1 −0.557678
\(873\) −242.450 −0.00939943
\(874\) 65311.7 2.52769
\(875\) 0 0
\(876\) −11559.8 −0.445857
\(877\) 11195.5 0.431065 0.215533 0.976497i \(-0.430851\pi\)
0.215533 + 0.976497i \(0.430851\pi\)
\(878\) 46291.3 1.77933
\(879\) 9095.51 0.349015
\(880\) 0 0
\(881\) 45542.5 1.74162 0.870809 0.491621i \(-0.163595\pi\)
0.870809 + 0.491621i \(0.163595\pi\)
\(882\) −46.4270 −0.00177242
\(883\) −10394.9 −0.396167 −0.198083 0.980185i \(-0.563472\pi\)
−0.198083 + 0.980185i \(0.563472\pi\)
\(884\) 17343.5 0.659871
\(885\) 0 0
\(886\) −45211.8 −1.71436
\(887\) 4020.51 0.152193 0.0760967 0.997100i \(-0.475754\pi\)
0.0760967 + 0.997100i \(0.475754\pi\)
\(888\) 3758.17 0.142022
\(889\) 15802.1 0.596159
\(890\) 0 0
\(891\) −7941.28 −0.298589
\(892\) −474.920 −0.0178268
\(893\) 38252.5 1.43345
\(894\) −28690.6 −1.07333
\(895\) 0 0
\(896\) 8172.72 0.304723
\(897\) 61392.5 2.28521
\(898\) −7649.36 −0.284257
\(899\) −39563.3 −1.46775
\(900\) 0 0
\(901\) 1218.71 0.0450623
\(902\) −902.453 −0.0333131
\(903\) 6582.40 0.242579
\(904\) −5138.93 −0.189069
\(905\) 0 0
\(906\) −36837.3 −1.35082
\(907\) 23907.5 0.875231 0.437615 0.899162i \(-0.355823\pi\)
0.437615 + 0.899162i \(0.355823\pi\)
\(908\) −4735.46 −0.173075
\(909\) 138.262 0.00504496
\(910\) 0 0
\(911\) 40571.4 1.47551 0.737755 0.675069i \(-0.235886\pi\)
0.737755 + 0.675069i \(0.235886\pi\)
\(912\) −51436.9 −1.86759
\(913\) −3913.11 −0.141846
\(914\) −28605.1 −1.03520
\(915\) 0 0
\(916\) 6649.07 0.239838
\(917\) 8219.50 0.296000
\(918\) 19709.7 0.708625
\(919\) 20551.0 0.737667 0.368834 0.929495i \(-0.379757\pi\)
0.368834 + 0.929495i \(0.379757\pi\)
\(920\) 0 0
\(921\) 17934.1 0.641637
\(922\) 17456.1 0.623521
\(923\) 61535.6 2.19444
\(924\) −2134.65 −0.0760008
\(925\) 0 0
\(926\) −42102.4 −1.49414
\(927\) −191.323 −0.00677872
\(928\) 24351.9 0.861413
\(929\) 34068.4 1.20317 0.601587 0.798807i \(-0.294535\pi\)
0.601587 + 0.798807i \(0.294535\pi\)
\(930\) 0 0
\(931\) −6236.89 −0.219555
\(932\) 29378.1 1.03252
\(933\) −10259.5 −0.360000
\(934\) 27122.8 0.950197
\(935\) 0 0
\(936\) 211.465 0.00738455
\(937\) −15597.9 −0.543824 −0.271912 0.962322i \(-0.587656\pi\)
−0.271912 + 0.962322i \(0.587656\pi\)
\(938\) 17092.6 0.594981
\(939\) −52198.7 −1.81410
\(940\) 0 0
\(941\) −22855.3 −0.791775 −0.395887 0.918299i \(-0.629563\pi\)
−0.395887 + 0.918299i \(0.629563\pi\)
\(942\) −29377.4 −1.01610
\(943\) 3150.73 0.108804
\(944\) 5337.71 0.184034
\(945\) 0 0
\(946\) −7311.59 −0.251290
\(947\) −36670.7 −1.25833 −0.629164 0.777272i \(-0.716603\pi\)
−0.629164 + 0.777272i \(0.716603\pi\)
\(948\) −12719.3 −0.435764
\(949\) 35265.1 1.20628
\(950\) 0 0
\(951\) −15779.0 −0.538031
\(952\) −2582.93 −0.0879341
\(953\) 19922.8 0.677192 0.338596 0.940932i \(-0.390048\pi\)
0.338596 + 0.940932i \(0.390048\pi\)
\(954\) −30.1866 −0.00102445
\(955\) 0 0
\(956\) 3184.49 0.107734
\(957\) 6644.24 0.224428
\(958\) 37134.8 1.25237
\(959\) −18830.6 −0.634068
\(960\) 0 0
\(961\) 84932.7 2.85095
\(962\) 23290.8 0.780587
\(963\) −528.550 −0.0176867
\(964\) 1655.41 0.0553081
\(965\) 0 0
\(966\) 18574.0 0.618641
\(967\) −24523.8 −0.815545 −0.407772 0.913084i \(-0.633694\pi\)
−0.407772 + 0.913084i \(0.633694\pi\)
\(968\) −1167.19 −0.0387549
\(969\) 25177.9 0.834705
\(970\) 0 0
\(971\) 4493.82 0.148520 0.0742602 0.997239i \(-0.476340\pi\)
0.0742602 + 0.997239i \(0.476340\pi\)
\(972\) −389.909 −0.0128666
\(973\) 124.250 0.00409380
\(974\) 45123.8 1.48446
\(975\) 0 0
\(976\) 11356.0 0.372436
\(977\) 18285.3 0.598771 0.299385 0.954132i \(-0.403218\pi\)
0.299385 + 0.954132i \(0.403218\pi\)
\(978\) −65641.1 −2.14619
\(979\) −13705.7 −0.447431
\(980\) 0 0
\(981\) −385.885 −0.0125590
\(982\) 56089.9 1.82271
\(983\) 25850.8 0.838772 0.419386 0.907808i \(-0.362245\pi\)
0.419386 + 0.907808i \(0.362245\pi\)
\(984\) −1119.58 −0.0362711
\(985\) 0 0
\(986\) −16332.2 −0.527509
\(987\) 10878.6 0.350830
\(988\) −57709.7 −1.85829
\(989\) 25526.9 0.820738
\(990\) 0 0
\(991\) −26842.1 −0.860412 −0.430206 0.902731i \(-0.641559\pi\)
−0.430206 + 0.902731i \(0.641559\pi\)
\(992\) −70614.6 −2.26010
\(993\) 139.531 0.00445910
\(994\) 18617.2 0.594068
\(995\) 0 0
\(996\) 9861.99 0.313744
\(997\) 10468.1 0.332526 0.166263 0.986081i \(-0.446830\pi\)
0.166263 + 0.986081i \(0.446830\pi\)
\(998\) −18359.6 −0.582327
\(999\) 10620.3 0.336347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.4.a.q.1.3 4
5.4 even 2 77.4.a.c.1.2 4
15.14 odd 2 693.4.a.m.1.3 4
20.19 odd 2 1232.4.a.w.1.1 4
35.34 odd 2 539.4.a.f.1.2 4
55.54 odd 2 847.4.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.2 4 5.4 even 2
539.4.a.f.1.2 4 35.34 odd 2
693.4.a.m.1.3 4 15.14 odd 2
847.4.a.e.1.3 4 55.54 odd 2
1232.4.a.w.1.1 4 20.19 odd 2
1925.4.a.q.1.3 4 1.1 even 1 trivial