Properties

Label 1925.4.a.q
Level $1925$
Weight $4$
Character orbit 1925.a
Self dual yes
Analytic conductor $113.579$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1925,4,Mod(1,1925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1925.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.578676761\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 1) q^{2} + ( - \beta_{3} + 3) q^{3} + ( - \beta_{3} - 2 \beta_{2} - \beta_1 + 6) q^{4} + ( - 3 \beta_{3} - 5 \beta_{2} + \cdots - 1) q^{6}+ \cdots + ( - 5 \beta_{3} - 6 \beta_{2} + \cdots + 18) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} + 1) q^{2} + ( - \beta_{3} + 3) q^{3} + ( - \beta_{3} - 2 \beta_{2} - \beta_1 + 6) q^{4} + ( - 3 \beta_{3} - 5 \beta_{2} + \cdots - 1) q^{6}+ \cdots + ( - 55 \beta_{3} - 66 \beta_{2} + \cdots + 198) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 12 q^{3} + 22 q^{4} + 2 q^{6} + 28 q^{7} + 60 q^{8} + 66 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 12 q^{3} + 22 q^{4} + 2 q^{6} + 28 q^{7} + 60 q^{8} + 66 q^{9} + 44 q^{11} + 186 q^{12} + 134 q^{13} + 28 q^{14} - 6 q^{16} + 74 q^{17} + 256 q^{18} - 164 q^{19} + 84 q^{21} + 44 q^{22} - 194 q^{23} + 570 q^{24} + 734 q^{26} + 510 q^{27} + 154 q^{28} - 108 q^{29} - 412 q^{31} + 4 q^{32} + 132 q^{33} - 346 q^{34} + 1518 q^{36} - 286 q^{37} - 224 q^{38} - 256 q^{39} - 18 q^{41} + 14 q^{42} + 496 q^{43} + 242 q^{44} - 284 q^{46} - 62 q^{47} + 862 q^{48} + 196 q^{49} - 508 q^{51} + 822 q^{52} + 828 q^{53} + 2420 q^{54} + 420 q^{56} - 700 q^{57} - 1388 q^{58} - 1224 q^{59} - 350 q^{61} + 878 q^{62} + 462 q^{63} - 718 q^{64} + 22 q^{66} + 1498 q^{67} - 1058 q^{68} - 386 q^{69} + 2326 q^{71} + 3000 q^{72} + 1630 q^{73} - 1156 q^{74} - 3152 q^{76} + 308 q^{77} + 2464 q^{78} - 1020 q^{79} + 1128 q^{81} - 2118 q^{82} + 1920 q^{83} + 1302 q^{84} + 1056 q^{86} - 1640 q^{87} + 660 q^{88} + 1550 q^{89} + 938 q^{91} - 2592 q^{92} - 6046 q^{93} - 1042 q^{94} + 4082 q^{96} + 2202 q^{97} + 196 q^{98} + 726 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 7\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + \beta _1 + 10 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.66444
3.18303
−1.11082
1.59222
−3.76366 7.36360 6.16515 0 −27.7141 7.00000 6.90574 27.2227 0
1.2 −0.948670 0.163384 −7.10002 0 −0.154997 7.00000 14.3249 −26.9733 0
1.3 3.65527 −5.17115 5.36103 0 −18.9020 7.00000 −9.64616 −0.259212 0
1.4 5.05706 9.64416 17.5738 0 48.7711 7.00000 48.4155 66.0098 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1925.4.a.q 4
5.b even 2 1 77.4.a.c 4
15.d odd 2 1 693.4.a.m 4
20.d odd 2 1 1232.4.a.w 4
35.c odd 2 1 539.4.a.f 4
55.d odd 2 1 847.4.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.4.a.c 4 5.b even 2 1
539.4.a.f 4 35.c odd 2 1
693.4.a.m 4 15.d odd 2 1
847.4.a.e 4 55.d odd 2 1
1232.4.a.w 4 20.d odd 2 1
1925.4.a.q 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1925))\):

\( T_{2}^{4} - 4T_{2}^{3} - 19T_{2}^{2} + 56T_{2} + 66 \) Copy content Toggle raw display
\( T_{3}^{4} - 12T_{3}^{3} - 15T_{3}^{2} + 370T_{3} - 60 \) Copy content Toggle raw display
\( T_{13}^{4} - 134T_{13}^{3} + 1732T_{13}^{2} + 324160T_{13} - 9904192 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4 T^{3} + \cdots + 66 \) Copy content Toggle raw display
$3$ \( T^{4} - 12 T^{3} + \cdots - 60 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T - 7)^{4} \) Copy content Toggle raw display
$11$ \( (T - 11)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 134 T^{3} + \cdots - 9904192 \) Copy content Toggle raw display
$17$ \( T^{4} - 74 T^{3} + \cdots - 4708304 \) Copy content Toggle raw display
$19$ \( T^{4} + 164 T^{3} + \cdots - 85552320 \) Copy content Toggle raw display
$23$ \( T^{4} + 194 T^{3} + \cdots - 39720496 \) Copy content Toggle raw display
$29$ \( T^{4} + 108 T^{3} + \cdots - 365881040 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 5207968724 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 1094639996 \) Copy content Toggle raw display
$41$ \( T^{4} + 18 T^{3} + \cdots - 410971280 \) Copy content Toggle raw display
$43$ \( T^{4} - 496 T^{3} + \cdots - 998066176 \) Copy content Toggle raw display
$47$ \( T^{4} + 62 T^{3} + \cdots + 463480064 \) Copy content Toggle raw display
$53$ \( T^{4} - 828 T^{3} + \cdots - 394495824 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 1674727140 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 3730099088 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 57482107536 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 109860635344 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 34532794928 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 48577598400 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 42421669632 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 926653158300 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 78194289572 \) Copy content Toggle raw display
show more
show less