Properties

Label 1925.4.a.p.1.4
Level $1925$
Weight $4$
Character 1925.1
Self dual yes
Analytic conductor $113.579$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1925,4,Mod(1,1925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1925.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.578676761\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.20317\) of defining polynomial
Character \(\chi\) \(=\) 1925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.89098 q^{2} -6.57251 q^{3} +15.9217 q^{4} -32.1460 q^{6} +7.00000 q^{7} +38.7449 q^{8} +16.1978 q^{9} -11.0000 q^{11} -104.646 q^{12} -74.3459 q^{13} +34.2369 q^{14} +62.1271 q^{16} +94.0836 q^{17} +79.2234 q^{18} +135.682 q^{19} -46.0075 q^{21} -53.8008 q^{22} -81.1793 q^{23} -254.651 q^{24} -363.625 q^{26} +70.9972 q^{27} +111.452 q^{28} -53.4259 q^{29} -9.50536 q^{31} -6.09673 q^{32} +72.2976 q^{33} +460.161 q^{34} +257.897 q^{36} +9.14224 q^{37} +663.620 q^{38} +488.639 q^{39} -339.461 q^{41} -225.022 q^{42} -433.078 q^{43} -175.139 q^{44} -397.046 q^{46} +54.4784 q^{47} -408.331 q^{48} +49.0000 q^{49} -618.365 q^{51} -1183.71 q^{52} -123.830 q^{53} +347.246 q^{54} +271.215 q^{56} -891.773 q^{57} -261.305 q^{58} -534.396 q^{59} -358.624 q^{61} -46.4905 q^{62} +113.385 q^{63} -526.836 q^{64} +353.606 q^{66} +694.318 q^{67} +1497.97 q^{68} +533.551 q^{69} -278.330 q^{71} +627.585 q^{72} +886.688 q^{73} +44.7145 q^{74} +2160.29 q^{76} -77.0000 q^{77} +2389.93 q^{78} -185.631 q^{79} -903.972 q^{81} -1660.30 q^{82} +122.624 q^{83} -732.519 q^{84} -2118.18 q^{86} +351.142 q^{87} -426.194 q^{88} -847.086 q^{89} -520.422 q^{91} -1292.51 q^{92} +62.4740 q^{93} +266.453 q^{94} +40.0708 q^{96} -1002.49 q^{97} +239.658 q^{98} -178.176 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 14 q^{3} + 26 q^{4} + 14 q^{6} + 28 q^{7} + 18 q^{8} + 76 q^{9} - 44 q^{11} - 70 q^{12} - 58 q^{13} + 14 q^{14} + 2 q^{16} - 4 q^{17} + 62 q^{18} + 258 q^{19} - 98 q^{21} - 22 q^{22} - 8 q^{23}+ \cdots - 836 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.89098 1.72922 0.864612 0.502441i \(-0.167564\pi\)
0.864612 + 0.502441i \(0.167564\pi\)
\(3\) −6.57251 −1.26488 −0.632440 0.774610i \(-0.717946\pi\)
−0.632440 + 0.774610i \(0.717946\pi\)
\(4\) 15.9217 1.99021
\(5\) 0 0
\(6\) −32.1460 −2.18726
\(7\) 7.00000 0.377964
\(8\) 38.7449 1.71230
\(9\) 16.1978 0.599920
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) −104.646 −2.51738
\(13\) −74.3459 −1.58614 −0.793071 0.609129i \(-0.791519\pi\)
−0.793071 + 0.609129i \(0.791519\pi\)
\(14\) 34.2369 0.653585
\(15\) 0 0
\(16\) 62.1271 0.970737
\(17\) 94.0836 1.34227 0.671136 0.741334i \(-0.265807\pi\)
0.671136 + 0.741334i \(0.265807\pi\)
\(18\) 79.2234 1.03740
\(19\) 135.682 1.63830 0.819149 0.573581i \(-0.194446\pi\)
0.819149 + 0.573581i \(0.194446\pi\)
\(20\) 0 0
\(21\) −46.0075 −0.478080
\(22\) −53.8008 −0.521380
\(23\) −81.1793 −0.735959 −0.367979 0.929834i \(-0.619950\pi\)
−0.367979 + 0.929834i \(0.619950\pi\)
\(24\) −254.651 −2.16585
\(25\) 0 0
\(26\) −363.625 −2.74279
\(27\) 70.9972 0.506053
\(28\) 111.452 0.752230
\(29\) −53.4259 −0.342102 −0.171051 0.985262i \(-0.554716\pi\)
−0.171051 + 0.985262i \(0.554716\pi\)
\(30\) 0 0
\(31\) −9.50536 −0.0550714 −0.0275357 0.999621i \(-0.508766\pi\)
−0.0275357 + 0.999621i \(0.508766\pi\)
\(32\) −6.09673 −0.0336800
\(33\) 72.2976 0.381376
\(34\) 460.161 2.32109
\(35\) 0 0
\(36\) 257.897 1.19397
\(37\) 9.14224 0.0406209 0.0203105 0.999794i \(-0.493535\pi\)
0.0203105 + 0.999794i \(0.493535\pi\)
\(38\) 663.620 2.83298
\(39\) 488.639 2.00628
\(40\) 0 0
\(41\) −339.461 −1.29305 −0.646523 0.762894i \(-0.723778\pi\)
−0.646523 + 0.762894i \(0.723778\pi\)
\(42\) −225.022 −0.826706
\(43\) −433.078 −1.53590 −0.767950 0.640509i \(-0.778723\pi\)
−0.767950 + 0.640509i \(0.778723\pi\)
\(44\) −175.139 −0.600072
\(45\) 0 0
\(46\) −397.046 −1.27264
\(47\) 54.4784 0.169074 0.0845371 0.996420i \(-0.473059\pi\)
0.0845371 + 0.996420i \(0.473059\pi\)
\(48\) −408.331 −1.22786
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −618.365 −1.69781
\(52\) −1183.71 −3.15676
\(53\) −123.830 −0.320932 −0.160466 0.987041i \(-0.551300\pi\)
−0.160466 + 0.987041i \(0.551300\pi\)
\(54\) 347.246 0.875078
\(55\) 0 0
\(56\) 271.215 0.647189
\(57\) −891.773 −2.07225
\(58\) −261.305 −0.591570
\(59\) −534.396 −1.17919 −0.589596 0.807698i \(-0.700713\pi\)
−0.589596 + 0.807698i \(0.700713\pi\)
\(60\) 0 0
\(61\) −358.624 −0.752740 −0.376370 0.926469i \(-0.622828\pi\)
−0.376370 + 0.926469i \(0.622828\pi\)
\(62\) −46.4905 −0.0952307
\(63\) 113.385 0.226749
\(64\) −526.836 −1.02898
\(65\) 0 0
\(66\) 353.606 0.659484
\(67\) 694.318 1.26604 0.633019 0.774137i \(-0.281816\pi\)
0.633019 + 0.774137i \(0.281816\pi\)
\(68\) 1497.97 2.67141
\(69\) 533.551 0.930899
\(70\) 0 0
\(71\) −278.330 −0.465236 −0.232618 0.972568i \(-0.574729\pi\)
−0.232618 + 0.972568i \(0.574729\pi\)
\(72\) 627.585 1.02724
\(73\) 886.688 1.42163 0.710815 0.703379i \(-0.248326\pi\)
0.710815 + 0.703379i \(0.248326\pi\)
\(74\) 44.7145 0.0702427
\(75\) 0 0
\(76\) 2160.29 3.26056
\(77\) −77.0000 −0.113961
\(78\) 2389.93 3.46931
\(79\) −185.631 −0.264369 −0.132184 0.991225i \(-0.542199\pi\)
−0.132184 + 0.991225i \(0.542199\pi\)
\(80\) 0 0
\(81\) −903.972 −1.24002
\(82\) −1660.30 −2.23597
\(83\) 122.624 0.162166 0.0810830 0.996707i \(-0.474162\pi\)
0.0810830 + 0.996707i \(0.474162\pi\)
\(84\) −732.519 −0.951480
\(85\) 0 0
\(86\) −2118.18 −2.65592
\(87\) 351.142 0.432717
\(88\) −426.194 −0.516278
\(89\) −847.086 −1.00889 −0.504443 0.863445i \(-0.668302\pi\)
−0.504443 + 0.863445i \(0.668302\pi\)
\(90\) 0 0
\(91\) −520.422 −0.599506
\(92\) −1292.51 −1.46471
\(93\) 62.4740 0.0696586
\(94\) 266.453 0.292367
\(95\) 0 0
\(96\) 40.0708 0.0426011
\(97\) −1002.49 −1.04935 −0.524676 0.851302i \(-0.675814\pi\)
−0.524676 + 0.851302i \(0.675814\pi\)
\(98\) 239.658 0.247032
\(99\) −178.176 −0.180883
\(100\) 0 0
\(101\) 1124.79 1.10812 0.554062 0.832476i \(-0.313077\pi\)
0.554062 + 0.832476i \(0.313077\pi\)
\(102\) −3024.41 −2.93590
\(103\) −966.118 −0.924218 −0.462109 0.886823i \(-0.652907\pi\)
−0.462109 + 0.886823i \(0.652907\pi\)
\(104\) −2880.53 −2.71595
\(105\) 0 0
\(106\) −605.652 −0.554963
\(107\) 144.202 0.130286 0.0651428 0.997876i \(-0.479250\pi\)
0.0651428 + 0.997876i \(0.479250\pi\)
\(108\) 1130.40 1.00715
\(109\) −1875.32 −1.64792 −0.823961 0.566647i \(-0.808240\pi\)
−0.823961 + 0.566647i \(0.808240\pi\)
\(110\) 0 0
\(111\) −60.0874 −0.0513806
\(112\) 434.890 0.366904
\(113\) −1207.46 −1.00521 −0.502603 0.864517i \(-0.667624\pi\)
−0.502603 + 0.864517i \(0.667624\pi\)
\(114\) −4361.64 −3.58338
\(115\) 0 0
\(116\) −850.632 −0.680855
\(117\) −1204.24 −0.951559
\(118\) −2613.72 −2.03909
\(119\) 658.585 0.507331
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1754.03 −1.30166
\(123\) 2231.11 1.63555
\(124\) −151.342 −0.109604
\(125\) 0 0
\(126\) 554.564 0.392099
\(127\) −1143.56 −0.799009 −0.399504 0.916731i \(-0.630818\pi\)
−0.399504 + 0.916731i \(0.630818\pi\)
\(128\) −2527.97 −1.74565
\(129\) 2846.41 1.94273
\(130\) 0 0
\(131\) 2478.40 1.65297 0.826484 0.562961i \(-0.190338\pi\)
0.826484 + 0.562961i \(0.190338\pi\)
\(132\) 1151.10 0.759019
\(133\) 949.776 0.619218
\(134\) 3395.90 2.18926
\(135\) 0 0
\(136\) 3645.26 2.29837
\(137\) 835.661 0.521134 0.260567 0.965456i \(-0.416091\pi\)
0.260567 + 0.965456i \(0.416091\pi\)
\(138\) 2609.59 1.60973
\(139\) −1726.99 −1.05382 −0.526912 0.849920i \(-0.676650\pi\)
−0.526912 + 0.849920i \(0.676650\pi\)
\(140\) 0 0
\(141\) −358.060 −0.213859
\(142\) −1361.31 −0.804497
\(143\) 817.805 0.478240
\(144\) 1006.33 0.582365
\(145\) 0 0
\(146\) 4336.78 2.45832
\(147\) −322.053 −0.180697
\(148\) 145.560 0.0808443
\(149\) −3454.95 −1.89960 −0.949799 0.312859i \(-0.898713\pi\)
−0.949799 + 0.312859i \(0.898713\pi\)
\(150\) 0 0
\(151\) −2468.17 −1.33018 −0.665089 0.746764i \(-0.731606\pi\)
−0.665089 + 0.746764i \(0.731606\pi\)
\(152\) 5257.00 2.80526
\(153\) 1523.95 0.805256
\(154\) −376.606 −0.197063
\(155\) 0 0
\(156\) 7779.97 3.99292
\(157\) 1561.27 0.793649 0.396824 0.917895i \(-0.370112\pi\)
0.396824 + 0.917895i \(0.370112\pi\)
\(158\) −907.919 −0.457153
\(159\) 813.875 0.405940
\(160\) 0 0
\(161\) −568.255 −0.278166
\(162\) −4421.31 −2.14426
\(163\) −3458.59 −1.66195 −0.830973 0.556312i \(-0.812216\pi\)
−0.830973 + 0.556312i \(0.812216\pi\)
\(164\) −5404.80 −2.57344
\(165\) 0 0
\(166\) 599.754 0.280421
\(167\) 972.527 0.450637 0.225319 0.974285i \(-0.427658\pi\)
0.225319 + 0.974285i \(0.427658\pi\)
\(168\) −1782.56 −0.818616
\(169\) 3330.32 1.51585
\(170\) 0 0
\(171\) 2197.76 0.982848
\(172\) −6895.34 −3.05677
\(173\) 1154.18 0.507230 0.253615 0.967305i \(-0.418380\pi\)
0.253615 + 0.967305i \(0.418380\pi\)
\(174\) 1717.43 0.748265
\(175\) 0 0
\(176\) −683.399 −0.292688
\(177\) 3512.32 1.49154
\(178\) −4143.08 −1.74459
\(179\) 259.234 0.108246 0.0541231 0.998534i \(-0.482764\pi\)
0.0541231 + 0.998534i \(0.482764\pi\)
\(180\) 0 0
\(181\) −2121.49 −0.871209 −0.435604 0.900138i \(-0.643465\pi\)
−0.435604 + 0.900138i \(0.643465\pi\)
\(182\) −2545.37 −1.03668
\(183\) 2357.06 0.952126
\(184\) −3145.29 −1.26018
\(185\) 0 0
\(186\) 305.559 0.120455
\(187\) −1034.92 −0.404710
\(188\) 867.389 0.336494
\(189\) 496.981 0.191270
\(190\) 0 0
\(191\) 2918.27 1.10554 0.552772 0.833332i \(-0.313570\pi\)
0.552772 + 0.833332i \(0.313570\pi\)
\(192\) 3462.63 1.30153
\(193\) −3757.48 −1.40139 −0.700697 0.713459i \(-0.747128\pi\)
−0.700697 + 0.713459i \(0.747128\pi\)
\(194\) −4903.15 −1.81456
\(195\) 0 0
\(196\) 780.164 0.284316
\(197\) −1608.39 −0.581689 −0.290845 0.956770i \(-0.593936\pi\)
−0.290845 + 0.956770i \(0.593936\pi\)
\(198\) −871.457 −0.312787
\(199\) 2865.53 1.02076 0.510382 0.859948i \(-0.329504\pi\)
0.510382 + 0.859948i \(0.329504\pi\)
\(200\) 0 0
\(201\) −4563.41 −1.60138
\(202\) 5501.31 1.91619
\(203\) −373.981 −0.129302
\(204\) −9845.43 −3.37901
\(205\) 0 0
\(206\) −4725.27 −1.59818
\(207\) −1314.93 −0.441517
\(208\) −4618.90 −1.53973
\(209\) −1492.50 −0.493965
\(210\) 0 0
\(211\) 821.996 0.268192 0.134096 0.990968i \(-0.457187\pi\)
0.134096 + 0.990968i \(0.457187\pi\)
\(212\) −1971.59 −0.638723
\(213\) 1829.33 0.588467
\(214\) 705.290 0.225293
\(215\) 0 0
\(216\) 2750.78 0.866514
\(217\) −66.5375 −0.0208150
\(218\) −9172.18 −2.84963
\(219\) −5827.76 −1.79819
\(220\) 0 0
\(221\) −6994.73 −2.12903
\(222\) −293.887 −0.0888485
\(223\) −109.532 −0.0328916 −0.0164458 0.999865i \(-0.505235\pi\)
−0.0164458 + 0.999865i \(0.505235\pi\)
\(224\) −42.6771 −0.0127298
\(225\) 0 0
\(226\) −5905.67 −1.73823
\(227\) −3023.03 −0.883900 −0.441950 0.897040i \(-0.645713\pi\)
−0.441950 + 0.897040i \(0.645713\pi\)
\(228\) −14198.5 −4.12422
\(229\) −2278.75 −0.657571 −0.328786 0.944405i \(-0.606639\pi\)
−0.328786 + 0.944405i \(0.606639\pi\)
\(230\) 0 0
\(231\) 506.083 0.144146
\(232\) −2069.98 −0.585781
\(233\) 1864.08 0.524121 0.262061 0.965051i \(-0.415598\pi\)
0.262061 + 0.965051i \(0.415598\pi\)
\(234\) −5889.94 −1.64546
\(235\) 0 0
\(236\) −8508.49 −2.34685
\(237\) 1220.06 0.334395
\(238\) 3221.13 0.877289
\(239\) 1404.69 0.380174 0.190087 0.981767i \(-0.439123\pi\)
0.190087 + 0.981767i \(0.439123\pi\)
\(240\) 0 0
\(241\) 3879.32 1.03688 0.518442 0.855113i \(-0.326512\pi\)
0.518442 + 0.855113i \(0.326512\pi\)
\(242\) 591.809 0.157202
\(243\) 4024.43 1.06242
\(244\) −5709.91 −1.49811
\(245\) 0 0
\(246\) 10912.3 2.82823
\(247\) −10087.4 −2.59857
\(248\) −368.284 −0.0942987
\(249\) −805.950 −0.205121
\(250\) 0 0
\(251\) −2143.54 −0.539040 −0.269520 0.962995i \(-0.586865\pi\)
−0.269520 + 0.962995i \(0.586865\pi\)
\(252\) 1805.28 0.451278
\(253\) 892.972 0.221900
\(254\) −5593.11 −1.38166
\(255\) 0 0
\(256\) −8149.58 −1.98964
\(257\) −7288.62 −1.76907 −0.884537 0.466471i \(-0.845525\pi\)
−0.884537 + 0.466471i \(0.845525\pi\)
\(258\) 13921.7 3.35941
\(259\) 63.9957 0.0153533
\(260\) 0 0
\(261\) −865.385 −0.205234
\(262\) 12121.8 2.85835
\(263\) −2670.52 −0.626127 −0.313064 0.949732i \(-0.601355\pi\)
−0.313064 + 0.949732i \(0.601355\pi\)
\(264\) 2801.17 0.653030
\(265\) 0 0
\(266\) 4645.34 1.07077
\(267\) 5567.48 1.27612
\(268\) 11054.7 2.51968
\(269\) 1073.80 0.243387 0.121693 0.992568i \(-0.461168\pi\)
0.121693 + 0.992568i \(0.461168\pi\)
\(270\) 0 0
\(271\) 3624.88 0.812530 0.406265 0.913755i \(-0.366831\pi\)
0.406265 + 0.913755i \(0.366831\pi\)
\(272\) 5845.14 1.30299
\(273\) 3420.47 0.758302
\(274\) 4087.20 0.901157
\(275\) 0 0
\(276\) 8495.05 1.85269
\(277\) 4905.35 1.06402 0.532010 0.846738i \(-0.321437\pi\)
0.532010 + 0.846738i \(0.321437\pi\)
\(278\) −8446.68 −1.82230
\(279\) −153.966 −0.0330384
\(280\) 0 0
\(281\) −2661.90 −0.565109 −0.282555 0.959251i \(-0.591182\pi\)
−0.282555 + 0.959251i \(0.591182\pi\)
\(282\) −1751.26 −0.369809
\(283\) 4367.36 0.917359 0.458680 0.888602i \(-0.348323\pi\)
0.458680 + 0.888602i \(0.348323\pi\)
\(284\) −4431.50 −0.925919
\(285\) 0 0
\(286\) 3999.87 0.826984
\(287\) −2376.23 −0.488726
\(288\) −98.7539 −0.0202053
\(289\) 3938.72 0.801693
\(290\) 0 0
\(291\) 6588.86 1.32730
\(292\) 14117.6 2.82935
\(293\) −1992.30 −0.397240 −0.198620 0.980077i \(-0.563646\pi\)
−0.198620 + 0.980077i \(0.563646\pi\)
\(294\) −1575.15 −0.312466
\(295\) 0 0
\(296\) 354.215 0.0695553
\(297\) −780.969 −0.152581
\(298\) −16898.1 −3.28483
\(299\) 6035.35 1.16734
\(300\) 0 0
\(301\) −3031.54 −0.580516
\(302\) −12071.8 −2.30018
\(303\) −7392.67 −1.40164
\(304\) 8429.55 1.59036
\(305\) 0 0
\(306\) 7453.62 1.39247
\(307\) −7633.53 −1.41912 −0.709558 0.704647i \(-0.751105\pi\)
−0.709558 + 0.704647i \(0.751105\pi\)
\(308\) −1225.97 −0.226806
\(309\) 6349.82 1.16902
\(310\) 0 0
\(311\) 1453.52 0.265020 0.132510 0.991182i \(-0.457696\pi\)
0.132510 + 0.991182i \(0.457696\pi\)
\(312\) 18932.3 3.43535
\(313\) −1936.27 −0.349663 −0.174831 0.984598i \(-0.555938\pi\)
−0.174831 + 0.984598i \(0.555938\pi\)
\(314\) 7636.14 1.37240
\(315\) 0 0
\(316\) −2955.56 −0.526150
\(317\) 1534.36 0.271856 0.135928 0.990719i \(-0.456598\pi\)
0.135928 + 0.990719i \(0.456598\pi\)
\(318\) 3980.65 0.701961
\(319\) 587.685 0.103148
\(320\) 0 0
\(321\) −947.770 −0.164795
\(322\) −2779.32 −0.481012
\(323\) 12765.5 2.19904
\(324\) −14392.8 −2.46790
\(325\) 0 0
\(326\) −16915.9 −2.87388
\(327\) 12325.6 2.08442
\(328\) −13152.4 −2.21408
\(329\) 381.349 0.0639041
\(330\) 0 0
\(331\) 3807.42 0.632251 0.316125 0.948717i \(-0.397618\pi\)
0.316125 + 0.948717i \(0.397618\pi\)
\(332\) 1952.39 0.322745
\(333\) 148.085 0.0243693
\(334\) 4756.61 0.779252
\(335\) 0 0
\(336\) −2858.32 −0.464089
\(337\) 4724.09 0.763614 0.381807 0.924242i \(-0.375302\pi\)
0.381807 + 0.924242i \(0.375302\pi\)
\(338\) 16288.5 2.62124
\(339\) 7936.05 1.27147
\(340\) 0 0
\(341\) 104.559 0.0166046
\(342\) 10749.2 1.69956
\(343\) 343.000 0.0539949
\(344\) −16779.6 −2.62992
\(345\) 0 0
\(346\) 5645.08 0.877113
\(347\) −6122.41 −0.947171 −0.473586 0.880748i \(-0.657041\pi\)
−0.473586 + 0.880748i \(0.657041\pi\)
\(348\) 5590.79 0.861200
\(349\) 6778.93 1.03974 0.519868 0.854247i \(-0.325981\pi\)
0.519868 + 0.854247i \(0.325981\pi\)
\(350\) 0 0
\(351\) −5278.35 −0.802672
\(352\) 67.0640 0.0101549
\(353\) 3486.98 0.525760 0.262880 0.964829i \(-0.415328\pi\)
0.262880 + 0.964829i \(0.415328\pi\)
\(354\) 17178.7 2.57920
\(355\) 0 0
\(356\) −13487.1 −2.00790
\(357\) −4328.55 −0.641713
\(358\) 1267.91 0.187182
\(359\) 3230.16 0.474878 0.237439 0.971402i \(-0.423692\pi\)
0.237439 + 0.971402i \(0.423692\pi\)
\(360\) 0 0
\(361\) 11550.7 1.68402
\(362\) −10376.2 −1.50651
\(363\) −795.273 −0.114989
\(364\) −8286.00 −1.19314
\(365\) 0 0
\(366\) 11528.3 1.64644
\(367\) 8190.16 1.16491 0.582456 0.812862i \(-0.302092\pi\)
0.582456 + 0.812862i \(0.302092\pi\)
\(368\) −5043.44 −0.714422
\(369\) −5498.54 −0.775725
\(370\) 0 0
\(371\) −866.812 −0.121301
\(372\) 994.693 0.138636
\(373\) −5008.53 −0.695260 −0.347630 0.937632i \(-0.613013\pi\)
−0.347630 + 0.937632i \(0.613013\pi\)
\(374\) −5061.77 −0.699834
\(375\) 0 0
\(376\) 2110.76 0.289506
\(377\) 3972.00 0.542622
\(378\) 2430.72 0.330748
\(379\) 1522.26 0.206314 0.103157 0.994665i \(-0.467106\pi\)
0.103157 + 0.994665i \(0.467106\pi\)
\(380\) 0 0
\(381\) 7516.02 1.01065
\(382\) 14273.2 1.91173
\(383\) −8520.08 −1.13670 −0.568349 0.822787i \(-0.692418\pi\)
−0.568349 + 0.822787i \(0.692418\pi\)
\(384\) 16615.1 2.20804
\(385\) 0 0
\(386\) −18377.8 −2.42332
\(387\) −7014.93 −0.921418
\(388\) −15961.3 −2.08844
\(389\) 1588.83 0.207088 0.103544 0.994625i \(-0.466982\pi\)
0.103544 + 0.994625i \(0.466982\pi\)
\(390\) 0 0
\(391\) −7637.64 −0.987856
\(392\) 1898.50 0.244614
\(393\) −16289.3 −2.09080
\(394\) −7866.59 −1.00587
\(395\) 0 0
\(396\) −2836.87 −0.359995
\(397\) 1483.46 0.187539 0.0937694 0.995594i \(-0.470108\pi\)
0.0937694 + 0.995594i \(0.470108\pi\)
\(398\) 14015.3 1.76513
\(399\) −6242.41 −0.783236
\(400\) 0 0
\(401\) 10189.5 1.26892 0.634460 0.772956i \(-0.281222\pi\)
0.634460 + 0.772956i \(0.281222\pi\)
\(402\) −22319.6 −2.76915
\(403\) 706.685 0.0873510
\(404\) 17908.5 2.20540
\(405\) 0 0
\(406\) −1829.14 −0.223592
\(407\) −100.565 −0.0122477
\(408\) −23958.5 −2.90716
\(409\) 3465.96 0.419024 0.209512 0.977806i \(-0.432812\pi\)
0.209512 + 0.977806i \(0.432812\pi\)
\(410\) 0 0
\(411\) −5492.39 −0.659171
\(412\) −15382.2 −1.83939
\(413\) −3740.77 −0.445693
\(414\) −6431.30 −0.763481
\(415\) 0 0
\(416\) 453.267 0.0534213
\(417\) 11350.7 1.33296
\(418\) −7299.81 −0.854176
\(419\) 2754.83 0.321199 0.160599 0.987020i \(-0.448657\pi\)
0.160599 + 0.987020i \(0.448657\pi\)
\(420\) 0 0
\(421\) −3140.19 −0.363524 −0.181762 0.983343i \(-0.558180\pi\)
−0.181762 + 0.983343i \(0.558180\pi\)
\(422\) 4020.37 0.463764
\(423\) 882.433 0.101431
\(424\) −4797.80 −0.549532
\(425\) 0 0
\(426\) 8947.21 1.01759
\(427\) −2510.37 −0.284509
\(428\) 2295.94 0.259296
\(429\) −5375.03 −0.604916
\(430\) 0 0
\(431\) −4476.22 −0.500260 −0.250130 0.968212i \(-0.580473\pi\)
−0.250130 + 0.968212i \(0.580473\pi\)
\(432\) 4410.85 0.491244
\(433\) −1646.00 −0.182683 −0.0913416 0.995820i \(-0.529116\pi\)
−0.0913416 + 0.995820i \(0.529116\pi\)
\(434\) −325.434 −0.0359938
\(435\) 0 0
\(436\) −29858.4 −3.27972
\(437\) −11014.6 −1.20572
\(438\) −28503.5 −3.10947
\(439\) −7241.05 −0.787236 −0.393618 0.919274i \(-0.628777\pi\)
−0.393618 + 0.919274i \(0.628777\pi\)
\(440\) 0 0
\(441\) 793.695 0.0857029
\(442\) −34211.1 −3.68158
\(443\) −5887.27 −0.631405 −0.315703 0.948858i \(-0.602240\pi\)
−0.315703 + 0.948858i \(0.602240\pi\)
\(444\) −956.695 −0.102258
\(445\) 0 0
\(446\) −535.721 −0.0568770
\(447\) 22707.7 2.40276
\(448\) −3687.85 −0.388917
\(449\) 6378.42 0.670415 0.335207 0.942144i \(-0.391194\pi\)
0.335207 + 0.942144i \(0.391194\pi\)
\(450\) 0 0
\(451\) 3734.07 0.389868
\(452\) −19224.8 −2.00058
\(453\) 16222.1 1.68252
\(454\) −14785.6 −1.52846
\(455\) 0 0
\(456\) −34551.7 −3.54831
\(457\) 18368.0 1.88013 0.940064 0.340998i \(-0.110765\pi\)
0.940064 + 0.340998i \(0.110765\pi\)
\(458\) −11145.3 −1.13709
\(459\) 6679.67 0.679260
\(460\) 0 0
\(461\) 17510.6 1.76909 0.884546 0.466453i \(-0.154468\pi\)
0.884546 + 0.466453i \(0.154468\pi\)
\(462\) 2475.24 0.249261
\(463\) 12732.5 1.27803 0.639016 0.769193i \(-0.279342\pi\)
0.639016 + 0.769193i \(0.279342\pi\)
\(464\) −3319.20 −0.332091
\(465\) 0 0
\(466\) 9117.20 0.906323
\(467\) 4997.23 0.495170 0.247585 0.968866i \(-0.420363\pi\)
0.247585 + 0.968866i \(0.420363\pi\)
\(468\) −19173.6 −1.89381
\(469\) 4860.23 0.478517
\(470\) 0 0
\(471\) −10261.5 −1.00387
\(472\) −20705.1 −2.01913
\(473\) 4763.85 0.463091
\(474\) 5967.30 0.578243
\(475\) 0 0
\(476\) 10485.8 1.00970
\(477\) −2005.78 −0.192534
\(478\) 6870.30 0.657406
\(479\) −9075.53 −0.865703 −0.432851 0.901465i \(-0.642493\pi\)
−0.432851 + 0.901465i \(0.642493\pi\)
\(480\) 0 0
\(481\) −679.688 −0.0644306
\(482\) 18973.7 1.79300
\(483\) 3734.86 0.351847
\(484\) 1926.53 0.180929
\(485\) 0 0
\(486\) 19683.4 1.83716
\(487\) 3867.63 0.359875 0.179937 0.983678i \(-0.442410\pi\)
0.179937 + 0.983678i \(0.442410\pi\)
\(488\) −13894.9 −1.28892
\(489\) 22731.6 2.10216
\(490\) 0 0
\(491\) 7334.24 0.674113 0.337057 0.941484i \(-0.390569\pi\)
0.337057 + 0.941484i \(0.390569\pi\)
\(492\) 35523.1 3.25509
\(493\) −5026.50 −0.459193
\(494\) −49337.4 −4.49351
\(495\) 0 0
\(496\) −590.541 −0.0534598
\(497\) −1948.31 −0.175843
\(498\) −3941.89 −0.354699
\(499\) −4365.93 −0.391675 −0.195838 0.980636i \(-0.562743\pi\)
−0.195838 + 0.980636i \(0.562743\pi\)
\(500\) 0 0
\(501\) −6391.94 −0.570002
\(502\) −10484.0 −0.932120
\(503\) 16352.6 1.44956 0.724779 0.688981i \(-0.241942\pi\)
0.724779 + 0.688981i \(0.241942\pi\)
\(504\) 4393.09 0.388262
\(505\) 0 0
\(506\) 4367.51 0.383714
\(507\) −21888.5 −1.91737
\(508\) −18207.4 −1.59020
\(509\) −12108.2 −1.05440 −0.527199 0.849742i \(-0.676758\pi\)
−0.527199 + 0.849742i \(0.676758\pi\)
\(510\) 0 0
\(511\) 6206.82 0.537326
\(512\) −19635.7 −1.69489
\(513\) 9633.06 0.829065
\(514\) −35648.5 −3.05912
\(515\) 0 0
\(516\) 45319.7 3.86645
\(517\) −599.262 −0.0509778
\(518\) 313.002 0.0265492
\(519\) −7585.86 −0.641584
\(520\) 0 0
\(521\) −5625.67 −0.473062 −0.236531 0.971624i \(-0.576010\pi\)
−0.236531 + 0.971624i \(0.576010\pi\)
\(522\) −4232.58 −0.354895
\(523\) 3280.32 0.274261 0.137130 0.990553i \(-0.456212\pi\)
0.137130 + 0.990553i \(0.456212\pi\)
\(524\) 39460.3 3.28976
\(525\) 0 0
\(526\) −13061.5 −1.08271
\(527\) −894.298 −0.0739207
\(528\) 4491.64 0.370215
\(529\) −5576.93 −0.458365
\(530\) 0 0
\(531\) −8656.06 −0.707422
\(532\) 15122.1 1.23238
\(533\) 25237.6 2.05096
\(534\) 27230.4 2.20670
\(535\) 0 0
\(536\) 26901.3 2.16784
\(537\) −1703.82 −0.136918
\(538\) 5251.96 0.420870
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −7772.10 −0.617650 −0.308825 0.951119i \(-0.599936\pi\)
−0.308825 + 0.951119i \(0.599936\pi\)
\(542\) 17729.2 1.40505
\(543\) 13943.5 1.10197
\(544\) −573.602 −0.0452077
\(545\) 0 0
\(546\) 16729.5 1.31127
\(547\) −10022.2 −0.783398 −0.391699 0.920094i \(-0.628112\pi\)
−0.391699 + 0.920094i \(0.628112\pi\)
\(548\) 13305.1 1.03717
\(549\) −5808.94 −0.451584
\(550\) 0 0
\(551\) −7248.95 −0.560464
\(552\) 20672.4 1.59398
\(553\) −1299.42 −0.0999220
\(554\) 23992.0 1.83993
\(555\) 0 0
\(556\) −27496.7 −2.09733
\(557\) 10849.3 0.825310 0.412655 0.910887i \(-0.364601\pi\)
0.412655 + 0.910887i \(0.364601\pi\)
\(558\) −753.047 −0.0571308
\(559\) 32197.6 2.43616
\(560\) 0 0
\(561\) 6802.01 0.511910
\(562\) −13019.3 −0.977200
\(563\) −22019.9 −1.64836 −0.824180 0.566328i \(-0.808363\pi\)
−0.824180 + 0.566328i \(0.808363\pi\)
\(564\) −5700.92 −0.425624
\(565\) 0 0
\(566\) 21360.7 1.58632
\(567\) −6327.80 −0.468682
\(568\) −10783.9 −0.796624
\(569\) 13742.9 1.01253 0.506267 0.862377i \(-0.331025\pi\)
0.506267 + 0.862377i \(0.331025\pi\)
\(570\) 0 0
\(571\) 19382.4 1.42054 0.710269 0.703931i \(-0.248573\pi\)
0.710269 + 0.703931i \(0.248573\pi\)
\(572\) 13020.9 0.951800
\(573\) −19180.4 −1.39838
\(574\) −11622.1 −0.845116
\(575\) 0 0
\(576\) −8533.61 −0.617304
\(577\) 565.348 0.0407899 0.0203949 0.999792i \(-0.493508\pi\)
0.0203949 + 0.999792i \(0.493508\pi\)
\(578\) 19264.2 1.38631
\(579\) 24696.0 1.77260
\(580\) 0 0
\(581\) 858.371 0.0612930
\(582\) 32226.0 2.29521
\(583\) 1362.13 0.0967646
\(584\) 34354.7 2.43426
\(585\) 0 0
\(586\) −9744.30 −0.686917
\(587\) 20727.4 1.45743 0.728714 0.684818i \(-0.240118\pi\)
0.728714 + 0.684818i \(0.240118\pi\)
\(588\) −5127.63 −0.359626
\(589\) −1289.71 −0.0902233
\(590\) 0 0
\(591\) 10571.1 0.735767
\(592\) 567.981 0.0394322
\(593\) 2787.10 0.193006 0.0965030 0.995333i \(-0.469234\pi\)
0.0965030 + 0.995333i \(0.469234\pi\)
\(594\) −3819.71 −0.263846
\(595\) 0 0
\(596\) −55008.7 −3.78061
\(597\) −18833.7 −1.29114
\(598\) 29518.8 2.01858
\(599\) 18935.5 1.29162 0.645812 0.763497i \(-0.276519\pi\)
0.645812 + 0.763497i \(0.276519\pi\)
\(600\) 0 0
\(601\) 15821.3 1.07382 0.536908 0.843641i \(-0.319592\pi\)
0.536908 + 0.843641i \(0.319592\pi\)
\(602\) −14827.2 −1.00384
\(603\) 11246.5 0.759521
\(604\) −39297.5 −2.64734
\(605\) 0 0
\(606\) −36157.4 −2.42375
\(607\) 2084.63 0.139394 0.0696972 0.997568i \(-0.477797\pi\)
0.0696972 + 0.997568i \(0.477797\pi\)
\(608\) −827.218 −0.0551778
\(609\) 2458.00 0.163552
\(610\) 0 0
\(611\) −4050.25 −0.268176
\(612\) 24263.9 1.60263
\(613\) 4395.15 0.289590 0.144795 0.989462i \(-0.453748\pi\)
0.144795 + 0.989462i \(0.453748\pi\)
\(614\) −37335.5 −2.45397
\(615\) 0 0
\(616\) −2983.36 −0.195135
\(617\) 98.5856 0.00643259 0.00321629 0.999995i \(-0.498976\pi\)
0.00321629 + 0.999995i \(0.498976\pi\)
\(618\) 31056.8 2.02150
\(619\) −16533.9 −1.07359 −0.536796 0.843712i \(-0.680366\pi\)
−0.536796 + 0.843712i \(0.680366\pi\)
\(620\) 0 0
\(621\) −5763.50 −0.372434
\(622\) 7109.12 0.458280
\(623\) −5929.60 −0.381323
\(624\) 30357.8 1.94757
\(625\) 0 0
\(626\) −9470.27 −0.604645
\(627\) 9809.50 0.624806
\(628\) 24858.1 1.57953
\(629\) 860.135 0.0545243
\(630\) 0 0
\(631\) 22032.9 1.39004 0.695022 0.718989i \(-0.255395\pi\)
0.695022 + 0.718989i \(0.255395\pi\)
\(632\) −7192.27 −0.452679
\(633\) −5402.57 −0.339231
\(634\) 7504.54 0.470100
\(635\) 0 0
\(636\) 12958.3 0.807908
\(637\) −3642.95 −0.226592
\(638\) 2874.36 0.178365
\(639\) −4508.35 −0.279104
\(640\) 0 0
\(641\) 434.281 0.0267598 0.0133799 0.999910i \(-0.495741\pi\)
0.0133799 + 0.999910i \(0.495741\pi\)
\(642\) −4635.52 −0.284968
\(643\) −10963.1 −0.672381 −0.336190 0.941794i \(-0.609139\pi\)
−0.336190 + 0.941794i \(0.609139\pi\)
\(644\) −9047.59 −0.553610
\(645\) 0 0
\(646\) 62435.7 3.80263
\(647\) 452.083 0.0274702 0.0137351 0.999906i \(-0.495628\pi\)
0.0137351 + 0.999906i \(0.495628\pi\)
\(648\) −35024.3 −2.12328
\(649\) 5878.35 0.355540
\(650\) 0 0
\(651\) 437.318 0.0263285
\(652\) −55066.6 −3.30763
\(653\) 10438.7 0.625572 0.312786 0.949824i \(-0.398738\pi\)
0.312786 + 0.949824i \(0.398738\pi\)
\(654\) 60284.2 3.60443
\(655\) 0 0
\(656\) −21089.8 −1.25521
\(657\) 14362.4 0.852865
\(658\) 1865.17 0.110504
\(659\) −8738.79 −0.516563 −0.258281 0.966070i \(-0.583156\pi\)
−0.258281 + 0.966070i \(0.583156\pi\)
\(660\) 0 0
\(661\) 12849.4 0.756102 0.378051 0.925785i \(-0.376594\pi\)
0.378051 + 0.925785i \(0.376594\pi\)
\(662\) 18622.0 1.09330
\(663\) 45972.9 2.69297
\(664\) 4751.08 0.277677
\(665\) 0 0
\(666\) 724.279 0.0421400
\(667\) 4337.08 0.251773
\(668\) 15484.3 0.896864
\(669\) 719.903 0.0416040
\(670\) 0 0
\(671\) 3944.87 0.226960
\(672\) 280.496 0.0161017
\(673\) 22926.5 1.31315 0.656577 0.754259i \(-0.272004\pi\)
0.656577 + 0.754259i \(0.272004\pi\)
\(674\) 23105.5 1.32046
\(675\) 0 0
\(676\) 53024.4 3.01686
\(677\) −13633.4 −0.773965 −0.386983 0.922087i \(-0.626483\pi\)
−0.386983 + 0.922087i \(0.626483\pi\)
\(678\) 38815.1 2.19865
\(679\) −7017.41 −0.396618
\(680\) 0 0
\(681\) 19868.9 1.11803
\(682\) 511.396 0.0287131
\(683\) −33307.5 −1.86600 −0.932998 0.359882i \(-0.882817\pi\)
−0.932998 + 0.359882i \(0.882817\pi\)
\(684\) 34992.1 1.95608
\(685\) 0 0
\(686\) 1677.61 0.0933693
\(687\) 14977.1 0.831748
\(688\) −26905.9 −1.49096
\(689\) 9206.28 0.509044
\(690\) 0 0
\(691\) −10077.3 −0.554786 −0.277393 0.960757i \(-0.589470\pi\)
−0.277393 + 0.960757i \(0.589470\pi\)
\(692\) 18376.5 1.00950
\(693\) −1247.23 −0.0683673
\(694\) −29944.6 −1.63787
\(695\) 0 0
\(696\) 13605.0 0.740942
\(697\) −31937.7 −1.73562
\(698\) 33155.6 1.79794
\(699\) −12251.7 −0.662950
\(700\) 0 0
\(701\) −4621.74 −0.249017 −0.124508 0.992219i \(-0.539735\pi\)
−0.124508 + 0.992219i \(0.539735\pi\)
\(702\) −25816.3 −1.38800
\(703\) 1240.44 0.0665492
\(704\) 5795.20 0.310248
\(705\) 0 0
\(706\) 17054.8 0.909157
\(707\) 7873.51 0.418831
\(708\) 55922.1 2.96848
\(709\) 17746.6 0.940038 0.470019 0.882656i \(-0.344247\pi\)
0.470019 + 0.882656i \(0.344247\pi\)
\(710\) 0 0
\(711\) −3006.82 −0.158600
\(712\) −32820.3 −1.72752
\(713\) 771.638 0.0405302
\(714\) −21170.9 −1.10966
\(715\) 0 0
\(716\) 4127.45 0.215433
\(717\) −9232.31 −0.480875
\(718\) 15798.6 0.821170
\(719\) −31652.1 −1.64176 −0.820879 0.571103i \(-0.806516\pi\)
−0.820879 + 0.571103i \(0.806516\pi\)
\(720\) 0 0
\(721\) −6762.83 −0.349322
\(722\) 56494.1 2.91204
\(723\) −25496.9 −1.31153
\(724\) −33777.7 −1.73389
\(725\) 0 0
\(726\) −3889.67 −0.198842
\(727\) −21610.8 −1.10248 −0.551239 0.834348i \(-0.685845\pi\)
−0.551239 + 0.834348i \(0.685845\pi\)
\(728\) −20163.7 −1.02653
\(729\) −2043.39 −0.103815
\(730\) 0 0
\(731\) −40745.5 −2.06160
\(732\) 37528.5 1.89493
\(733\) 7665.43 0.386261 0.193130 0.981173i \(-0.438136\pi\)
0.193130 + 0.981173i \(0.438136\pi\)
\(734\) 40057.9 2.01439
\(735\) 0 0
\(736\) 494.928 0.0247871
\(737\) −7637.50 −0.381725
\(738\) −26893.3 −1.34140
\(739\) −13841.5 −0.688996 −0.344498 0.938787i \(-0.611951\pi\)
−0.344498 + 0.938787i \(0.611951\pi\)
\(740\) 0 0
\(741\) 66299.7 3.28688
\(742\) −4239.56 −0.209756
\(743\) 12136.3 0.599243 0.299621 0.954058i \(-0.403140\pi\)
0.299621 + 0.954058i \(0.403140\pi\)
\(744\) 2420.55 0.119277
\(745\) 0 0
\(746\) −24496.6 −1.20226
\(747\) 1986.25 0.0972867
\(748\) −16477.7 −0.805460
\(749\) 1009.42 0.0492433
\(750\) 0 0
\(751\) 28866.7 1.40261 0.701305 0.712861i \(-0.252601\pi\)
0.701305 + 0.712861i \(0.252601\pi\)
\(752\) 3384.59 0.164127
\(753\) 14088.4 0.681820
\(754\) 19427.0 0.938314
\(755\) 0 0
\(756\) 7912.78 0.380668
\(757\) −8370.48 −0.401889 −0.200945 0.979603i \(-0.564401\pi\)
−0.200945 + 0.979603i \(0.564401\pi\)
\(758\) 7445.33 0.356763
\(759\) −5869.06 −0.280677
\(760\) 0 0
\(761\) 30458.1 1.45086 0.725430 0.688296i \(-0.241641\pi\)
0.725430 + 0.688296i \(0.241641\pi\)
\(762\) 36760.7 1.74764
\(763\) −13127.3 −0.622856
\(764\) 46463.9 2.20027
\(765\) 0 0
\(766\) −41671.5 −1.96561
\(767\) 39730.1 1.87037
\(768\) 53563.2 2.51666
\(769\) −32239.5 −1.51182 −0.755908 0.654678i \(-0.772804\pi\)
−0.755908 + 0.654678i \(0.772804\pi\)
\(770\) 0 0
\(771\) 47904.5 2.23766
\(772\) −59825.5 −2.78907
\(773\) 7524.47 0.350112 0.175056 0.984559i \(-0.443989\pi\)
0.175056 + 0.984559i \(0.443989\pi\)
\(774\) −34309.9 −1.59334
\(775\) 0 0
\(776\) −38841.3 −1.79681
\(777\) −420.612 −0.0194200
\(778\) 7770.96 0.358101
\(779\) −46058.8 −2.11839
\(780\) 0 0
\(781\) 3061.63 0.140274
\(782\) −37355.5 −1.70822
\(783\) −3793.09 −0.173121
\(784\) 3044.23 0.138677
\(785\) 0 0
\(786\) −79670.7 −3.61547
\(787\) −33196.6 −1.50360 −0.751798 0.659394i \(-0.770813\pi\)
−0.751798 + 0.659394i \(0.770813\pi\)
\(788\) −25608.3 −1.15769
\(789\) 17552.0 0.791976
\(790\) 0 0
\(791\) −8452.23 −0.379932
\(792\) −6903.43 −0.309726
\(793\) 26662.3 1.19395
\(794\) 7255.59 0.324296
\(795\) 0 0
\(796\) 45624.1 2.03154
\(797\) −8817.06 −0.391865 −0.195932 0.980617i \(-0.562773\pi\)
−0.195932 + 0.980617i \(0.562773\pi\)
\(798\) −30531.5 −1.35439
\(799\) 5125.52 0.226944
\(800\) 0 0
\(801\) −13721.0 −0.605252
\(802\) 49836.4 2.19425
\(803\) −9753.57 −0.428638
\(804\) −72657.3 −3.18710
\(805\) 0 0
\(806\) 3456.38 0.151049
\(807\) −7057.59 −0.307855
\(808\) 43579.8 1.89744
\(809\) −28930.3 −1.25727 −0.628637 0.777699i \(-0.716387\pi\)
−0.628637 + 0.777699i \(0.716387\pi\)
\(810\) 0 0
\(811\) −45923.3 −1.98839 −0.994195 0.107594i \(-0.965685\pi\)
−0.994195 + 0.107594i \(0.965685\pi\)
\(812\) −5954.42 −0.257339
\(813\) −23824.5 −1.02775
\(814\) −491.860 −0.0211790
\(815\) 0 0
\(816\) −38417.3 −1.64813
\(817\) −58761.0 −2.51626
\(818\) 16952.0 0.724586
\(819\) −8429.71 −0.359656
\(820\) 0 0
\(821\) 16382.8 0.696423 0.348211 0.937416i \(-0.386789\pi\)
0.348211 + 0.937416i \(0.386789\pi\)
\(822\) −26863.2 −1.13985
\(823\) 32395.3 1.37209 0.686045 0.727559i \(-0.259345\pi\)
0.686045 + 0.727559i \(0.259345\pi\)
\(824\) −37432.2 −1.58254
\(825\) 0 0
\(826\) −18296.0 −0.770703
\(827\) 14329.2 0.602508 0.301254 0.953544i \(-0.402595\pi\)
0.301254 + 0.953544i \(0.402595\pi\)
\(828\) −20935.9 −0.878712
\(829\) 16445.8 0.689005 0.344503 0.938785i \(-0.388048\pi\)
0.344503 + 0.938785i \(0.388048\pi\)
\(830\) 0 0
\(831\) −32240.4 −1.34586
\(832\) 39168.1 1.63210
\(833\) 4610.10 0.191753
\(834\) 55515.9 2.30499
\(835\) 0 0
\(836\) −23763.2 −0.983096
\(837\) −674.854 −0.0278690
\(838\) 13473.8 0.555424
\(839\) 40514.7 1.66713 0.833565 0.552422i \(-0.186296\pi\)
0.833565 + 0.552422i \(0.186296\pi\)
\(840\) 0 0
\(841\) −21534.7 −0.882967
\(842\) −15358.6 −0.628614
\(843\) 17495.4 0.714795
\(844\) 13087.6 0.533760
\(845\) 0 0
\(846\) 4315.96 0.175397
\(847\) 847.000 0.0343604
\(848\) −7693.22 −0.311540
\(849\) −28704.5 −1.16035
\(850\) 0 0
\(851\) −742.160 −0.0298953
\(852\) 29126.0 1.17118
\(853\) 27962.7 1.12242 0.561211 0.827673i \(-0.310336\pi\)
0.561211 + 0.827673i \(0.310336\pi\)
\(854\) −12278.2 −0.491980
\(855\) 0 0
\(856\) 5587.10 0.223088
\(857\) 4639.52 0.184928 0.0924639 0.995716i \(-0.470526\pi\)
0.0924639 + 0.995716i \(0.470526\pi\)
\(858\) −26289.2 −1.04603
\(859\) 18521.2 0.735663 0.367831 0.929892i \(-0.380100\pi\)
0.367831 + 0.929892i \(0.380100\pi\)
\(860\) 0 0
\(861\) 15617.8 0.618179
\(862\) −21893.1 −0.865061
\(863\) −40491.4 −1.59715 −0.798577 0.601893i \(-0.794413\pi\)
−0.798577 + 0.601893i \(0.794413\pi\)
\(864\) −432.851 −0.0170439
\(865\) 0 0
\(866\) −8050.57 −0.315900
\(867\) −25887.3 −1.01405
\(868\) −1059.39 −0.0414263
\(869\) 2041.94 0.0797102
\(870\) 0 0
\(871\) −51619.8 −2.00812
\(872\) −72659.3 −2.82174
\(873\) −16238.1 −0.629528
\(874\) −53872.1 −2.08496
\(875\) 0 0
\(876\) −92788.0 −3.57878
\(877\) 48530.3 1.86859 0.934295 0.356502i \(-0.116031\pi\)
0.934295 + 0.356502i \(0.116031\pi\)
\(878\) −35415.9 −1.36131
\(879\) 13094.4 0.502461
\(880\) 0 0
\(881\) −11590.0 −0.443219 −0.221609 0.975135i \(-0.571131\pi\)
−0.221609 + 0.975135i \(0.571131\pi\)
\(882\) 3881.95 0.148199
\(883\) −41900.7 −1.59691 −0.798455 0.602054i \(-0.794349\pi\)
−0.798455 + 0.602054i \(0.794349\pi\)
\(884\) −111368. −4.23723
\(885\) 0 0
\(886\) −28794.5 −1.09184
\(887\) 17136.8 0.648700 0.324350 0.945937i \(-0.394854\pi\)
0.324350 + 0.945937i \(0.394854\pi\)
\(888\) −2328.08 −0.0879790
\(889\) −8004.89 −0.301997
\(890\) 0 0
\(891\) 9943.69 0.373879
\(892\) −1743.94 −0.0654614
\(893\) 7391.75 0.276994
\(894\) 111063. 4.15492
\(895\) 0 0
\(896\) −17695.8 −0.659794
\(897\) −39667.4 −1.47654
\(898\) 31196.7 1.15930
\(899\) 507.832 0.0188400
\(900\) 0 0
\(901\) −11650.4 −0.430778
\(902\) 18263.3 0.674169
\(903\) 19924.8 0.734283
\(904\) −46783.0 −1.72122
\(905\) 0 0
\(906\) 79341.9 2.90944
\(907\) −40350.7 −1.47720 −0.738601 0.674143i \(-0.764513\pi\)
−0.738601 + 0.674143i \(0.764513\pi\)
\(908\) −48131.8 −1.75915
\(909\) 18219.1 0.664786
\(910\) 0 0
\(911\) −32322.7 −1.17552 −0.587760 0.809035i \(-0.699990\pi\)
−0.587760 + 0.809035i \(0.699990\pi\)
\(912\) −55403.3 −2.01161
\(913\) −1348.87 −0.0488949
\(914\) 89837.5 3.25116
\(915\) 0 0
\(916\) −36281.5 −1.30871
\(917\) 17348.8 0.624763
\(918\) 32670.2 1.17459
\(919\) 2431.28 0.0872694 0.0436347 0.999048i \(-0.486106\pi\)
0.0436347 + 0.999048i \(0.486106\pi\)
\(920\) 0 0
\(921\) 50171.4 1.79501
\(922\) 85644.2 3.05916
\(923\) 20692.7 0.737930
\(924\) 8057.71 0.286882
\(925\) 0 0
\(926\) 62274.4 2.21000
\(927\) −15649.0 −0.554457
\(928\) 325.724 0.0115220
\(929\) 40221.0 1.42046 0.710230 0.703970i \(-0.248591\pi\)
0.710230 + 0.703970i \(0.248591\pi\)
\(930\) 0 0
\(931\) 6648.43 0.234042
\(932\) 29679.4 1.04311
\(933\) −9553.25 −0.335219
\(934\) 24441.4 0.856260
\(935\) 0 0
\(936\) −46658.4 −1.62936
\(937\) −41503.4 −1.44702 −0.723510 0.690314i \(-0.757472\pi\)
−0.723510 + 0.690314i \(0.757472\pi\)
\(938\) 23771.3 0.827463
\(939\) 12726.2 0.442282
\(940\) 0 0
\(941\) −9032.78 −0.312923 −0.156461 0.987684i \(-0.550009\pi\)
−0.156461 + 0.987684i \(0.550009\pi\)
\(942\) −50188.6 −1.73592
\(943\) 27557.2 0.951629
\(944\) −33200.5 −1.14469
\(945\) 0 0
\(946\) 23299.9 0.800789
\(947\) −5565.96 −0.190992 −0.0954960 0.995430i \(-0.530444\pi\)
−0.0954960 + 0.995430i \(0.530444\pi\)
\(948\) 19425.5 0.665517
\(949\) −65921.7 −2.25491
\(950\) 0 0
\(951\) −10084.6 −0.343865
\(952\) 25516.8 0.868703
\(953\) −32657.4 −1.11005 −0.555024 0.831834i \(-0.687291\pi\)
−0.555024 + 0.831834i \(0.687291\pi\)
\(954\) −9810.25 −0.332934
\(955\) 0 0
\(956\) 22365.0 0.756628
\(957\) −3862.56 −0.130469
\(958\) −44388.3 −1.49699
\(959\) 5849.63 0.196970
\(960\) 0 0
\(961\) −29700.6 −0.996967
\(962\) −3324.34 −0.111415
\(963\) 2335.76 0.0781609
\(964\) 61765.4 2.06362
\(965\) 0 0
\(966\) 18267.1 0.608422
\(967\) 610.079 0.0202883 0.0101442 0.999949i \(-0.496771\pi\)
0.0101442 + 0.999949i \(0.496771\pi\)
\(968\) 4688.14 0.155664
\(969\) −83901.2 −2.78152
\(970\) 0 0
\(971\) −45371.4 −1.49952 −0.749762 0.661708i \(-0.769832\pi\)
−0.749762 + 0.661708i \(0.769832\pi\)
\(972\) 64075.9 2.11444
\(973\) −12088.9 −0.398308
\(974\) 18916.5 0.622304
\(975\) 0 0
\(976\) −22280.3 −0.730713
\(977\) −27229.0 −0.891639 −0.445820 0.895123i \(-0.647088\pi\)
−0.445820 + 0.895123i \(0.647088\pi\)
\(978\) 111180. 3.63511
\(979\) 9317.94 0.304191
\(980\) 0 0
\(981\) −30376.2 −0.988622
\(982\) 35871.6 1.16569
\(983\) −7458.49 −0.242003 −0.121002 0.992652i \(-0.538611\pi\)
−0.121002 + 0.992652i \(0.538611\pi\)
\(984\) 86444.2 2.80055
\(985\) 0 0
\(986\) −24584.5 −0.794048
\(987\) −2506.42 −0.0808310
\(988\) −160609. −5.17171
\(989\) 35156.9 1.13036
\(990\) 0 0
\(991\) −24357.8 −0.780778 −0.390389 0.920650i \(-0.627660\pi\)
−0.390389 + 0.920650i \(0.627660\pi\)
\(992\) 57.9516 0.00185480
\(993\) −25024.3 −0.799721
\(994\) −9529.17 −0.304071
\(995\) 0 0
\(996\) −12832.1 −0.408234
\(997\) −19954.3 −0.633862 −0.316931 0.948449i \(-0.602652\pi\)
−0.316931 + 0.948449i \(0.602652\pi\)
\(998\) −21353.7 −0.677294
\(999\) 649.074 0.0205563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.4.a.p.1.4 4
5.4 even 2 77.4.a.d.1.1 4
15.14 odd 2 693.4.a.l.1.4 4
20.19 odd 2 1232.4.a.s.1.2 4
35.34 odd 2 539.4.a.g.1.1 4
55.54 odd 2 847.4.a.d.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.1 4 5.4 even 2
539.4.a.g.1.1 4 35.34 odd 2
693.4.a.l.1.4 4 15.14 odd 2
847.4.a.d.1.4 4 55.54 odd 2
1232.4.a.s.1.2 4 20.19 odd 2
1925.4.a.p.1.4 4 1.1 even 1 trivial