Properties

Label 1925.4.a.p.1.2
Level $1925$
Weight $4$
Character 1925.1
Self dual yes
Analytic conductor $113.579$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1925,4,Mod(1,1925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1925.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.578676761\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.79597\) of defining polynomial
Character \(\chi\) \(=\) 1925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53253 q^{2} -10.1459 q^{3} -5.65135 q^{4} +15.5490 q^{6} +7.00000 q^{7} +20.9211 q^{8} +75.9402 q^{9} -11.0000 q^{11} +57.3382 q^{12} +76.3572 q^{13} -10.7277 q^{14} +13.1485 q^{16} -39.7278 q^{17} -116.381 q^{18} -27.9876 q^{19} -71.0216 q^{21} +16.8579 q^{22} -87.2055 q^{23} -212.265 q^{24} -117.020 q^{26} -496.545 q^{27} -39.5594 q^{28} -38.3019 q^{29} -186.071 q^{31} -187.519 q^{32} +111.605 q^{33} +60.8842 q^{34} -429.164 q^{36} +218.781 q^{37} +42.8919 q^{38} -774.716 q^{39} +80.1687 q^{41} +108.843 q^{42} +35.1155 q^{43} +62.1648 q^{44} +133.645 q^{46} +282.620 q^{47} -133.404 q^{48} +49.0000 q^{49} +403.077 q^{51} -431.521 q^{52} -145.296 q^{53} +760.971 q^{54} +146.448 q^{56} +283.961 q^{57} +58.6989 q^{58} +91.0461 q^{59} +808.142 q^{61} +285.160 q^{62} +531.582 q^{63} +182.192 q^{64} -171.039 q^{66} -794.222 q^{67} +224.516 q^{68} +884.783 q^{69} +946.901 q^{71} +1588.75 q^{72} -801.324 q^{73} -335.288 q^{74} +158.168 q^{76} -77.0000 q^{77} +1187.28 q^{78} -890.737 q^{79} +2987.53 q^{81} -122.861 q^{82} +559.333 q^{83} +401.368 q^{84} -53.8156 q^{86} +388.609 q^{87} -230.132 q^{88} -1523.75 q^{89} +534.501 q^{91} +492.829 q^{92} +1887.87 q^{93} -433.125 q^{94} +1902.56 q^{96} -664.651 q^{97} -75.0941 q^{98} -835.342 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 14 q^{3} + 26 q^{4} + 14 q^{6} + 28 q^{7} + 18 q^{8} + 76 q^{9} - 44 q^{11} - 70 q^{12} - 58 q^{13} + 14 q^{14} + 2 q^{16} - 4 q^{17} + 62 q^{18} + 258 q^{19} - 98 q^{21} - 22 q^{22} - 8 q^{23}+ \cdots - 836 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53253 −0.541832 −0.270916 0.962603i \(-0.587327\pi\)
−0.270916 + 0.962603i \(0.587327\pi\)
\(3\) −10.1459 −1.95259 −0.976294 0.216448i \(-0.930553\pi\)
−0.976294 + 0.216448i \(0.930553\pi\)
\(4\) −5.65135 −0.706418
\(5\) 0 0
\(6\) 15.5490 1.05797
\(7\) 7.00000 0.377964
\(8\) 20.9211 0.924592
\(9\) 75.9402 2.81260
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 57.3382 1.37934
\(13\) 76.3572 1.62905 0.814526 0.580127i \(-0.196997\pi\)
0.814526 + 0.580127i \(0.196997\pi\)
\(14\) −10.7277 −0.204793
\(15\) 0 0
\(16\) 13.1485 0.205445
\(17\) −39.7278 −0.566789 −0.283395 0.959003i \(-0.591461\pi\)
−0.283395 + 0.959003i \(0.591461\pi\)
\(18\) −116.381 −1.52396
\(19\) −27.9876 −0.337937 −0.168968 0.985621i \(-0.554044\pi\)
−0.168968 + 0.985621i \(0.554044\pi\)
\(20\) 0 0
\(21\) −71.0216 −0.738009
\(22\) 16.8579 0.163368
\(23\) −87.2055 −0.790592 −0.395296 0.918554i \(-0.629358\pi\)
−0.395296 + 0.918554i \(0.629358\pi\)
\(24\) −212.265 −1.80535
\(25\) 0 0
\(26\) −117.020 −0.882673
\(27\) −496.545 −3.53926
\(28\) −39.5594 −0.267001
\(29\) −38.3019 −0.245258 −0.122629 0.992453i \(-0.539133\pi\)
−0.122629 + 0.992453i \(0.539133\pi\)
\(30\) 0 0
\(31\) −186.071 −1.07804 −0.539021 0.842292i \(-0.681206\pi\)
−0.539021 + 0.842292i \(0.681206\pi\)
\(32\) −187.519 −1.03591
\(33\) 111.605 0.588728
\(34\) 60.8842 0.307105
\(35\) 0 0
\(36\) −429.164 −1.98687
\(37\) 218.781 0.972090 0.486045 0.873934i \(-0.338439\pi\)
0.486045 + 0.873934i \(0.338439\pi\)
\(38\) 42.8919 0.183105
\(39\) −774.716 −3.18087
\(40\) 0 0
\(41\) 80.1687 0.305372 0.152686 0.988275i \(-0.451208\pi\)
0.152686 + 0.988275i \(0.451208\pi\)
\(42\) 108.843 0.399877
\(43\) 35.1155 0.124536 0.0622681 0.998059i \(-0.480167\pi\)
0.0622681 + 0.998059i \(0.480167\pi\)
\(44\) 62.1648 0.212993
\(45\) 0 0
\(46\) 133.645 0.428368
\(47\) 282.620 0.877116 0.438558 0.898703i \(-0.355489\pi\)
0.438558 + 0.898703i \(0.355489\pi\)
\(48\) −133.404 −0.401149
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 403.077 1.10671
\(52\) −431.521 −1.15079
\(53\) −145.296 −0.376566 −0.188283 0.982115i \(-0.560292\pi\)
−0.188283 + 0.982115i \(0.560292\pi\)
\(54\) 760.971 1.91769
\(55\) 0 0
\(56\) 146.448 0.349463
\(57\) 283.961 0.659851
\(58\) 58.6989 0.132889
\(59\) 91.0461 0.200901 0.100451 0.994942i \(-0.467972\pi\)
0.100451 + 0.994942i \(0.467972\pi\)
\(60\) 0 0
\(61\) 808.142 1.69626 0.848131 0.529787i \(-0.177728\pi\)
0.848131 + 0.529787i \(0.177728\pi\)
\(62\) 285.160 0.584118
\(63\) 531.582 1.06306
\(64\) 182.192 0.355843
\(65\) 0 0
\(66\) −171.039 −0.318991
\(67\) −794.222 −1.44820 −0.724102 0.689693i \(-0.757745\pi\)
−0.724102 + 0.689693i \(0.757745\pi\)
\(68\) 224.516 0.400390
\(69\) 884.783 1.54370
\(70\) 0 0
\(71\) 946.901 1.58277 0.791384 0.611319i \(-0.209361\pi\)
0.791384 + 0.611319i \(0.209361\pi\)
\(72\) 1588.75 2.60051
\(73\) −801.324 −1.28477 −0.642383 0.766384i \(-0.722054\pi\)
−0.642383 + 0.766384i \(0.722054\pi\)
\(74\) −335.288 −0.526709
\(75\) 0 0
\(76\) 158.168 0.238725
\(77\) −77.0000 −0.113961
\(78\) 1187.28 1.72350
\(79\) −890.737 −1.26855 −0.634277 0.773106i \(-0.718702\pi\)
−0.634277 + 0.773106i \(0.718702\pi\)
\(80\) 0 0
\(81\) 2987.53 4.09812
\(82\) −122.861 −0.165460
\(83\) 559.333 0.739696 0.369848 0.929092i \(-0.379410\pi\)
0.369848 + 0.929092i \(0.379410\pi\)
\(84\) 401.368 0.521343
\(85\) 0 0
\(86\) −53.8156 −0.0674777
\(87\) 388.609 0.478888
\(88\) −230.132 −0.278775
\(89\) −1523.75 −1.81480 −0.907401 0.420265i \(-0.861937\pi\)
−0.907401 + 0.420265i \(0.861937\pi\)
\(90\) 0 0
\(91\) 534.501 0.615724
\(92\) 492.829 0.558488
\(93\) 1887.87 2.10497
\(94\) −433.125 −0.475249
\(95\) 0 0
\(96\) 1902.56 2.02270
\(97\) −664.651 −0.695723 −0.347861 0.937546i \(-0.613092\pi\)
−0.347861 + 0.937546i \(0.613092\pi\)
\(98\) −75.0941 −0.0774046
\(99\) −835.342 −0.848031
\(100\) 0 0
\(101\) 1495.68 1.47352 0.736761 0.676153i \(-0.236354\pi\)
0.736761 + 0.676153i \(0.236354\pi\)
\(102\) −617.728 −0.599649
\(103\) −874.379 −0.836457 −0.418229 0.908342i \(-0.637349\pi\)
−0.418229 + 0.908342i \(0.637349\pi\)
\(104\) 1597.48 1.50621
\(105\) 0 0
\(106\) 222.671 0.204035
\(107\) −783.854 −0.708205 −0.354103 0.935207i \(-0.615214\pi\)
−0.354103 + 0.935207i \(0.615214\pi\)
\(108\) 2806.15 2.50020
\(109\) −1351.08 −1.18725 −0.593623 0.804743i \(-0.702303\pi\)
−0.593623 + 0.804743i \(0.702303\pi\)
\(110\) 0 0
\(111\) −2219.74 −1.89809
\(112\) 92.0393 0.0776508
\(113\) 188.362 0.156811 0.0784055 0.996922i \(-0.475017\pi\)
0.0784055 + 0.996922i \(0.475017\pi\)
\(114\) −435.179 −0.357529
\(115\) 0 0
\(116\) 216.457 0.173255
\(117\) 5798.58 4.58187
\(118\) −139.531 −0.108855
\(119\) −278.095 −0.214226
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1238.50 −0.919089
\(123\) −813.388 −0.596266
\(124\) 1051.55 0.761549
\(125\) 0 0
\(126\) −814.666 −0.576002
\(127\) −586.957 −0.410110 −0.205055 0.978750i \(-0.565737\pi\)
−0.205055 + 0.978750i \(0.565737\pi\)
\(128\) 1220.94 0.843101
\(129\) −356.280 −0.243168
\(130\) 0 0
\(131\) 623.054 0.415546 0.207773 0.978177i \(-0.433379\pi\)
0.207773 + 0.978177i \(0.433379\pi\)
\(132\) −630.721 −0.415888
\(133\) −195.913 −0.127728
\(134\) 1217.17 0.784683
\(135\) 0 0
\(136\) −831.151 −0.524049
\(137\) 954.859 0.595468 0.297734 0.954649i \(-0.403769\pi\)
0.297734 + 0.954649i \(0.403769\pi\)
\(138\) −1355.96 −0.836426
\(139\) 1590.62 0.970610 0.485305 0.874345i \(-0.338709\pi\)
0.485305 + 0.874345i \(0.338709\pi\)
\(140\) 0 0
\(141\) −2867.45 −1.71265
\(142\) −1451.16 −0.857594
\(143\) −839.929 −0.491178
\(144\) 998.498 0.577834
\(145\) 0 0
\(146\) 1228.05 0.696127
\(147\) −497.151 −0.278941
\(148\) −1236.41 −0.686702
\(149\) −1415.84 −0.778459 −0.389229 0.921141i \(-0.627259\pi\)
−0.389229 + 0.921141i \(0.627259\pi\)
\(150\) 0 0
\(151\) 411.564 0.221806 0.110903 0.993831i \(-0.464626\pi\)
0.110903 + 0.993831i \(0.464626\pi\)
\(152\) −585.532 −0.312454
\(153\) −3016.94 −1.59415
\(154\) 118.005 0.0617475
\(155\) 0 0
\(156\) 4378.19 2.24702
\(157\) 1417.29 0.720460 0.360230 0.932864i \(-0.382698\pi\)
0.360230 + 0.932864i \(0.382698\pi\)
\(158\) 1365.08 0.687343
\(159\) 1474.17 0.735278
\(160\) 0 0
\(161\) −610.439 −0.298816
\(162\) −4578.49 −2.22049
\(163\) 441.401 0.212105 0.106053 0.994361i \(-0.466179\pi\)
0.106053 + 0.994361i \(0.466179\pi\)
\(164\) −453.061 −0.215720
\(165\) 0 0
\(166\) −857.196 −0.400791
\(167\) 1486.39 0.688742 0.344371 0.938834i \(-0.388092\pi\)
0.344371 + 0.938834i \(0.388092\pi\)
\(168\) −1485.85 −0.682357
\(169\) 3633.43 1.65381
\(170\) 0 0
\(171\) −2125.39 −0.950481
\(172\) −198.450 −0.0879747
\(173\) 2957.39 1.29969 0.649844 0.760068i \(-0.274834\pi\)
0.649844 + 0.760068i \(0.274834\pi\)
\(174\) −595.555 −0.259477
\(175\) 0 0
\(176\) −144.633 −0.0619439
\(177\) −923.748 −0.392278
\(178\) 2335.20 0.983318
\(179\) −24.4424 −0.0102062 −0.00510310 0.999987i \(-0.501624\pi\)
−0.00510310 + 0.999987i \(0.501624\pi\)
\(180\) 0 0
\(181\) −120.126 −0.0493308 −0.0246654 0.999696i \(-0.507852\pi\)
−0.0246654 + 0.999696i \(0.507852\pi\)
\(182\) −819.139 −0.333619
\(183\) −8199.37 −3.31210
\(184\) −1824.44 −0.730975
\(185\) 0 0
\(186\) −2893.22 −1.14054
\(187\) 437.006 0.170893
\(188\) −1597.19 −0.619610
\(189\) −3475.81 −1.33772
\(190\) 0 0
\(191\) −2059.27 −0.780123 −0.390061 0.920789i \(-0.627546\pi\)
−0.390061 + 0.920789i \(0.627546\pi\)
\(192\) −1848.51 −0.694816
\(193\) 4371.31 1.63033 0.815165 0.579229i \(-0.196646\pi\)
0.815165 + 0.579229i \(0.196646\pi\)
\(194\) 1018.60 0.376965
\(195\) 0 0
\(196\) −276.916 −0.100917
\(197\) 2185.70 0.790479 0.395240 0.918578i \(-0.370662\pi\)
0.395240 + 0.918578i \(0.370662\pi\)
\(198\) 1280.19 0.459490
\(199\) −2420.84 −0.862356 −0.431178 0.902267i \(-0.641902\pi\)
−0.431178 + 0.902267i \(0.641902\pi\)
\(200\) 0 0
\(201\) 8058.13 2.82774
\(202\) −2292.18 −0.798401
\(203\) −268.113 −0.0926988
\(204\) −2277.93 −0.781797
\(205\) 0 0
\(206\) 1340.01 0.453219
\(207\) −6622.41 −2.22362
\(208\) 1003.98 0.334680
\(209\) 307.864 0.101892
\(210\) 0 0
\(211\) −3888.39 −1.26866 −0.634331 0.773062i \(-0.718724\pi\)
−0.634331 + 0.773062i \(0.718724\pi\)
\(212\) 821.120 0.266013
\(213\) −9607.21 −3.09049
\(214\) 1201.28 0.383728
\(215\) 0 0
\(216\) −10388.3 −3.27237
\(217\) −1302.50 −0.407462
\(218\) 2070.57 0.643288
\(219\) 8130.19 2.50862
\(220\) 0 0
\(221\) −3033.51 −0.923330
\(222\) 3401.82 1.02845
\(223\) −641.467 −0.192627 −0.0963135 0.995351i \(-0.530705\pi\)
−0.0963135 + 0.995351i \(0.530705\pi\)
\(224\) −1312.64 −0.391537
\(225\) 0 0
\(226\) −288.672 −0.0849652
\(227\) −3619.11 −1.05819 −0.529094 0.848563i \(-0.677468\pi\)
−0.529094 + 0.848563i \(0.677468\pi\)
\(228\) −1604.76 −0.466131
\(229\) 2518.14 0.726652 0.363326 0.931662i \(-0.381641\pi\)
0.363326 + 0.931662i \(0.381641\pi\)
\(230\) 0 0
\(231\) 781.238 0.222518
\(232\) −801.318 −0.226763
\(233\) 4187.89 1.17750 0.588751 0.808315i \(-0.299620\pi\)
0.588751 + 0.808315i \(0.299620\pi\)
\(234\) −8886.52 −2.48261
\(235\) 0 0
\(236\) −514.533 −0.141920
\(237\) 9037.37 2.47696
\(238\) 426.189 0.116075
\(239\) 2582.63 0.698981 0.349490 0.936940i \(-0.386355\pi\)
0.349490 + 0.936940i \(0.386355\pi\)
\(240\) 0 0
\(241\) 1522.09 0.406832 0.203416 0.979092i \(-0.434796\pi\)
0.203416 + 0.979092i \(0.434796\pi\)
\(242\) −185.436 −0.0492574
\(243\) −16904.6 −4.46268
\(244\) −4567.09 −1.19827
\(245\) 0 0
\(246\) 1246.54 0.323076
\(247\) −2137.06 −0.550517
\(248\) −3892.81 −0.996750
\(249\) −5674.96 −1.44432
\(250\) 0 0
\(251\) 1463.19 0.367952 0.183976 0.982931i \(-0.441103\pi\)
0.183976 + 0.982931i \(0.441103\pi\)
\(252\) −3004.15 −0.750967
\(253\) 959.261 0.238372
\(254\) 899.531 0.222211
\(255\) 0 0
\(256\) −3328.67 −0.812662
\(257\) 1183.89 0.287350 0.143675 0.989625i \(-0.454108\pi\)
0.143675 + 0.989625i \(0.454108\pi\)
\(258\) 546.010 0.131756
\(259\) 1531.46 0.367415
\(260\) 0 0
\(261\) −2908.65 −0.689813
\(262\) −954.850 −0.225156
\(263\) −151.973 −0.0356315 −0.0178158 0.999841i \(-0.505671\pi\)
−0.0178158 + 0.999841i \(0.505671\pi\)
\(264\) 2334.91 0.544333
\(265\) 0 0
\(266\) 300.243 0.0692072
\(267\) 15459.9 3.54356
\(268\) 4488.42 1.02304
\(269\) −255.543 −0.0579209 −0.0289604 0.999581i \(-0.509220\pi\)
−0.0289604 + 0.999581i \(0.509220\pi\)
\(270\) 0 0
\(271\) 2589.73 0.580497 0.290248 0.956951i \(-0.406262\pi\)
0.290248 + 0.956951i \(0.406262\pi\)
\(272\) −522.360 −0.116444
\(273\) −5423.01 −1.20226
\(274\) −1463.35 −0.322644
\(275\) 0 0
\(276\) −5000.21 −1.09050
\(277\) 4441.49 0.963404 0.481702 0.876335i \(-0.340019\pi\)
0.481702 + 0.876335i \(0.340019\pi\)
\(278\) −2437.68 −0.525907
\(279\) −14130.3 −3.03210
\(280\) 0 0
\(281\) 1577.34 0.334861 0.167431 0.985884i \(-0.446453\pi\)
0.167431 + 0.985884i \(0.446453\pi\)
\(282\) 4394.46 0.927966
\(283\) −3429.29 −0.720317 −0.360159 0.932891i \(-0.617277\pi\)
−0.360159 + 0.932891i \(0.617277\pi\)
\(284\) −5351.27 −1.11810
\(285\) 0 0
\(286\) 1287.22 0.266136
\(287\) 561.181 0.115420
\(288\) −14240.3 −2.91360
\(289\) −3334.70 −0.678750
\(290\) 0 0
\(291\) 6743.51 1.35846
\(292\) 4528.56 0.907581
\(293\) −4601.37 −0.917458 −0.458729 0.888576i \(-0.651695\pi\)
−0.458729 + 0.888576i \(0.651695\pi\)
\(294\) 761.900 0.151139
\(295\) 0 0
\(296\) 4577.14 0.898786
\(297\) 5461.99 1.06713
\(298\) 2169.82 0.421794
\(299\) −6658.77 −1.28792
\(300\) 0 0
\(301\) 245.808 0.0470703
\(302\) −630.736 −0.120181
\(303\) −15175.1 −2.87718
\(304\) −367.994 −0.0694274
\(305\) 0 0
\(306\) 4623.56 0.863762
\(307\) −4990.18 −0.927702 −0.463851 0.885913i \(-0.653533\pi\)
−0.463851 + 0.885913i \(0.653533\pi\)
\(308\) 435.154 0.0805038
\(309\) 8871.40 1.63326
\(310\) 0 0
\(311\) 3139.78 0.572478 0.286239 0.958158i \(-0.407595\pi\)
0.286239 + 0.958158i \(0.407595\pi\)
\(312\) −16207.9 −2.94101
\(313\) 4723.12 0.852929 0.426464 0.904504i \(-0.359759\pi\)
0.426464 + 0.904504i \(0.359759\pi\)
\(314\) −2172.04 −0.390368
\(315\) 0 0
\(316\) 5033.86 0.896130
\(317\) −5935.83 −1.05170 −0.525851 0.850577i \(-0.676253\pi\)
−0.525851 + 0.850577i \(0.676253\pi\)
\(318\) −2259.21 −0.398397
\(319\) 421.321 0.0739481
\(320\) 0 0
\(321\) 7952.94 1.38283
\(322\) 935.517 0.161908
\(323\) 1111.89 0.191539
\(324\) −16883.6 −2.89499
\(325\) 0 0
\(326\) −676.461 −0.114925
\(327\) 13708.0 2.31820
\(328\) 1677.22 0.282344
\(329\) 1978.34 0.331519
\(330\) 0 0
\(331\) −6390.75 −1.06123 −0.530615 0.847613i \(-0.678039\pi\)
−0.530615 + 0.847613i \(0.678039\pi\)
\(332\) −3160.98 −0.522535
\(333\) 16614.3 2.73410
\(334\) −2277.93 −0.373183
\(335\) 0 0
\(336\) −933.826 −0.151620
\(337\) −8916.41 −1.44127 −0.720635 0.693315i \(-0.756149\pi\)
−0.720635 + 0.693315i \(0.756149\pi\)
\(338\) −5568.34 −0.896088
\(339\) −1911.12 −0.306187
\(340\) 0 0
\(341\) 2046.78 0.325042
\(342\) 3257.22 0.515001
\(343\) 343.000 0.0539949
\(344\) 734.655 0.115145
\(345\) 0 0
\(346\) −4532.29 −0.704212
\(347\) −1400.52 −0.216668 −0.108334 0.994115i \(-0.534552\pi\)
−0.108334 + 0.994115i \(0.534552\pi\)
\(348\) −2196.16 −0.338295
\(349\) −8985.39 −1.37816 −0.689079 0.724686i \(-0.741985\pi\)
−0.689079 + 0.724686i \(0.741985\pi\)
\(350\) 0 0
\(351\) −37914.8 −5.76565
\(352\) 2062.71 0.312338
\(353\) −1767.91 −0.266562 −0.133281 0.991078i \(-0.542551\pi\)
−0.133281 + 0.991078i \(0.542551\pi\)
\(354\) 1415.67 0.212549
\(355\) 0 0
\(356\) 8611.25 1.28201
\(357\) 2821.54 0.418296
\(358\) 37.4587 0.00553004
\(359\) −1110.48 −0.163256 −0.0816278 0.996663i \(-0.526012\pi\)
−0.0816278 + 0.996663i \(0.526012\pi\)
\(360\) 0 0
\(361\) −6075.69 −0.885799
\(362\) 184.096 0.0267290
\(363\) −1227.66 −0.177508
\(364\) −3020.65 −0.434959
\(365\) 0 0
\(366\) 12565.8 1.79460
\(367\) 5342.61 0.759896 0.379948 0.925008i \(-0.375942\pi\)
0.379948 + 0.925008i \(0.375942\pi\)
\(368\) −1146.62 −0.162423
\(369\) 6088.03 0.858890
\(370\) 0 0
\(371\) −1017.07 −0.142329
\(372\) −10669.0 −1.48699
\(373\) −6829.95 −0.948101 −0.474050 0.880498i \(-0.657209\pi\)
−0.474050 + 0.880498i \(0.657209\pi\)
\(374\) −669.726 −0.0925955
\(375\) 0 0
\(376\) 5912.74 0.810974
\(377\) −2924.63 −0.399538
\(378\) 5326.80 0.724817
\(379\) 7826.62 1.06076 0.530378 0.847761i \(-0.322050\pi\)
0.530378 + 0.847761i \(0.322050\pi\)
\(380\) 0 0
\(381\) 5955.24 0.800777
\(382\) 3155.90 0.422695
\(383\) 7534.69 1.00523 0.502617 0.864509i \(-0.332371\pi\)
0.502617 + 0.864509i \(0.332371\pi\)
\(384\) −12387.6 −1.64623
\(385\) 0 0
\(386\) −6699.17 −0.883364
\(387\) 2666.68 0.350271
\(388\) 3756.17 0.491471
\(389\) −13071.8 −1.70376 −0.851882 0.523734i \(-0.824539\pi\)
−0.851882 + 0.523734i \(0.824539\pi\)
\(390\) 0 0
\(391\) 3464.49 0.448099
\(392\) 1025.14 0.132085
\(393\) −6321.47 −0.811390
\(394\) −3349.65 −0.428307
\(395\) 0 0
\(396\) 4720.81 0.599065
\(397\) 3692.51 0.466806 0.233403 0.972380i \(-0.425014\pi\)
0.233403 + 0.972380i \(0.425014\pi\)
\(398\) 3710.02 0.467252
\(399\) 1987.73 0.249400
\(400\) 0 0
\(401\) 8223.85 1.02414 0.512069 0.858944i \(-0.328879\pi\)
0.512069 + 0.858944i \(0.328879\pi\)
\(402\) −12349.3 −1.53216
\(403\) −14207.9 −1.75619
\(404\) −8452.61 −1.04092
\(405\) 0 0
\(406\) 410.892 0.0502272
\(407\) −2406.59 −0.293096
\(408\) 8432.82 1.02325
\(409\) 3689.61 0.446062 0.223031 0.974811i \(-0.428405\pi\)
0.223031 + 0.974811i \(0.428405\pi\)
\(410\) 0 0
\(411\) −9687.95 −1.16270
\(412\) 4941.42 0.590889
\(413\) 637.322 0.0759336
\(414\) 10149.1 1.20483
\(415\) 0 0
\(416\) −14318.5 −1.68755
\(417\) −16138.4 −1.89520
\(418\) −471.811 −0.0552082
\(419\) 15657.0 1.82552 0.912762 0.408492i \(-0.133945\pi\)
0.912762 + 0.408492i \(0.133945\pi\)
\(420\) 0 0
\(421\) −6007.30 −0.695435 −0.347717 0.937599i \(-0.613043\pi\)
−0.347717 + 0.937599i \(0.613043\pi\)
\(422\) 5959.08 0.687402
\(423\) 21462.3 2.46698
\(424\) −3039.76 −0.348170
\(425\) 0 0
\(426\) 14723.4 1.67453
\(427\) 5656.99 0.641127
\(428\) 4429.83 0.500289
\(429\) 8521.88 0.959068
\(430\) 0 0
\(431\) 13139.0 1.46841 0.734203 0.678931i \(-0.237556\pi\)
0.734203 + 0.678931i \(0.237556\pi\)
\(432\) −6528.81 −0.727123
\(433\) 4392.47 0.487502 0.243751 0.969838i \(-0.421622\pi\)
0.243751 + 0.969838i \(0.421622\pi\)
\(434\) 1996.12 0.220776
\(435\) 0 0
\(436\) 7635.41 0.838692
\(437\) 2440.67 0.267170
\(438\) −12459.8 −1.35925
\(439\) 12676.2 1.37813 0.689066 0.724699i \(-0.258021\pi\)
0.689066 + 0.724699i \(0.258021\pi\)
\(440\) 0 0
\(441\) 3721.07 0.401800
\(442\) 4648.95 0.500289
\(443\) 17489.2 1.87571 0.937855 0.347028i \(-0.112809\pi\)
0.937855 + 0.347028i \(0.112809\pi\)
\(444\) 12544.5 1.34085
\(445\) 0 0
\(446\) 983.069 0.104371
\(447\) 14365.1 1.52001
\(448\) 1275.34 0.134496
\(449\) −15491.8 −1.62830 −0.814148 0.580658i \(-0.802796\pi\)
−0.814148 + 0.580658i \(0.802796\pi\)
\(450\) 0 0
\(451\) −881.856 −0.0920731
\(452\) −1064.50 −0.110774
\(453\) −4175.71 −0.433095
\(454\) 5546.40 0.573360
\(455\) 0 0
\(456\) 5940.78 0.610093
\(457\) 7789.99 0.797375 0.398688 0.917087i \(-0.369466\pi\)
0.398688 + 0.917087i \(0.369466\pi\)
\(458\) −3859.13 −0.393723
\(459\) 19726.7 2.00602
\(460\) 0 0
\(461\) −8497.44 −0.858493 −0.429247 0.903187i \(-0.641221\pi\)
−0.429247 + 0.903187i \(0.641221\pi\)
\(462\) −1197.27 −0.120567
\(463\) −875.113 −0.0878401 −0.0439200 0.999035i \(-0.513985\pi\)
−0.0439200 + 0.999035i \(0.513985\pi\)
\(464\) −503.611 −0.0503870
\(465\) 0 0
\(466\) −6418.08 −0.638008
\(467\) −17652.5 −1.74917 −0.874584 0.484874i \(-0.838866\pi\)
−0.874584 + 0.484874i \(0.838866\pi\)
\(468\) −32769.8 −3.23672
\(469\) −5559.55 −0.547369
\(470\) 0 0
\(471\) −14379.8 −1.40676
\(472\) 1904.79 0.185752
\(473\) −386.270 −0.0375491
\(474\) −13850.1 −1.34210
\(475\) 0 0
\(476\) 1571.61 0.151333
\(477\) −11033.8 −1.05913
\(478\) −3957.96 −0.378730
\(479\) 3129.76 0.298544 0.149272 0.988796i \(-0.452307\pi\)
0.149272 + 0.988796i \(0.452307\pi\)
\(480\) 0 0
\(481\) 16705.5 1.58359
\(482\) −2332.66 −0.220435
\(483\) 6193.48 0.583464
\(484\) −683.813 −0.0642198
\(485\) 0 0
\(486\) 25906.9 2.41802
\(487\) 366.055 0.0340606 0.0170303 0.999855i \(-0.494579\pi\)
0.0170303 + 0.999855i \(0.494579\pi\)
\(488\) 16907.2 1.56835
\(489\) −4478.43 −0.414154
\(490\) 0 0
\(491\) −14577.2 −1.33984 −0.669919 0.742434i \(-0.733671\pi\)
−0.669919 + 0.742434i \(0.733671\pi\)
\(492\) 4596.73 0.421213
\(493\) 1521.65 0.139010
\(494\) 3275.11 0.298288
\(495\) 0 0
\(496\) −2446.55 −0.221478
\(497\) 6628.31 0.598230
\(498\) 8697.06 0.782580
\(499\) 9504.05 0.852624 0.426312 0.904576i \(-0.359813\pi\)
0.426312 + 0.904576i \(0.359813\pi\)
\(500\) 0 0
\(501\) −15080.8 −1.34483
\(502\) −2242.39 −0.199368
\(503\) 6149.90 0.545150 0.272575 0.962134i \(-0.412125\pi\)
0.272575 + 0.962134i \(0.412125\pi\)
\(504\) 11121.3 0.982900
\(505\) 0 0
\(506\) −1470.10 −0.129158
\(507\) −36864.5 −3.22921
\(508\) 3317.10 0.289709
\(509\) −16132.0 −1.40479 −0.702396 0.711787i \(-0.747886\pi\)
−0.702396 + 0.711787i \(0.747886\pi\)
\(510\) 0 0
\(511\) −5609.27 −0.485596
\(512\) −4666.24 −0.402775
\(513\) 13897.1 1.19605
\(514\) −1814.35 −0.155695
\(515\) 0 0
\(516\) 2013.46 0.171778
\(517\) −3108.83 −0.264460
\(518\) −2347.02 −0.199077
\(519\) −30005.5 −2.53775
\(520\) 0 0
\(521\) 7654.31 0.643650 0.321825 0.946799i \(-0.395704\pi\)
0.321825 + 0.946799i \(0.395704\pi\)
\(522\) 4457.60 0.373763
\(523\) −21493.7 −1.79705 −0.898523 0.438926i \(-0.855359\pi\)
−0.898523 + 0.438926i \(0.855359\pi\)
\(524\) −3521.09 −0.293549
\(525\) 0 0
\(526\) 232.904 0.0193063
\(527\) 7392.20 0.611023
\(528\) 1467.44 0.120951
\(529\) −4562.20 −0.374965
\(530\) 0 0
\(531\) 6914.06 0.565056
\(532\) 1107.17 0.0902294
\(533\) 6121.46 0.497467
\(534\) −23692.8 −1.92001
\(535\) 0 0
\(536\) −16616.0 −1.33900
\(537\) 247.991 0.0199285
\(538\) 391.628 0.0313834
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −8661.03 −0.688293 −0.344147 0.938916i \(-0.611832\pi\)
−0.344147 + 0.938916i \(0.611832\pi\)
\(542\) −3968.84 −0.314532
\(543\) 1218.79 0.0963227
\(544\) 7449.74 0.587142
\(545\) 0 0
\(546\) 8310.94 0.651420
\(547\) −21372.9 −1.67064 −0.835321 0.549763i \(-0.814718\pi\)
−0.835321 + 0.549763i \(0.814718\pi\)
\(548\) −5396.24 −0.420650
\(549\) 61370.5 4.77091
\(550\) 0 0
\(551\) 1071.98 0.0828817
\(552\) 18510.6 1.42729
\(553\) −6235.16 −0.479468
\(554\) −6806.72 −0.522003
\(555\) 0 0
\(556\) −8989.15 −0.685656
\(557\) −18062.1 −1.37399 −0.686997 0.726660i \(-0.741071\pi\)
−0.686997 + 0.726660i \(0.741071\pi\)
\(558\) 21655.1 1.64289
\(559\) 2681.32 0.202876
\(560\) 0 0
\(561\) −4433.84 −0.333684
\(562\) −2417.32 −0.181438
\(563\) −962.299 −0.0720356 −0.0360178 0.999351i \(-0.511467\pi\)
−0.0360178 + 0.999351i \(0.511467\pi\)
\(564\) 16205.0 1.20984
\(565\) 0 0
\(566\) 5255.49 0.390291
\(567\) 20912.7 1.54894
\(568\) 19810.2 1.46341
\(569\) −25409.7 −1.87211 −0.936055 0.351853i \(-0.885552\pi\)
−0.936055 + 0.351853i \(0.885552\pi\)
\(570\) 0 0
\(571\) −5211.13 −0.381925 −0.190962 0.981597i \(-0.561161\pi\)
−0.190962 + 0.981597i \(0.561161\pi\)
\(572\) 4746.73 0.346977
\(573\) 20893.2 1.52326
\(574\) −860.028 −0.0625381
\(575\) 0 0
\(576\) 13835.7 1.00085
\(577\) −409.463 −0.0295428 −0.0147714 0.999891i \(-0.504702\pi\)
−0.0147714 + 0.999891i \(0.504702\pi\)
\(578\) 5110.53 0.367768
\(579\) −44351.0 −3.18336
\(580\) 0 0
\(581\) 3915.33 0.279579
\(582\) −10334.7 −0.736057
\(583\) 1598.26 0.113539
\(584\) −16764.6 −1.18788
\(585\) 0 0
\(586\) 7051.75 0.497108
\(587\) 11756.7 0.826661 0.413331 0.910581i \(-0.364365\pi\)
0.413331 + 0.910581i \(0.364365\pi\)
\(588\) 2809.57 0.197049
\(589\) 5207.68 0.364310
\(590\) 0 0
\(591\) −22176.0 −1.54348
\(592\) 2876.63 0.199711
\(593\) 312.172 0.0216178 0.0108089 0.999942i \(-0.496559\pi\)
0.0108089 + 0.999942i \(0.496559\pi\)
\(594\) −8370.68 −0.578204
\(595\) 0 0
\(596\) 8001.42 0.549918
\(597\) 24561.7 1.68383
\(598\) 10204.8 0.697834
\(599\) 22486.4 1.53384 0.766918 0.641745i \(-0.221789\pi\)
0.766918 + 0.641745i \(0.221789\pi\)
\(600\) 0 0
\(601\) 25019.6 1.69812 0.849061 0.528295i \(-0.177168\pi\)
0.849061 + 0.528295i \(0.177168\pi\)
\(602\) −376.709 −0.0255042
\(603\) −60313.4 −4.07322
\(604\) −2325.89 −0.156687
\(605\) 0 0
\(606\) 23256.3 1.55895
\(607\) −7074.22 −0.473037 −0.236519 0.971627i \(-0.576006\pi\)
−0.236519 + 0.971627i \(0.576006\pi\)
\(608\) 5248.22 0.350072
\(609\) 2720.26 0.181003
\(610\) 0 0
\(611\) 21580.1 1.42887
\(612\) 17049.8 1.12614
\(613\) −4934.94 −0.325155 −0.162578 0.986696i \(-0.551981\pi\)
−0.162578 + 0.986696i \(0.551981\pi\)
\(614\) 7647.61 0.502658
\(615\) 0 0
\(616\) −1610.93 −0.105367
\(617\) −2125.51 −0.138687 −0.0693434 0.997593i \(-0.522090\pi\)
−0.0693434 + 0.997593i \(0.522090\pi\)
\(618\) −13595.7 −0.884951
\(619\) 8168.09 0.530377 0.265188 0.964197i \(-0.414566\pi\)
0.265188 + 0.964197i \(0.414566\pi\)
\(620\) 0 0
\(621\) 43301.5 2.79811
\(622\) −4811.81 −0.310187
\(623\) −10666.3 −0.685931
\(624\) −10186.3 −0.653493
\(625\) 0 0
\(626\) −7238.34 −0.462144
\(627\) −3123.57 −0.198953
\(628\) −8009.60 −0.508946
\(629\) −8691.69 −0.550970
\(630\) 0 0
\(631\) −8419.88 −0.531205 −0.265602 0.964083i \(-0.585571\pi\)
−0.265602 + 0.964083i \(0.585571\pi\)
\(632\) −18635.2 −1.17289
\(633\) 39451.4 2.47717
\(634\) 9096.85 0.569846
\(635\) 0 0
\(636\) −8331.04 −0.519414
\(637\) 3741.50 0.232722
\(638\) −645.687 −0.0400674
\(639\) 71907.9 4.45169
\(640\) 0 0
\(641\) 27238.9 1.67843 0.839213 0.543803i \(-0.183016\pi\)
0.839213 + 0.543803i \(0.183016\pi\)
\(642\) −12188.1 −0.749263
\(643\) 12438.7 0.762882 0.381441 0.924393i \(-0.375428\pi\)
0.381441 + 0.924393i \(0.375428\pi\)
\(644\) 3449.80 0.211089
\(645\) 0 0
\(646\) −1704.00 −0.103782
\(647\) 9788.76 0.594801 0.297400 0.954753i \(-0.403880\pi\)
0.297400 + 0.954753i \(0.403880\pi\)
\(648\) 62502.5 3.78909
\(649\) −1001.51 −0.0605741
\(650\) 0 0
\(651\) 13215.1 0.795605
\(652\) −2494.51 −0.149835
\(653\) −5539.90 −0.331996 −0.165998 0.986126i \(-0.553084\pi\)
−0.165998 + 0.986126i \(0.553084\pi\)
\(654\) −21007.9 −1.25608
\(655\) 0 0
\(656\) 1054.10 0.0627371
\(657\) −60852.7 −3.61353
\(658\) −3031.87 −0.179627
\(659\) −18751.7 −1.10844 −0.554221 0.832370i \(-0.686984\pi\)
−0.554221 + 0.832370i \(0.686984\pi\)
\(660\) 0 0
\(661\) 24849.3 1.46222 0.731108 0.682262i \(-0.239004\pi\)
0.731108 + 0.682262i \(0.239004\pi\)
\(662\) 9794.03 0.575009
\(663\) 30777.8 1.80288
\(664\) 11701.9 0.683917
\(665\) 0 0
\(666\) −25461.9 −1.48142
\(667\) 3340.14 0.193899
\(668\) −8400.08 −0.486540
\(669\) 6508.29 0.376121
\(670\) 0 0
\(671\) −8889.56 −0.511442
\(672\) 13317.9 0.764510
\(673\) 9532.72 0.546002 0.273001 0.962014i \(-0.411984\pi\)
0.273001 + 0.962014i \(0.411984\pi\)
\(674\) 13664.7 0.780926
\(675\) 0 0
\(676\) −20533.7 −1.16828
\(677\) 6544.90 0.371552 0.185776 0.982592i \(-0.440520\pi\)
0.185776 + 0.982592i \(0.440520\pi\)
\(678\) 2928.85 0.165902
\(679\) −4652.56 −0.262958
\(680\) 0 0
\(681\) 36719.3 2.06621
\(682\) −3136.76 −0.176118
\(683\) −8438.16 −0.472734 −0.236367 0.971664i \(-0.575957\pi\)
−0.236367 + 0.971664i \(0.575957\pi\)
\(684\) 12011.3 0.671437
\(685\) 0 0
\(686\) −525.658 −0.0292562
\(687\) −25548.9 −1.41885
\(688\) 461.715 0.0255853
\(689\) −11094.4 −0.613446
\(690\) 0 0
\(691\) −8196.16 −0.451225 −0.225613 0.974217i \(-0.572438\pi\)
−0.225613 + 0.974217i \(0.572438\pi\)
\(692\) −16713.2 −0.918123
\(693\) −5847.40 −0.320526
\(694\) 2146.34 0.117398
\(695\) 0 0
\(696\) 8130.13 0.442776
\(697\) −3184.93 −0.173082
\(698\) 13770.4 0.746730
\(699\) −42490.1 −2.29918
\(700\) 0 0
\(701\) −7172.05 −0.386426 −0.193213 0.981157i \(-0.561891\pi\)
−0.193213 + 0.981157i \(0.561891\pi\)
\(702\) 58105.6 3.12401
\(703\) −6123.15 −0.328505
\(704\) −2004.11 −0.107291
\(705\) 0 0
\(706\) 2709.38 0.144432
\(707\) 10469.8 0.556939
\(708\) 5220.42 0.277112
\(709\) −16766.6 −0.888127 −0.444063 0.895995i \(-0.646464\pi\)
−0.444063 + 0.895995i \(0.646464\pi\)
\(710\) 0 0
\(711\) −67642.8 −3.56794
\(712\) −31878.6 −1.67795
\(713\) 16226.4 0.852292
\(714\) −4324.09 −0.226646
\(715\) 0 0
\(716\) 138.132 0.00720984
\(717\) −26203.2 −1.36482
\(718\) 1701.84 0.0884571
\(719\) −5923.31 −0.307235 −0.153618 0.988130i \(-0.549092\pi\)
−0.153618 + 0.988130i \(0.549092\pi\)
\(720\) 0 0
\(721\) −6120.65 −0.316151
\(722\) 9311.20 0.479954
\(723\) −15443.1 −0.794376
\(724\) 678.872 0.0348482
\(725\) 0 0
\(726\) 1881.43 0.0961795
\(727\) 4256.80 0.217161 0.108581 0.994088i \(-0.465369\pi\)
0.108581 + 0.994088i \(0.465369\pi\)
\(728\) 11182.4 0.569293
\(729\) 90850.1 4.61566
\(730\) 0 0
\(731\) −1395.06 −0.0705858
\(732\) 46337.4 2.33973
\(733\) −24556.4 −1.23740 −0.618698 0.785629i \(-0.712340\pi\)
−0.618698 + 0.785629i \(0.712340\pi\)
\(734\) −8187.72 −0.411736
\(735\) 0 0
\(736\) 16352.7 0.818981
\(737\) 8736.44 0.436650
\(738\) −9330.10 −0.465374
\(739\) 27603.8 1.37405 0.687025 0.726634i \(-0.258916\pi\)
0.687025 + 0.726634i \(0.258916\pi\)
\(740\) 0 0
\(741\) 21682.5 1.07493
\(742\) 1558.70 0.0771181
\(743\) −19808.8 −0.978082 −0.489041 0.872261i \(-0.662653\pi\)
−0.489041 + 0.872261i \(0.662653\pi\)
\(744\) 39496.3 1.94624
\(745\) 0 0
\(746\) 10467.1 0.513711
\(747\) 42475.9 2.08047
\(748\) −2469.67 −0.120722
\(749\) −5486.98 −0.267677
\(750\) 0 0
\(751\) 596.125 0.0289653 0.0144826 0.999895i \(-0.495390\pi\)
0.0144826 + 0.999895i \(0.495390\pi\)
\(752\) 3716.03 0.180199
\(753\) −14845.5 −0.718459
\(754\) 4482.08 0.216482
\(755\) 0 0
\(756\) 19643.0 0.944987
\(757\) 1845.87 0.0886253 0.0443127 0.999018i \(-0.485890\pi\)
0.0443127 + 0.999018i \(0.485890\pi\)
\(758\) −11994.6 −0.574752
\(759\) −9732.61 −0.465443
\(760\) 0 0
\(761\) −13034.2 −0.620877 −0.310439 0.950593i \(-0.600476\pi\)
−0.310439 + 0.950593i \(0.600476\pi\)
\(762\) −9126.59 −0.433886
\(763\) −9457.55 −0.448737
\(764\) 11637.6 0.551093
\(765\) 0 0
\(766\) −11547.2 −0.544668
\(767\) 6952.02 0.327279
\(768\) 33772.5 1.58680
\(769\) −38530.6 −1.80683 −0.903413 0.428770i \(-0.858947\pi\)
−0.903413 + 0.428770i \(0.858947\pi\)
\(770\) 0 0
\(771\) −12011.7 −0.561076
\(772\) −24703.8 −1.15169
\(773\) −13835.1 −0.643745 −0.321873 0.946783i \(-0.604312\pi\)
−0.321873 + 0.946783i \(0.604312\pi\)
\(774\) −4086.77 −0.189788
\(775\) 0 0
\(776\) −13905.2 −0.643259
\(777\) −15538.2 −0.717411
\(778\) 20032.9 0.923154
\(779\) −2243.73 −0.103196
\(780\) 0 0
\(781\) −10415.9 −0.477222
\(782\) −5309.44 −0.242794
\(783\) 19018.6 0.868032
\(784\) 644.275 0.0293493
\(785\) 0 0
\(786\) 9687.86 0.439637
\(787\) −11704.2 −0.530125 −0.265062 0.964231i \(-0.585393\pi\)
−0.265062 + 0.964231i \(0.585393\pi\)
\(788\) −12352.1 −0.558409
\(789\) 1541.91 0.0695737
\(790\) 0 0
\(791\) 1318.54 0.0592690
\(792\) −17476.3 −0.784083
\(793\) 61707.5 2.76330
\(794\) −5658.89 −0.252930
\(795\) 0 0
\(796\) 13681.0 0.609184
\(797\) 3367.27 0.149655 0.0748274 0.997196i \(-0.476159\pi\)
0.0748274 + 0.997196i \(0.476159\pi\)
\(798\) −3046.25 −0.135133
\(799\) −11227.9 −0.497140
\(800\) 0 0
\(801\) −115714. −5.10432
\(802\) −12603.3 −0.554911
\(803\) 8814.56 0.387371
\(804\) −45539.3 −1.99757
\(805\) 0 0
\(806\) 21774.0 0.951559
\(807\) 2592.72 0.113096
\(808\) 31291.3 1.36241
\(809\) 20869.5 0.906961 0.453481 0.891266i \(-0.350182\pi\)
0.453481 + 0.891266i \(0.350182\pi\)
\(810\) 0 0
\(811\) −22445.9 −0.971863 −0.485931 0.873997i \(-0.661520\pi\)
−0.485931 + 0.873997i \(0.661520\pi\)
\(812\) 1515.20 0.0654841
\(813\) −26275.2 −1.13347
\(814\) 3688.17 0.158809
\(815\) 0 0
\(816\) 5299.84 0.227367
\(817\) −982.798 −0.0420854
\(818\) −5654.45 −0.241691
\(819\) 40590.1 1.73179
\(820\) 0 0
\(821\) −25516.4 −1.08469 −0.542343 0.840157i \(-0.682463\pi\)
−0.542343 + 0.840157i \(0.682463\pi\)
\(822\) 14847.1 0.629990
\(823\) −36376.7 −1.54072 −0.770360 0.637609i \(-0.779924\pi\)
−0.770360 + 0.637609i \(0.779924\pi\)
\(824\) −18293.0 −0.773382
\(825\) 0 0
\(826\) −976.717 −0.0411433
\(827\) −25520.1 −1.07306 −0.536530 0.843881i \(-0.680265\pi\)
−0.536530 + 0.843881i \(0.680265\pi\)
\(828\) 37425.5 1.57080
\(829\) 23202.5 0.972084 0.486042 0.873936i \(-0.338440\pi\)
0.486042 + 0.873936i \(0.338440\pi\)
\(830\) 0 0
\(831\) −45063.1 −1.88113
\(832\) 13911.7 0.579688
\(833\) −1946.66 −0.0809699
\(834\) 24732.6 1.02688
\(835\) 0 0
\(836\) −1739.84 −0.0719782
\(837\) 92392.6 3.81548
\(838\) −23994.9 −0.989127
\(839\) −10538.6 −0.433649 −0.216824 0.976211i \(-0.569570\pi\)
−0.216824 + 0.976211i \(0.569570\pi\)
\(840\) 0 0
\(841\) −22922.0 −0.939849
\(842\) 9206.38 0.376809
\(843\) −16003.6 −0.653846
\(844\) 21974.6 0.896206
\(845\) 0 0
\(846\) −32891.6 −1.33669
\(847\) 847.000 0.0343604
\(848\) −1910.42 −0.0773635
\(849\) 34793.3 1.40648
\(850\) 0 0
\(851\) −19078.9 −0.768526
\(852\) 54293.7 2.18318
\(853\) −40061.0 −1.60805 −0.804023 0.594598i \(-0.797311\pi\)
−0.804023 + 0.594598i \(0.797311\pi\)
\(854\) −8669.52 −0.347383
\(855\) 0 0
\(856\) −16399.1 −0.654801
\(857\) −775.719 −0.0309195 −0.0154598 0.999880i \(-0.504921\pi\)
−0.0154598 + 0.999880i \(0.504921\pi\)
\(858\) −13060.1 −0.519654
\(859\) −10241.5 −0.406792 −0.203396 0.979097i \(-0.565198\pi\)
−0.203396 + 0.979097i \(0.565198\pi\)
\(860\) 0 0
\(861\) −5693.71 −0.225367
\(862\) −20135.9 −0.795629
\(863\) 1268.51 0.0500356 0.0250178 0.999687i \(-0.492036\pi\)
0.0250178 + 0.999687i \(0.492036\pi\)
\(864\) 93111.8 3.66635
\(865\) 0 0
\(866\) −6731.60 −0.264144
\(867\) 33833.7 1.32532
\(868\) 7360.86 0.287839
\(869\) 9798.11 0.382483
\(870\) 0 0
\(871\) −60644.6 −2.35920
\(872\) −28266.1 −1.09772
\(873\) −50473.8 −1.95679
\(874\) −3740.41 −0.144761
\(875\) 0 0
\(876\) −45946.5 −1.77213
\(877\) −6691.33 −0.257640 −0.128820 0.991668i \(-0.541119\pi\)
−0.128820 + 0.991668i \(0.541119\pi\)
\(878\) −19426.6 −0.746716
\(879\) 46685.3 1.79142
\(880\) 0 0
\(881\) 14514.6 0.555063 0.277531 0.960717i \(-0.410484\pi\)
0.277531 + 0.960717i \(0.410484\pi\)
\(882\) −5702.66 −0.217708
\(883\) −10335.2 −0.393891 −0.196946 0.980414i \(-0.563102\pi\)
−0.196946 + 0.980414i \(0.563102\pi\)
\(884\) 17143.4 0.652257
\(885\) 0 0
\(886\) −26802.8 −1.01632
\(887\) −42946.3 −1.62570 −0.812851 0.582472i \(-0.802086\pi\)
−0.812851 + 0.582472i \(0.802086\pi\)
\(888\) −46439.4 −1.75496
\(889\) −4108.70 −0.155007
\(890\) 0 0
\(891\) −32862.8 −1.23563
\(892\) 3625.15 0.136075
\(893\) −7909.87 −0.296410
\(894\) −22014.9 −0.823590
\(895\) 0 0
\(896\) 8546.59 0.318662
\(897\) 67559.5 2.51477
\(898\) 23741.7 0.882263
\(899\) 7126.87 0.264399
\(900\) 0 0
\(901\) 5772.31 0.213434
\(902\) 1351.47 0.0498882
\(903\) −2493.96 −0.0919089
\(904\) 3940.75 0.144986
\(905\) 0 0
\(906\) 6399.41 0.234665
\(907\) −8376.30 −0.306649 −0.153324 0.988176i \(-0.548998\pi\)
−0.153324 + 0.988176i \(0.548998\pi\)
\(908\) 20452.8 0.747524
\(909\) 113582. 4.14443
\(910\) 0 0
\(911\) 17335.4 0.630460 0.315230 0.949015i \(-0.397918\pi\)
0.315230 + 0.949015i \(0.397918\pi\)
\(912\) 3733.65 0.135563
\(913\) −6152.66 −0.223027
\(914\) −11938.4 −0.432043
\(915\) 0 0
\(916\) −14230.9 −0.513321
\(917\) 4361.38 0.157061
\(918\) −30231.7 −1.08692
\(919\) −34995.3 −1.25613 −0.628067 0.778159i \(-0.716154\pi\)
−0.628067 + 0.778159i \(0.716154\pi\)
\(920\) 0 0
\(921\) 50630.1 1.81142
\(922\) 13022.6 0.465159
\(923\) 72302.8 2.57841
\(924\) −4415.05 −0.157191
\(925\) 0 0
\(926\) 1341.14 0.0475945
\(927\) −66400.5 −2.35262
\(928\) 7182.35 0.254065
\(929\) −10671.6 −0.376882 −0.188441 0.982084i \(-0.560343\pi\)
−0.188441 + 0.982084i \(0.560343\pi\)
\(930\) 0 0
\(931\) −1371.39 −0.0482767
\(932\) −23667.2 −0.831808
\(933\) −31856.0 −1.11781
\(934\) 27053.1 0.947755
\(935\) 0 0
\(936\) 121313. 4.23636
\(937\) 1855.85 0.0647045 0.0323522 0.999477i \(-0.489700\pi\)
0.0323522 + 0.999477i \(0.489700\pi\)
\(938\) 8520.19 0.296582
\(939\) −47920.6 −1.66542
\(940\) 0 0
\(941\) 15378.8 0.532766 0.266383 0.963867i \(-0.414171\pi\)
0.266383 + 0.963867i \(0.414171\pi\)
\(942\) 22037.4 0.762228
\(943\) −6991.16 −0.241425
\(944\) 1197.12 0.0412742
\(945\) 0 0
\(946\) 591.972 0.0203453
\(947\) 14600.9 0.501020 0.250510 0.968114i \(-0.419402\pi\)
0.250510 + 0.968114i \(0.419402\pi\)
\(948\) −51073.3 −1.74977
\(949\) −61186.9 −2.09295
\(950\) 0 0
\(951\) 60224.6 2.05354
\(952\) −5818.06 −0.198072
\(953\) 2114.27 0.0718658 0.0359329 0.999354i \(-0.488560\pi\)
0.0359329 + 0.999354i \(0.488560\pi\)
\(954\) 16909.7 0.573870
\(955\) 0 0
\(956\) −14595.3 −0.493773
\(957\) −4274.70 −0.144390
\(958\) −4796.46 −0.161761
\(959\) 6684.02 0.225066
\(960\) 0 0
\(961\) 4831.40 0.162177
\(962\) −25601.7 −0.858037
\(963\) −59526.0 −1.99190
\(964\) −8601.87 −0.287394
\(965\) 0 0
\(966\) −9491.70 −0.316139
\(967\) −7251.75 −0.241159 −0.120579 0.992704i \(-0.538475\pi\)
−0.120579 + 0.992704i \(0.538475\pi\)
\(968\) 2531.46 0.0840538
\(969\) −11281.2 −0.373997
\(970\) 0 0
\(971\) 2742.57 0.0906420 0.0453210 0.998972i \(-0.485569\pi\)
0.0453210 + 0.998972i \(0.485569\pi\)
\(972\) 95533.9 3.15252
\(973\) 11134.4 0.366856
\(974\) −560.991 −0.0184551
\(975\) 0 0
\(976\) 10625.8 0.348488
\(977\) −23770.4 −0.778384 −0.389192 0.921157i \(-0.627246\pi\)
−0.389192 + 0.921157i \(0.627246\pi\)
\(978\) 6863.34 0.224402
\(979\) 16761.3 0.547184
\(980\) 0 0
\(981\) −102601. −3.33925
\(982\) 22340.1 0.725967
\(983\) 49265.4 1.59850 0.799249 0.601000i \(-0.205231\pi\)
0.799249 + 0.601000i \(0.205231\pi\)
\(984\) −17017.0 −0.551302
\(985\) 0 0
\(986\) −2331.98 −0.0753198
\(987\) −20072.2 −0.647319
\(988\) 12077.2 0.388895
\(989\) −3062.26 −0.0984574
\(990\) 0 0
\(991\) −17123.5 −0.548884 −0.274442 0.961604i \(-0.588493\pi\)
−0.274442 + 0.961604i \(0.588493\pi\)
\(992\) 34891.9 1.11675
\(993\) 64840.2 2.07215
\(994\) −10158.1 −0.324140
\(995\) 0 0
\(996\) 32071.2 1.02030
\(997\) 41275.5 1.31114 0.655571 0.755134i \(-0.272428\pi\)
0.655571 + 0.755134i \(0.272428\pi\)
\(998\) −14565.3 −0.461979
\(999\) −108634. −3.44048
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.4.a.p.1.2 4
5.4 even 2 77.4.a.d.1.3 4
15.14 odd 2 693.4.a.l.1.2 4
20.19 odd 2 1232.4.a.s.1.1 4
35.34 odd 2 539.4.a.g.1.3 4
55.54 odd 2 847.4.a.d.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.3 4 5.4 even 2
539.4.a.g.1.3 4 35.34 odd 2
693.4.a.l.1.2 4 15.14 odd 2
847.4.a.d.1.2 4 55.54 odd 2
1232.4.a.s.1.1 4 20.19 odd 2
1925.4.a.p.1.2 4 1.1 even 1 trivial