Properties

Label 1925.2.b.a.1849.1
Level $1925$
Weight $2$
Character 1925.1849
Analytic conductor $15.371$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,2,Mod(1849,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,0,0,0,0,6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3712023891\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1925.1849
Dual form 1925.2.b.a.1849.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -2.00000 q^{4} +1.00000i q^{7} +3.00000 q^{9} +1.00000 q^{11} -3.00000i q^{13} +2.00000 q^{14} -4.00000 q^{16} +3.00000i q^{17} -6.00000i q^{18} +7.00000 q^{19} -2.00000i q^{22} +4.00000i q^{23} -6.00000 q^{26} -2.00000i q^{28} +4.00000 q^{29} +2.00000 q^{31} +8.00000i q^{32} +6.00000 q^{34} -6.00000 q^{36} +3.00000i q^{37} -14.0000i q^{38} +5.00000 q^{41} +4.00000i q^{43} -2.00000 q^{44} +8.00000 q^{46} -8.00000i q^{47} -1.00000 q^{49} +6.00000i q^{52} -9.00000i q^{53} -8.00000i q^{58} +12.0000 q^{59} -9.00000 q^{61} -4.00000i q^{62} +3.00000i q^{63} +8.00000 q^{64} -13.0000i q^{67} -6.00000i q^{68} +3.00000 q^{71} +3.00000i q^{73} +6.00000 q^{74} -14.0000 q^{76} +1.00000i q^{77} -10.0000 q^{79} +9.00000 q^{81} -10.0000i q^{82} -12.0000i q^{83} +8.00000 q^{86} -10.0000 q^{89} +3.00000 q^{91} -8.00000i q^{92} -16.0000 q^{94} -4.00000i q^{97} +2.00000i q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 6 q^{9} + 2 q^{11} + 4 q^{14} - 8 q^{16} + 14 q^{19} - 12 q^{26} + 8 q^{29} + 4 q^{31} + 12 q^{34} - 12 q^{36} + 10 q^{41} - 4 q^{44} + 16 q^{46} - 2 q^{49} + 24 q^{59} - 18 q^{61} + 16 q^{64}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1925\mathbb{Z}\right)^\times\).

\(n\) \(276\) \(1002\) \(1751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) − 3.00000i − 0.832050i −0.909353 0.416025i \(-0.863423\pi\)
0.909353 0.416025i \(-0.136577\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) − 6.00000i − 1.41421i
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 2.00000i − 0.426401i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) − 2.00000i − 0.377964i
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 8.00000i 1.41421i
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 3.00000i 0.493197i 0.969118 + 0.246598i \(0.0793129\pi\)
−0.969118 + 0.246598i \(0.920687\pi\)
\(38\) − 14.0000i − 2.27110i
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) − 8.00000i − 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 6.00000i 0.832050i
\(53\) − 9.00000i − 1.23625i −0.786082 0.618123i \(-0.787894\pi\)
0.786082 0.618123i \(-0.212106\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) − 8.00000i − 1.05045i
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −9.00000 −1.15233 −0.576166 0.817333i \(-0.695452\pi\)
−0.576166 + 0.817333i \(0.695452\pi\)
\(62\) − 4.00000i − 0.508001i
\(63\) 3.00000i 0.377964i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) − 13.0000i − 1.58820i −0.607785 0.794101i \(-0.707942\pi\)
0.607785 0.794101i \(-0.292058\pi\)
\(68\) − 6.00000i − 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 3.00000i 0.351123i 0.984468 + 0.175562i \(0.0561742\pi\)
−0.984468 + 0.175562i \(0.943826\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) −14.0000 −1.60591
\(77\) 1.00000i 0.113961i
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) − 10.0000i − 1.10432i
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) − 8.00000i − 0.834058i
\(93\) 0 0
\(94\) −16.0000 −1.65027
\(95\) 0 0
\(96\) 0 0
\(97\) − 4.00000i − 0.406138i −0.979164 0.203069i \(-0.934908\pi\)
0.979164 0.203069i \(-0.0650917\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) −11.0000 −1.09454 −0.547270 0.836956i \(-0.684333\pi\)
−0.547270 + 0.836956i \(0.684333\pi\)
\(102\) 0 0
\(103\) − 8.00000i − 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −18.0000 −1.74831
\(107\) 14.0000i 1.35343i 0.736245 + 0.676716i \(0.236597\pi\)
−0.736245 + 0.676716i \(0.763403\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 4.00000i − 0.377964i
\(113\) 5.00000i 0.470360i 0.971952 + 0.235180i \(0.0755680\pi\)
−0.971952 + 0.235180i \(0.924432\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) − 9.00000i − 0.832050i
\(118\) − 24.0000i − 2.20938i
\(119\) −3.00000 −0.275010
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 18.0000i 1.62964i
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 6.00000 0.534522
\(127\) − 18.0000i − 1.59724i −0.601834 0.798621i \(-0.705563\pi\)
0.601834 0.798621i \(-0.294437\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) 7.00000i 0.606977i
\(134\) −26.0000 −2.24606
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00000i 0.768922i 0.923141 + 0.384461i \(0.125613\pi\)
−0.923141 + 0.384461i \(0.874387\pi\)
\(138\) 0 0
\(139\) 17.0000 1.44192 0.720961 0.692976i \(-0.243701\pi\)
0.720961 + 0.692976i \(0.243701\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 6.00000i − 0.503509i
\(143\) − 3.00000i − 0.250873i
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) − 6.00000i − 0.493197i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 9.00000i 0.727607i
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.0000i − 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 20.0000i 1.59111i
\(159\) 0 0
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) − 18.0000i − 1.41421i
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −24.0000 −1.86276
\(167\) − 3.00000i − 0.232147i −0.993241 0.116073i \(-0.962969\pi\)
0.993241 0.116073i \(-0.0370308\pi\)
\(168\) 0 0
\(169\) 4.00000 0.307692
\(170\) 0 0
\(171\) 21.0000 1.60591
\(172\) − 8.00000i − 0.609994i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) 20.0000i 1.49906i
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) − 6.00000i − 0.444750i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.00000i 0.219382i
\(188\) 16.0000i 1.16692i
\(189\) 0 0
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) 16.0000i 1.15171i 0.817554 + 0.575853i \(0.195330\pi\)
−0.817554 + 0.575853i \(0.804670\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) − 6.00000i − 0.426401i
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 22.0000i 1.54791i
\(203\) 4.00000i 0.280745i
\(204\) 0 0
\(205\) 0 0
\(206\) −16.0000 −1.11477
\(207\) 12.0000i 0.834058i
\(208\) 12.0000i 0.832050i
\(209\) 7.00000 0.484200
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 18.0000i 1.23625i
\(213\) 0 0
\(214\) 28.0000 1.91404
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) − 32.0000i − 2.16731i
\(219\) 0 0
\(220\) 0 0
\(221\) 9.00000 0.605406
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −8.00000 −0.534522
\(225\) 0 0
\(226\) 10.0000 0.665190
\(227\) 3.00000i 0.199117i 0.995032 + 0.0995585i \(0.0317430\pi\)
−0.995032 + 0.0995585i \(0.968257\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0000i 1.57229i 0.618041 + 0.786146i \(0.287927\pi\)
−0.618041 + 0.786146i \(0.712073\pi\)
\(234\) −18.0000 −1.17670
\(235\) 0 0
\(236\) −24.0000 −1.56227
\(237\) 0 0
\(238\) 6.00000i 0.388922i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −11.0000 −0.708572 −0.354286 0.935137i \(-0.615276\pi\)
−0.354286 + 0.935137i \(0.615276\pi\)
\(242\) − 2.00000i − 0.128565i
\(243\) 0 0
\(244\) 18.0000 1.15233
\(245\) 0 0
\(246\) 0 0
\(247\) − 21.0000i − 1.33620i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 22.0000 1.38863 0.694314 0.719672i \(-0.255708\pi\)
0.694314 + 0.719672i \(0.255708\pi\)
\(252\) − 6.00000i − 0.377964i
\(253\) 4.00000i 0.251478i
\(254\) −36.0000 −2.25884
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 0 0
\(261\) 12.0000 0.742781
\(262\) 40.0000i 2.47121i
\(263\) 30.0000i 1.84988i 0.380114 + 0.924940i \(0.375885\pi\)
−0.380114 + 0.924940i \(0.624115\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 14.0000 0.858395
\(267\) 0 0
\(268\) 26.0000i 1.58820i
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) −27.0000 −1.64013 −0.820067 0.572268i \(-0.806064\pi\)
−0.820067 + 0.572268i \(0.806064\pi\)
\(272\) − 12.0000i − 0.727607i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) − 34.0000i − 2.03918i
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −16.0000 −0.954480 −0.477240 0.878773i \(-0.658363\pi\)
−0.477240 + 0.878773i \(0.658363\pi\)
\(282\) 0 0
\(283\) − 20.0000i − 1.18888i −0.804141 0.594438i \(-0.797374\pi\)
0.804141 0.594438i \(-0.202626\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) 5.00000i 0.295141i
\(288\) 24.0000i 1.41421i
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) − 6.00000i − 0.351123i
\(293\) − 10.0000i − 0.584206i −0.956387 0.292103i \(-0.905645\pi\)
0.956387 0.292103i \(-0.0943550\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) − 16.0000i − 0.920697i
\(303\) 0 0
\(304\) −28.0000 −1.60591
\(305\) 0 0
\(306\) 18.0000 1.02899
\(307\) − 19.0000i − 1.08439i −0.840254 0.542194i \(-0.817594\pi\)
0.840254 0.542194i \(-0.182406\pi\)
\(308\) − 2.00000i − 0.113961i
\(309\) 0 0
\(310\) 0 0
\(311\) −14.0000 −0.793867 −0.396934 0.917847i \(-0.629926\pi\)
−0.396934 + 0.917847i \(0.629926\pi\)
\(312\) 0 0
\(313\) − 28.0000i − 1.58265i −0.611393 0.791327i \(-0.709391\pi\)
0.611393 0.791327i \(-0.290609\pi\)
\(314\) −28.0000 −1.58013
\(315\) 0 0
\(316\) 20.0000 1.12509
\(317\) 30.0000i 1.68497i 0.538721 + 0.842484i \(0.318908\pi\)
−0.538721 + 0.842484i \(0.681092\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) 8.00000i 0.445823i
\(323\) 21.0000i 1.16847i
\(324\) −18.0000 −1.00000
\(325\) 0 0
\(326\) 24.0000 1.32924
\(327\) 0 0
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 1.00000 0.0549650 0.0274825 0.999622i \(-0.491251\pi\)
0.0274825 + 0.999622i \(0.491251\pi\)
\(332\) 24.0000i 1.31717i
\(333\) 9.00000i 0.493197i
\(334\) −6.00000 −0.328305
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) − 8.00000i − 0.435143i
\(339\) 0 0
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) − 42.0000i − 2.27110i
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 12.0000 0.645124
\(347\) − 10.0000i − 0.536828i −0.963304 0.268414i \(-0.913500\pi\)
0.963304 0.268414i \(-0.0864995\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.00000i 0.426401i
\(353\) 22.0000i 1.17094i 0.810693 + 0.585471i \(0.199090\pi\)
−0.810693 + 0.585471i \(0.800910\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 20.0000 1.06000
\(357\) 0 0
\(358\) 30.0000i 1.58555i
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) − 4.00000i − 0.210235i
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 0 0
\(366\) 0 0
\(367\) 22.0000i 1.14839i 0.818718 + 0.574195i \(0.194685\pi\)
−0.818718 + 0.574195i \(0.805315\pi\)
\(368\) − 16.0000i − 0.834058i
\(369\) 15.0000 0.780869
\(370\) 0 0
\(371\) 9.00000 0.467257
\(372\) 0 0
\(373\) 32.0000i 1.65690i 0.560065 + 0.828449i \(0.310776\pi\)
−0.560065 + 0.828449i \(0.689224\pi\)
\(374\) 6.00000 0.310253
\(375\) 0 0
\(376\) 0 0
\(377\) − 12.0000i − 0.618031i
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 32.0000i 1.63726i
\(383\) − 16.0000i − 0.817562i −0.912633 0.408781i \(-0.865954\pi\)
0.912633 0.408781i \(-0.134046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 32.0000 1.62876
\(387\) 12.0000i 0.609994i
\(388\) 8.00000i 0.406138i
\(389\) −19.0000 −0.963338 −0.481669 0.876353i \(-0.659969\pi\)
−0.481669 + 0.876353i \(0.659969\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −6.00000 −0.301511
\(397\) 6.00000i 0.301131i 0.988600 + 0.150566i \(0.0481095\pi\)
−0.988600 + 0.150566i \(0.951890\pi\)
\(398\) − 20.0000i − 1.00251i
\(399\) 0 0
\(400\) 0 0
\(401\) 15.0000 0.749064 0.374532 0.927214i \(-0.377803\pi\)
0.374532 + 0.927214i \(0.377803\pi\)
\(402\) 0 0
\(403\) − 6.00000i − 0.298881i
\(404\) 22.0000 1.09454
\(405\) 0 0
\(406\) 8.00000 0.397033
\(407\) 3.00000i 0.148704i
\(408\) 0 0
\(409\) −23.0000 −1.13728 −0.568638 0.822588i \(-0.692530\pi\)
−0.568638 + 0.822588i \(0.692530\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 16.0000i 0.788263i
\(413\) 12.0000i 0.590481i
\(414\) 24.0000 1.17954
\(415\) 0 0
\(416\) 24.0000 1.17670
\(417\) 0 0
\(418\) − 14.0000i − 0.684762i
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) 13.0000 0.633581 0.316791 0.948495i \(-0.397395\pi\)
0.316791 + 0.948495i \(0.397395\pi\)
\(422\) 20.0000i 0.973585i
\(423\) − 24.0000i − 1.16692i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 9.00000i − 0.435541i
\(428\) − 28.0000i − 1.35343i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) −32.0000 −1.53252
\(437\) 28.0000i 1.33942i
\(438\) 0 0
\(439\) −7.00000 −0.334092 −0.167046 0.985949i \(-0.553423\pi\)
−0.167046 + 0.985949i \(0.553423\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) − 18.0000i − 0.856173i
\(443\) − 15.0000i − 0.712672i −0.934358 0.356336i \(-0.884026\pi\)
0.934358 0.356336i \(-0.115974\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 8.00000i 0.377964i
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 5.00000 0.235441
\(452\) − 10.0000i − 0.470360i
\(453\) 0 0
\(454\) 6.00000 0.281594
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) − 44.0000i − 2.05598i
\(459\) 0 0
\(460\) 0 0
\(461\) −21.0000 −0.978068 −0.489034 0.872265i \(-0.662651\pi\)
−0.489034 + 0.872265i \(0.662651\pi\)
\(462\) 0 0
\(463\) − 13.0000i − 0.604161i −0.953282 0.302081i \(-0.902319\pi\)
0.953282 0.302081i \(-0.0976812\pi\)
\(464\) −16.0000 −0.742781
\(465\) 0 0
\(466\) 48.0000 2.22356
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) 18.0000i 0.832050i
\(469\) 13.0000 0.600284
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000i 0.183920i
\(474\) 0 0
\(475\) 0 0
\(476\) 6.00000 0.275010
\(477\) − 27.0000i − 1.23625i
\(478\) − 24.0000i − 1.09773i
\(479\) 3.00000 0.137073 0.0685367 0.997649i \(-0.478167\pi\)
0.0685367 + 0.997649i \(0.478167\pi\)
\(480\) 0 0
\(481\) 9.00000 0.410365
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) − 13.0000i − 0.589086i −0.955638 0.294543i \(-0.904833\pi\)
0.955638 0.294543i \(-0.0951675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) −42.0000 −1.88967
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 3.00000i 0.134568i
\(498\) 0 0
\(499\) 31.0000 1.38775 0.693875 0.720095i \(-0.255902\pi\)
0.693875 + 0.720095i \(0.255902\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 44.0000i − 1.96382i
\(503\) − 31.0000i − 1.38222i −0.722749 0.691111i \(-0.757122\pi\)
0.722749 0.691111i \(-0.242878\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 8.00000 0.355643
\(507\) 0 0
\(508\) 36.0000i 1.59724i
\(509\) 38.0000 1.68432 0.842160 0.539227i \(-0.181284\pi\)
0.842160 + 0.539227i \(0.181284\pi\)
\(510\) 0 0
\(511\) −3.00000 −0.132712
\(512\) − 32.0000i − 1.41421i
\(513\) 0 0
\(514\) 16.0000 0.705730
\(515\) 0 0
\(516\) 0 0
\(517\) − 8.00000i − 0.351840i
\(518\) 6.00000i 0.263625i
\(519\) 0 0
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) − 24.0000i − 1.05045i
\(523\) − 13.0000i − 0.568450i −0.958758 0.284225i \(-0.908264\pi\)
0.958758 0.284225i \(-0.0917363\pi\)
\(524\) 40.0000 1.74741
\(525\) 0 0
\(526\) 60.0000 2.61612
\(527\) 6.00000i 0.261364i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 36.0000 1.56227
\(532\) − 14.0000i − 0.606977i
\(533\) − 15.0000i − 0.649722i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 28.0000i 1.20717i
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 54.0000i 2.31950i
\(543\) 0 0
\(544\) −24.0000 −1.02899
\(545\) 0 0
\(546\) 0 0
\(547\) 42.0000i 1.79579i 0.440209 + 0.897895i \(0.354904\pi\)
−0.440209 + 0.897895i \(0.645096\pi\)
\(548\) − 18.0000i − 0.768922i
\(549\) −27.0000 −1.15233
\(550\) 0 0
\(551\) 28.0000 1.19284
\(552\) 0 0
\(553\) − 10.0000i − 0.425243i
\(554\) −20.0000 −0.849719
\(555\) 0 0
\(556\) −34.0000 −1.44192
\(557\) 16.0000i 0.677942i 0.940797 + 0.338971i \(0.110079\pi\)
−0.940797 + 0.338971i \(0.889921\pi\)
\(558\) − 12.0000i − 0.508001i
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 32.0000i 1.34984i
\(563\) 45.0000i 1.89652i 0.317489 + 0.948262i \(0.397160\pi\)
−0.317489 + 0.948262i \(0.602840\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −40.0000 −1.68133
\(567\) 9.00000i 0.377964i
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) 6.00000i 0.250873i
\(573\) 0 0
\(574\) 10.0000 0.417392
\(575\) 0 0
\(576\) 24.0000 1.00000
\(577\) 10.0000i 0.416305i 0.978096 + 0.208153i \(0.0667451\pi\)
−0.978096 + 0.208153i \(0.933255\pi\)
\(578\) − 16.0000i − 0.665512i
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) − 9.00000i − 0.372742i
\(584\) 0 0
\(585\) 0 0
\(586\) −20.0000 −0.826192
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 14.0000 0.576860
\(590\) 0 0
\(591\) 0 0
\(592\) − 12.0000i − 0.493197i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) − 24.0000i − 0.981433i
\(599\) −3.00000 −0.122577 −0.0612883 0.998120i \(-0.519521\pi\)
−0.0612883 + 0.998120i \(0.519521\pi\)
\(600\) 0 0
\(601\) 34.0000 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(602\) 8.00000i 0.326056i
\(603\) − 39.0000i − 1.58820i
\(604\) −16.0000 −0.651031
\(605\) 0 0
\(606\) 0 0
\(607\) 28.0000i 1.13648i 0.822861 + 0.568242i \(0.192376\pi\)
−0.822861 + 0.568242i \(0.807624\pi\)
\(608\) 56.0000i 2.27110i
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) − 18.0000i − 0.727607i
\(613\) − 16.0000i − 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) −38.0000 −1.53356
\(615\) 0 0
\(616\) 0 0
\(617\) 5.00000i 0.201292i 0.994922 + 0.100646i \(0.0320910\pi\)
−0.994922 + 0.100646i \(0.967909\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 28.0000i 1.12270i
\(623\) − 10.0000i − 0.400642i
\(624\) 0 0
\(625\) 0 0
\(626\) −56.0000 −2.23821
\(627\) 0 0
\(628\) 28.0000i 1.11732i
\(629\) −9.00000 −0.358854
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 60.0000 2.38290
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000i 0.118864i
\(638\) − 8.00000i − 0.316723i
\(639\) 9.00000 0.356034
\(640\) 0 0
\(641\) −27.0000 −1.06644 −0.533218 0.845978i \(-0.679017\pi\)
−0.533218 + 0.845978i \(0.679017\pi\)
\(642\) 0 0
\(643\) − 6.00000i − 0.236617i −0.992977 0.118308i \(-0.962253\pi\)
0.992977 0.118308i \(-0.0377472\pi\)
\(644\) 8.00000 0.315244
\(645\) 0 0
\(646\) 42.0000 1.65247
\(647\) 2.00000i 0.0786281i 0.999227 + 0.0393141i \(0.0125173\pi\)
−0.999227 + 0.0393141i \(0.987483\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) − 24.0000i − 0.939913i
\(653\) − 39.0000i − 1.52619i −0.646288 0.763094i \(-0.723679\pi\)
0.646288 0.763094i \(-0.276321\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −20.0000 −0.780869
\(657\) 9.00000i 0.351123i
\(658\) − 16.0000i − 0.623745i
\(659\) 22.0000 0.856998 0.428499 0.903542i \(-0.359042\pi\)
0.428499 + 0.903542i \(0.359042\pi\)
\(660\) 0 0
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) − 2.00000i − 0.0777322i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 18.0000 0.697486
\(667\) 16.0000i 0.619522i
\(668\) 6.00000i 0.232147i
\(669\) 0 0
\(670\) 0 0
\(671\) −9.00000 −0.347441
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 28.0000 1.07852
\(675\) 0 0
\(676\) −8.00000 −0.307692
\(677\) − 5.00000i − 0.192166i −0.995373 0.0960828i \(-0.969369\pi\)
0.995373 0.0960828i \(-0.0306314\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) − 4.00000i − 0.153168i
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) −42.0000 −1.60591
\(685\) 0 0
\(686\) −2.00000 −0.0763604
\(687\) 0 0
\(688\) − 16.0000i − 0.609994i
\(689\) −27.0000 −1.02862
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) − 12.0000i − 0.456172i
\(693\) 3.00000i 0.113961i
\(694\) −20.0000 −0.759190
\(695\) 0 0
\(696\) 0 0
\(697\) 15.0000i 0.568166i
\(698\) − 2.00000i − 0.0757011i
\(699\) 0 0
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) 21.0000i 0.792030i
\(704\) 8.00000 0.301511
\(705\) 0 0
\(706\) 44.0000 1.65596
\(707\) − 11.0000i − 0.413698i
\(708\) 0 0
\(709\) 7.00000 0.262891 0.131445 0.991323i \(-0.458038\pi\)
0.131445 + 0.991323i \(0.458038\pi\)
\(710\) 0 0
\(711\) −30.0000 −1.12509
\(712\) 0 0
\(713\) 8.00000i 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 30.0000 1.12115
\(717\) 0 0
\(718\) 24.0000i 0.895672i
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) − 60.0000i − 2.23297i
\(723\) 0 0
\(724\) −4.00000 −0.148659
\(725\) 0 0
\(726\) 0 0
\(727\) − 24.0000i − 0.890111i −0.895503 0.445055i \(-0.853184\pi\)
0.895503 0.445055i \(-0.146816\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) − 14.0000i − 0.517102i −0.965998 0.258551i \(-0.916755\pi\)
0.965998 0.258551i \(-0.0832450\pi\)
\(734\) 44.0000 1.62407
\(735\) 0 0
\(736\) −32.0000 −1.17954
\(737\) − 13.0000i − 0.478861i
\(738\) − 30.0000i − 1.10432i
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 18.0000i − 0.660801i
\(743\) 28.0000i 1.02722i 0.858024 + 0.513610i \(0.171692\pi\)
−0.858024 + 0.513610i \(0.828308\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 64.0000 2.34321
\(747\) − 36.0000i − 1.31717i
\(748\) − 6.00000i − 0.219382i
\(749\) −14.0000 −0.511549
\(750\) 0 0
\(751\) −23.0000 −0.839282 −0.419641 0.907690i \(-0.637844\pi\)
−0.419641 + 0.907690i \(0.637844\pi\)
\(752\) 32.0000i 1.16692i
\(753\) 0 0
\(754\) −24.0000 −0.874028
\(755\) 0 0
\(756\) 0 0
\(757\) 22.0000i 0.799604i 0.916602 + 0.399802i \(0.130921\pi\)
−0.916602 + 0.399802i \(0.869079\pi\)
\(758\) − 24.0000i − 0.871719i
\(759\) 0 0
\(760\) 0 0
\(761\) −25.0000 −0.906249 −0.453125 0.891447i \(-0.649691\pi\)
−0.453125 + 0.891447i \(0.649691\pi\)
\(762\) 0 0
\(763\) 16.0000i 0.579239i
\(764\) 32.0000 1.15772
\(765\) 0 0
\(766\) −32.0000 −1.15621
\(767\) − 36.0000i − 1.29988i
\(768\) 0 0
\(769\) −46.0000 −1.65880 −0.829401 0.558653i \(-0.811318\pi\)
−0.829401 + 0.558653i \(0.811318\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 32.0000i − 1.15171i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 24.0000 0.862662
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 38.0000i 1.36237i
\(779\) 35.0000 1.25401
\(780\) 0 0
\(781\) 3.00000 0.107348
\(782\) 24.0000i 0.858238i
\(783\) 0 0
\(784\) 4.00000 0.142857
\(785\) 0 0
\(786\) 0 0
\(787\) 47.0000i 1.67537i 0.546154 + 0.837685i \(0.316091\pi\)
−0.546154 + 0.837685i \(0.683909\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.00000 −0.177780
\(792\) 0 0
\(793\) 27.0000i 0.958798i
\(794\) 12.0000 0.425864
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) − 12.0000i − 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) −30.0000 −1.06000
\(802\) − 30.0000i − 1.05934i
\(803\) 3.00000i 0.105868i
\(804\) 0 0
\(805\) 0 0
\(806\) −12.0000 −0.422682
\(807\) 0 0
\(808\) 0 0
\(809\) −54.0000 −1.89854 −0.949269 0.314464i \(-0.898175\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) −56.0000 −1.96643 −0.983213 0.182462i \(-0.941593\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) − 8.00000i − 0.280745i
\(813\) 0 0
\(814\) 6.00000 0.210300
\(815\) 0 0
\(816\) 0 0
\(817\) 28.0000i 0.979596i
\(818\) 46.0000i 1.60835i
\(819\) 9.00000 0.314485
\(820\) 0 0
\(821\) −50.0000 −1.74501 −0.872506 0.488603i \(-0.837507\pi\)
−0.872506 + 0.488603i \(0.837507\pi\)
\(822\) 0 0
\(823\) 16.0000i 0.557725i 0.960331 + 0.278862i \(0.0899574\pi\)
−0.960331 + 0.278862i \(0.910043\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 24.0000 0.835067
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) − 24.0000i − 0.834058i
\(829\) −44.0000 −1.52818 −0.764092 0.645108i \(-0.776812\pi\)
−0.764092 + 0.645108i \(0.776812\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 24.0000i − 0.832050i
\(833\) − 3.00000i − 0.103944i
\(834\) 0 0
\(835\) 0 0
\(836\) −14.0000 −0.484200
\(837\) 0 0
\(838\) 60.0000i 2.07267i
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) − 26.0000i − 0.896019i
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) −48.0000 −1.65027
\(847\) 1.00000i 0.0343604i
\(848\) 36.0000i 1.23625i
\(849\) 0 0
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 49.0000i 1.67773i 0.544341 + 0.838864i \(0.316780\pi\)
−0.544341 + 0.838864i \(0.683220\pi\)
\(854\) −18.0000 −0.615947
\(855\) 0 0
\(856\) 0 0
\(857\) − 7.00000i − 0.239115i −0.992827 0.119558i \(-0.961852\pi\)
0.992827 0.119558i \(-0.0381477\pi\)
\(858\) 0 0
\(859\) 8.00000 0.272956 0.136478 0.990643i \(-0.456422\pi\)
0.136478 + 0.990643i \(0.456422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 3.00000i − 0.102121i −0.998696 0.0510606i \(-0.983740\pi\)
0.998696 0.0510606i \(-0.0162602\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 28.0000 0.951479
\(867\) 0 0
\(868\) − 4.00000i − 0.135769i
\(869\) −10.0000 −0.339227
\(870\) 0 0
\(871\) −39.0000 −1.32146
\(872\) 0 0
\(873\) − 12.0000i − 0.406138i
\(874\) 56.0000 1.89423
\(875\) 0 0
\(876\) 0 0
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) 14.0000i 0.472477i
\(879\) 0 0
\(880\) 0 0
\(881\) −34.0000 −1.14549 −0.572745 0.819734i \(-0.694121\pi\)
−0.572745 + 0.819734i \(0.694121\pi\)
\(882\) 6.00000i 0.202031i
\(883\) − 23.0000i − 0.774012i −0.922077 0.387006i \(-0.873509\pi\)
0.922077 0.387006i \(-0.126491\pi\)
\(884\) −18.0000 −0.605406
\(885\) 0 0
\(886\) −30.0000 −1.00787
\(887\) 27.0000i 0.906571i 0.891365 + 0.453286i \(0.149748\pi\)
−0.891365 + 0.453286i \(0.850252\pi\)
\(888\) 0 0
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) 9.00000 0.301511
\(892\) 0 0
\(893\) − 56.0000i − 1.87397i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) − 18.0000i − 0.600668i
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 27.0000 0.899500
\(902\) − 10.0000i − 0.332964i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 44.0000i − 1.46100i −0.682915 0.730498i \(-0.739288\pi\)
0.682915 0.730498i \(-0.260712\pi\)
\(908\) − 6.00000i − 0.199117i
\(909\) −33.0000 −1.09454
\(910\) 0 0
\(911\) 13.0000 0.430709 0.215355 0.976536i \(-0.430909\pi\)
0.215355 + 0.976536i \(0.430909\pi\)
\(912\) 0 0
\(913\) − 12.0000i − 0.397142i
\(914\) 44.0000 1.45539
\(915\) 0 0
\(916\) −44.0000 −1.45380
\(917\) − 20.0000i − 0.660458i
\(918\) 0 0
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 42.0000i 1.38320i
\(923\) − 9.00000i − 0.296239i
\(924\) 0 0
\(925\) 0 0
\(926\) −26.0000 −0.854413
\(927\) − 24.0000i − 0.788263i
\(928\) 32.0000i 1.05045i
\(929\) 16.0000 0.524943 0.262471 0.964940i \(-0.415462\pi\)
0.262471 + 0.964940i \(0.415462\pi\)
\(930\) 0 0
\(931\) −7.00000 −0.229416
\(932\) − 48.0000i − 1.57229i
\(933\) 0 0
\(934\) 16.0000 0.523536
\(935\) 0 0
\(936\) 0 0
\(937\) 21.0000i 0.686040i 0.939328 + 0.343020i \(0.111450\pi\)
−0.939328 + 0.343020i \(0.888550\pi\)
\(938\) − 26.0000i − 0.848930i
\(939\) 0 0
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 20.0000i 0.651290i
\(944\) −48.0000 −1.56227
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) 43.0000i 1.39731i 0.715458 + 0.698656i \(0.246218\pi\)
−0.715458 + 0.698656i \(0.753782\pi\)
\(948\) 0 0
\(949\) 9.00000 0.292152
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 44.0000i − 1.42530i −0.701520 0.712650i \(-0.747495\pi\)
0.701520 0.712650i \(-0.252505\pi\)
\(954\) −54.0000 −1.74831
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) − 6.00000i − 0.193851i
\(959\) −9.00000 −0.290625
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) − 18.0000i − 0.580343i
\(963\) 42.0000i 1.35343i
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 0 0
\(967\) − 42.0000i − 1.35063i −0.737530 0.675314i \(-0.764008\pi\)
0.737530 0.675314i \(-0.235992\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) 17.0000i 0.544995i
\(974\) −26.0000 −0.833094
\(975\) 0 0
\(976\) 36.0000 1.15233
\(977\) 21.0000i 0.671850i 0.941889 + 0.335925i \(0.109049\pi\)
−0.941889 + 0.335925i \(0.890951\pi\)
\(978\) 0 0
\(979\) −10.0000 −0.319601
\(980\) 0 0
\(981\) 48.0000 1.53252
\(982\) 36.0000i 1.14881i
\(983\) − 36.0000i − 1.14822i −0.818778 0.574111i \(-0.805348\pi\)
0.818778 0.574111i \(-0.194652\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 24.0000 0.764316
\(987\) 0 0
\(988\) 42.0000i 1.33620i
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 16.0000i 0.508001i
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) 0 0
\(996\) 0 0
\(997\) − 29.0000i − 0.918439i −0.888323 0.459220i \(-0.848129\pi\)
0.888323 0.459220i \(-0.151871\pi\)
\(998\) − 62.0000i − 1.96258i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.2.b.a.1849.1 2
5.2 odd 4 1925.2.a.m.1.1 yes 1
5.3 odd 4 1925.2.a.a.1.1 1
5.4 even 2 inner 1925.2.b.a.1849.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1925.2.a.a.1.1 1 5.3 odd 4
1925.2.a.m.1.1 yes 1 5.2 odd 4
1925.2.b.a.1849.1 2 1.1 even 1 trivial
1925.2.b.a.1849.2 2 5.4 even 2 inner