Properties

Label 1920.2.m.d
Level 19201920
Weight 22
Character orbit 1920.m
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(959,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.959"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.m (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,-4,0,-4,0,0,0,0,0,8,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β31)q3+(β21)q5+(β3+β11)q7+(β3+β2β1)q92β2q11+(2β32β1+2)q13+(β3β22β11)q15++(4β32β24β1+4)q99+O(q100) q + (\beta_{3} - 1) q^{3} + (\beta_{2} - 1) q^{5} + (\beta_{3} + \beta_1 - 1) q^{7} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{9} - 2 \beta_{2} q^{11} + ( - 2 \beta_{3} - 2 \beta_1 + 2) q^{13} + ( - \beta_{3} - \beta_{2} - 2 \beta_1 - 1) q^{15}+ \cdots + (4 \beta_{3} - 2 \beta_{2} - 4 \beta_1 + 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q34q54q7+8q132q158q178q19+12q2112q2514q27+8q33+4q3524q3724q3916q454q49+24q51+32q55++32q99+O(q100) 4 q - 2 q^{3} - 4 q^{5} - 4 q^{7} + 8 q^{13} - 2 q^{15} - 8 q^{17} - 8 q^{19} + 12 q^{21} - 12 q^{25} - 14 q^{27} + 8 q^{33} + 4 q^{35} - 24 q^{37} - 24 q^{39} - 16 q^{45} - 4 q^{49} + 24 q^{51} + 32 q^{55}+ \cdots + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν3+ν2+3ν+1 \nu^{3} + \nu^{2} + 3\nu + 1 Copy content Toggle raw display
β2\beta_{2}== 2ν34ν -2\nu^{3} - 4\nu Copy content Toggle raw display
β3\beta_{3}== ν3+ν23ν+2 -\nu^{3} + \nu^{2} - 3\nu + 2 Copy content Toggle raw display
ν\nu== (β3+β2+β1+1)/2 ( -\beta_{3} + \beta_{2} + \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+β13)/2 ( \beta_{3} + \beta _1 - 3 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β33β22β12)/2 ( 2\beta_{3} - 3\beta_{2} - 2\beta _1 - 2 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
959.1
1.61803i
1.61803i
0.618034i
0.618034i
0 −1.61803 0.618034i 0 −1.00000 + 2.00000i 0 −3.23607 0 2.23607 + 2.00000i 0
959.2 0 −1.61803 + 0.618034i 0 −1.00000 2.00000i 0 −3.23607 0 2.23607 2.00000i 0
959.3 0 0.618034 1.61803i 0 −1.00000 2.00000i 0 1.23607 0 −2.23607 2.00000i 0
959.4 0 0.618034 + 1.61803i 0 −1.00000 + 2.00000i 0 1.23607 0 −2.23607 + 2.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.m.d yes 4
3.b odd 2 1 1920.2.m.t yes 4
4.b odd 2 1 1920.2.m.p yes 4
5.b even 2 1 1920.2.m.o yes 4
8.b even 2 1 1920.2.m.s yes 4
8.d odd 2 1 1920.2.m.g yes 4
12.b even 2 1 1920.2.m.h yes 4
15.d odd 2 1 1920.2.m.g yes 4
20.d odd 2 1 1920.2.m.c 4
24.f even 2 1 1920.2.m.o yes 4
24.h odd 2 1 1920.2.m.c 4
40.e odd 2 1 1920.2.m.t yes 4
40.f even 2 1 1920.2.m.h yes 4
60.h even 2 1 1920.2.m.s yes 4
120.i odd 2 1 1920.2.m.p yes 4
120.m even 2 1 inner 1920.2.m.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.m.c 4 20.d odd 2 1
1920.2.m.c 4 24.h odd 2 1
1920.2.m.d yes 4 1.a even 1 1 trivial
1920.2.m.d yes 4 120.m even 2 1 inner
1920.2.m.g yes 4 8.d odd 2 1
1920.2.m.g yes 4 15.d odd 2 1
1920.2.m.h yes 4 12.b even 2 1
1920.2.m.h yes 4 40.f even 2 1
1920.2.m.o yes 4 5.b even 2 1
1920.2.m.o yes 4 24.f even 2 1
1920.2.m.p yes 4 4.b odd 2 1
1920.2.m.p yes 4 120.i odd 2 1
1920.2.m.s yes 4 8.b even 2 1
1920.2.m.s yes 4 60.h even 2 1
1920.2.m.t yes 4 3.b odd 2 1
1920.2.m.t yes 4 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1920,[χ])S_{2}^{\mathrm{new}}(1920, [\chi]):

T72+2T74 T_{7}^{2} + 2T_{7} - 4 Copy content Toggle raw display
T1324T1316 T_{13}^{2} - 4T_{13} - 16 Copy content Toggle raw display
T172+4T1716 T_{17}^{2} + 4T_{17} - 16 Copy content Toggle raw display
T192+4T1916 T_{19}^{2} + 4T_{19} - 16 Copy content Toggle raw display
T29220 T_{29}^{2} - 20 Copy content Toggle raw display
T8326T83116 T_{83}^{2} - 6T_{83} - 116 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+2T3++9 T^{4} + 2 T^{3} + \cdots + 9 Copy content Toggle raw display
55 (T2+2T+5)2 (T^{2} + 2 T + 5)^{2} Copy content Toggle raw display
77 (T2+2T4)2 (T^{2} + 2 T - 4)^{2} Copy content Toggle raw display
1111 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
1313 (T24T16)2 (T^{2} - 4 T - 16)^{2} Copy content Toggle raw display
1717 (T2+4T16)2 (T^{2} + 4 T - 16)^{2} Copy content Toggle raw display
1919 (T2+4T16)2 (T^{2} + 4 T - 16)^{2} Copy content Toggle raw display
2323 T4+12T2+16 T^{4} + 12T^{2} + 16 Copy content Toggle raw display
2929 (T220)2 (T^{2} - 20)^{2} Copy content Toggle raw display
3131 T4+48T2+256 T^{4} + 48T^{2} + 256 Copy content Toggle raw display
3737 (T2+12T+16)2 (T^{2} + 12 T + 16)^{2} Copy content Toggle raw display
4141 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
4343 T4+108T2+1936 T^{4} + 108T^{2} + 1936 Copy content Toggle raw display
4747 T4+108T2+1936 T^{4} + 108T^{2} + 1936 Copy content Toggle raw display
5353 (T2+80)2 (T^{2} + 80)^{2} Copy content Toggle raw display
5959 (T2+80)2 (T^{2} + 80)^{2} Copy content Toggle raw display
6161 T4+192T2+4096 T^{4} + 192T^{2} + 4096 Copy content Toggle raw display
6767 T4+140T2+400 T^{4} + 140T^{2} + 400 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4+192T2+4096 T^{4} + 192T^{2} + 4096 Copy content Toggle raw display
7979 T4+112T2+256 T^{4} + 112T^{2} + 256 Copy content Toggle raw display
8383 (T26T116)2 (T^{2} - 6 T - 116)^{2} Copy content Toggle raw display
8989 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
9797 T4+192T2+4096 T^{4} + 192T^{2} + 4096 Copy content Toggle raw display
show more
show less