Properties

Label 1920.2.d.b.1729.2
Level $1920$
Weight $2$
Character 1920.1729
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1729,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1729");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1729.2
Root \(-1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1729
Dual form 1920.2.d.b.1729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-1.73205 + 1.41421i) q^{5} +1.00000 q^{9} -3.46410 q^{13} +(-1.73205 + 1.41421i) q^{15} -4.89898i q^{17} -4.89898i q^{19} -2.82843i q^{23} +(1.00000 - 4.89898i) q^{25} +1.00000 q^{27} -2.82843i q^{29} +6.92820 q^{31} +3.46410 q^{37} -3.46410 q^{39} +6.00000 q^{41} +4.00000 q^{43} +(-1.73205 + 1.41421i) q^{45} +2.82843i q^{47} +7.00000 q^{49} -4.89898i q^{51} +3.46410 q^{53} -4.89898i q^{57} +9.79796i q^{59} +(6.00000 - 4.89898i) q^{65} +4.00000 q^{67} -2.82843i q^{69} -13.8564 q^{71} -9.79796i q^{73} +(1.00000 - 4.89898i) q^{75} +6.92820 q^{79} +1.00000 q^{81} -12.0000 q^{83} +(6.92820 + 8.48528i) q^{85} -2.82843i q^{87} +6.00000 q^{89} +6.92820 q^{93} +(6.92820 + 8.48528i) q^{95} -9.79796i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{9} + 4 q^{25} + 4 q^{27} + 24 q^{41} + 16 q^{43} + 28 q^{49} + 24 q^{65} + 16 q^{67} + 4 q^{75} + 4 q^{81} - 48 q^{83} + 24 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.73205 + 1.41421i −0.774597 + 0.632456i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −3.46410 −0.960769 −0.480384 0.877058i \(-0.659503\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(14\) 0 0
\(15\) −1.73205 + 1.41421i −0.447214 + 0.365148i
\(16\) 0 0
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) 4.89898i 1.12390i −0.827170 0.561951i \(-0.810051\pi\)
0.827170 0.561951i \(-0.189949\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843i 0.589768i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952810\pi\)
\(24\) 0 0
\(25\) 1.00000 4.89898i 0.200000 0.979796i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 0 0
\(31\) 6.92820 1.24434 0.622171 0.782881i \(-0.286251\pi\)
0.622171 + 0.782881i \(0.286251\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.46410 0.569495 0.284747 0.958603i \(-0.408090\pi\)
0.284747 + 0.958603i \(0.408090\pi\)
\(38\) 0 0
\(39\) −3.46410 −0.554700
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −1.73205 + 1.41421i −0.258199 + 0.210819i
\(46\) 0 0
\(47\) 2.82843i 0.412568i 0.978492 + 0.206284i \(0.0661372\pi\)
−0.978492 + 0.206284i \(0.933863\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 4.89898i 0.685994i
\(52\) 0 0
\(53\) 3.46410 0.475831 0.237915 0.971286i \(-0.423536\pi\)
0.237915 + 0.971286i \(0.423536\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.89898i 0.648886i
\(58\) 0 0
\(59\) 9.79796i 1.27559i 0.770208 + 0.637793i \(0.220152\pi\)
−0.770208 + 0.637793i \(0.779848\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 4.89898i 0.744208 0.607644i
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 2.82843i 0.340503i
\(70\) 0 0
\(71\) −13.8564 −1.64445 −0.822226 0.569160i \(-0.807268\pi\)
−0.822226 + 0.569160i \(0.807268\pi\)
\(72\) 0 0
\(73\) 9.79796i 1.14676i −0.819288 0.573382i \(-0.805631\pi\)
0.819288 0.573382i \(-0.194369\pi\)
\(74\) 0 0
\(75\) 1.00000 4.89898i 0.115470 0.565685i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.92820 0.779484 0.389742 0.920924i \(-0.372564\pi\)
0.389742 + 0.920924i \(0.372564\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 6.92820 + 8.48528i 0.751469 + 0.920358i
\(86\) 0 0
\(87\) 2.82843i 0.303239i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.92820 0.718421
\(94\) 0 0
\(95\) 6.92820 + 8.48528i 0.710819 + 0.870572i
\(96\) 0 0
\(97\) 9.79796i 0.994832i −0.867512 0.497416i \(-0.834282\pi\)
0.867512 0.497416i \(-0.165718\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.82843i 0.281439i 0.990050 + 0.140720i \(0.0449416\pi\)
−0.990050 + 0.140720i \(0.955058\pi\)
\(102\) 0 0
\(103\) 16.9706i 1.67216i −0.548608 0.836080i \(-0.684842\pi\)
0.548608 0.836080i \(-0.315158\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 16.9706i 1.62549i −0.582623 0.812743i \(-0.697974\pi\)
0.582623 0.812743i \(-0.302026\pi\)
\(110\) 0 0
\(111\) 3.46410 0.328798
\(112\) 0 0
\(113\) 14.6969i 1.38257i −0.722581 0.691286i \(-0.757045\pi\)
0.722581 0.691286i \(-0.242955\pi\)
\(114\) 0 0
\(115\) 4.00000 + 4.89898i 0.373002 + 0.456832i
\(116\) 0 0
\(117\) −3.46410 −0.320256
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 5.19615 + 9.89949i 0.464758 + 0.885438i
\(126\) 0 0
\(127\) 16.9706i 1.50589i 0.658081 + 0.752947i \(0.271368\pi\)
−0.658081 + 0.752947i \(0.728632\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 19.5959i 1.71210i 0.516890 + 0.856052i \(0.327090\pi\)
−0.516890 + 0.856052i \(0.672910\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.73205 + 1.41421i −0.149071 + 0.121716i
\(136\) 0 0
\(137\) 4.89898i 0.418548i −0.977857 0.209274i \(-0.932890\pi\)
0.977857 0.209274i \(-0.0671101\pi\)
\(138\) 0 0
\(139\) 14.6969i 1.24658i −0.781992 0.623289i \(-0.785796\pi\)
0.781992 0.623289i \(-0.214204\pi\)
\(140\) 0 0
\(141\) 2.82843i 0.238197i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.00000 + 4.89898i 0.332182 + 0.406838i
\(146\) 0 0
\(147\) 7.00000 0.577350
\(148\) 0 0
\(149\) 19.7990i 1.62200i −0.585049 0.810998i \(-0.698925\pi\)
0.585049 0.810998i \(-0.301075\pi\)
\(150\) 0 0
\(151\) −6.92820 −0.563809 −0.281905 0.959442i \(-0.590966\pi\)
−0.281905 + 0.959442i \(0.590966\pi\)
\(152\) 0 0
\(153\) 4.89898i 0.396059i
\(154\) 0 0
\(155\) −12.0000 + 9.79796i −0.963863 + 0.786991i
\(156\) 0 0
\(157\) −10.3923 −0.829396 −0.414698 0.909959i \(-0.636113\pi\)
−0.414698 + 0.909959i \(0.636113\pi\)
\(158\) 0 0
\(159\) 3.46410 0.274721
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.1421i 1.09435i −0.837018 0.547176i \(-0.815703\pi\)
0.837018 0.547176i \(-0.184297\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 4.89898i 0.374634i
\(172\) 0 0
\(173\) −3.46410 −0.263371 −0.131685 0.991292i \(-0.542039\pi\)
−0.131685 + 0.991292i \(0.542039\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9.79796i 0.736460i
\(178\) 0 0
\(179\) 19.5959i 1.46467i 0.680946 + 0.732334i \(0.261569\pi\)
−0.680946 + 0.732334i \(0.738431\pi\)
\(180\) 0 0
\(181\) 16.9706i 1.26141i 0.776022 + 0.630706i \(0.217235\pi\)
−0.776022 + 0.630706i \(0.782765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.00000 + 4.89898i −0.441129 + 0.360180i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.8564 1.00261 0.501307 0.865269i \(-0.332853\pi\)
0.501307 + 0.865269i \(0.332853\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 6.00000 4.89898i 0.429669 0.350823i
\(196\) 0 0
\(197\) −10.3923 −0.740421 −0.370211 0.928948i \(-0.620714\pi\)
−0.370211 + 0.928948i \(0.620714\pi\)
\(198\) 0 0
\(199\) −20.7846 −1.47338 −0.736691 0.676230i \(-0.763613\pi\)
−0.736691 + 0.676230i \(0.763613\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −10.3923 + 8.48528i −0.725830 + 0.592638i
\(206\) 0 0
\(207\) 2.82843i 0.196589i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 14.6969i 1.01178i −0.862598 0.505889i \(-0.831164\pi\)
0.862598 0.505889i \(-0.168836\pi\)
\(212\) 0 0
\(213\) −13.8564 −0.949425
\(214\) 0 0
\(215\) −6.92820 + 5.65685i −0.472500 + 0.385794i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 9.79796i 0.662085i
\(220\) 0 0
\(221\) 16.9706i 1.14156i
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000 4.89898i 0.0666667 0.326599i
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 16.9706i 1.12145i −0.828003 0.560723i \(-0.810523\pi\)
0.828003 0.560723i \(-0.189477\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.89898i 0.320943i 0.987040 + 0.160471i \(0.0513014\pi\)
−0.987040 + 0.160471i \(0.948699\pi\)
\(234\) 0 0
\(235\) −4.00000 4.89898i −0.260931 0.319574i
\(236\) 0 0
\(237\) 6.92820 0.450035
\(238\) 0 0
\(239\) 13.8564 0.896296 0.448148 0.893959i \(-0.352084\pi\)
0.448148 + 0.893959i \(0.352084\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −12.1244 + 9.89949i −0.774597 + 0.632456i
\(246\) 0 0
\(247\) 16.9706i 1.07981i
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 9.79796i 0.618442i 0.950990 + 0.309221i \(0.100068\pi\)
−0.950990 + 0.309221i \(0.899932\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 6.92820 + 8.48528i 0.433861 + 0.531369i
\(256\) 0 0
\(257\) 14.6969i 0.916770i 0.888754 + 0.458385i \(0.151572\pi\)
−0.888754 + 0.458385i \(0.848428\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.82843i 0.175075i
\(262\) 0 0
\(263\) 14.1421i 0.872041i −0.899937 0.436021i \(-0.856387\pi\)
0.899937 0.436021i \(-0.143613\pi\)
\(264\) 0 0
\(265\) −6.00000 + 4.89898i −0.368577 + 0.300942i
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) 19.7990i 1.20717i −0.797300 0.603583i \(-0.793739\pi\)
0.797300 0.603583i \(-0.206261\pi\)
\(270\) 0 0
\(271\) −6.92820 −0.420858 −0.210429 0.977609i \(-0.567486\pi\)
−0.210429 + 0.977609i \(0.567486\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.3205 1.04069 0.520344 0.853957i \(-0.325804\pi\)
0.520344 + 0.853957i \(0.325804\pi\)
\(278\) 0 0
\(279\) 6.92820 0.414781
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 0 0
\(285\) 6.92820 + 8.48528i 0.410391 + 0.502625i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) 9.79796i 0.574367i
\(292\) 0 0
\(293\) −3.46410 −0.202375 −0.101187 0.994867i \(-0.532264\pi\)
−0.101187 + 0.994867i \(0.532264\pi\)
\(294\) 0 0
\(295\) −13.8564 16.9706i −0.806751 0.988064i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.79796i 0.566631i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.82843i 0.162489i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 16.9706i 0.965422i
\(310\) 0 0
\(311\) 27.7128 1.57145 0.785725 0.618576i \(-0.212290\pi\)
0.785725 + 0.618576i \(0.212290\pi\)
\(312\) 0 0
\(313\) 19.5959i 1.10763i 0.832641 + 0.553813i \(0.186828\pi\)
−0.832641 + 0.553813i \(0.813172\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.1769 1.75107 0.875535 0.483155i \(-0.160509\pi\)
0.875535 + 0.483155i \(0.160509\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) −3.46410 + 16.9706i −0.192154 + 0.941357i
\(326\) 0 0
\(327\) 16.9706i 0.938474i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.89898i 0.269272i −0.990895 0.134636i \(-0.957013\pi\)
0.990895 0.134636i \(-0.0429866\pi\)
\(332\) 0 0
\(333\) 3.46410 0.189832
\(334\) 0 0
\(335\) −6.92820 + 5.65685i −0.378528 + 0.309067i
\(336\) 0 0
\(337\) 9.79796i 0.533729i 0.963734 + 0.266864i \(0.0859876\pi\)
−0.963734 + 0.266864i \(0.914012\pi\)
\(338\) 0 0
\(339\) 14.6969i 0.798228i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.00000 + 4.89898i 0.215353 + 0.263752i
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 33.9411i 1.81683i −0.418073 0.908413i \(-0.637294\pi\)
0.418073 0.908413i \(-0.362706\pi\)
\(350\) 0 0
\(351\) −3.46410 −0.184900
\(352\) 0 0
\(353\) 34.2929i 1.82522i 0.408826 + 0.912612i \(0.365938\pi\)
−0.408826 + 0.912612i \(0.634062\pi\)
\(354\) 0 0
\(355\) 24.0000 19.5959i 1.27379 1.04004i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.7128 −1.46263 −0.731313 0.682042i \(-0.761092\pi\)
−0.731313 + 0.682042i \(0.761092\pi\)
\(360\) 0 0
\(361\) −5.00000 −0.263158
\(362\) 0 0
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) 13.8564 + 16.9706i 0.725277 + 0.888280i
\(366\) 0 0
\(367\) 16.9706i 0.885856i 0.896557 + 0.442928i \(0.146060\pi\)
−0.896557 + 0.442928i \(0.853940\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 31.1769 1.61428 0.807140 0.590360i \(-0.201014\pi\)
0.807140 + 0.590360i \(0.201014\pi\)
\(374\) 0 0
\(375\) 5.19615 + 9.89949i 0.268328 + 0.511208i
\(376\) 0 0
\(377\) 9.79796i 0.504621i
\(378\) 0 0
\(379\) 4.89898i 0.251644i 0.992053 + 0.125822i \(0.0401568\pi\)
−0.992053 + 0.125822i \(0.959843\pi\)
\(380\) 0 0
\(381\) 16.9706i 0.869428i
\(382\) 0 0
\(383\) 14.1421i 0.722629i 0.932444 + 0.361315i \(0.117672\pi\)
−0.932444 + 0.361315i \(0.882328\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 31.1127i 1.57748i −0.614729 0.788738i \(-0.710735\pi\)
0.614729 0.788738i \(-0.289265\pi\)
\(390\) 0 0
\(391\) −13.8564 −0.700749
\(392\) 0 0
\(393\) 19.5959i 0.988483i
\(394\) 0 0
\(395\) −12.0000 + 9.79796i −0.603786 + 0.492989i
\(396\) 0 0
\(397\) −17.3205 −0.869291 −0.434646 0.900602i \(-0.643126\pi\)
−0.434646 + 0.900602i \(0.643126\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −24.0000 −1.19553
\(404\) 0 0
\(405\) −1.73205 + 1.41421i −0.0860663 + 0.0702728i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 4.89898i 0.241649i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 20.7846 16.9706i 1.02028 0.833052i
\(416\) 0 0
\(417\) 14.6969i 0.719712i
\(418\) 0 0
\(419\) 9.79796i 0.478662i −0.970938 0.239331i \(-0.923072\pi\)
0.970938 0.239331i \(-0.0769280\pi\)
\(420\) 0 0
\(421\) 16.9706i 0.827095i 0.910483 + 0.413547i \(0.135710\pi\)
−0.910483 + 0.413547i \(0.864290\pi\)
\(422\) 0 0
\(423\) 2.82843i 0.137523i
\(424\) 0 0
\(425\) −24.0000 4.89898i −1.16417 0.237635i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.8564 −0.667440 −0.333720 0.942672i \(-0.608304\pi\)
−0.333720 + 0.942672i \(0.608304\pi\)
\(432\) 0 0
\(433\) 19.5959i 0.941720i 0.882208 + 0.470860i \(0.156056\pi\)
−0.882208 + 0.470860i \(0.843944\pi\)
\(434\) 0 0
\(435\) 4.00000 + 4.89898i 0.191785 + 0.234888i
\(436\) 0 0
\(437\) −13.8564 −0.662842
\(438\) 0 0
\(439\) 34.6410 1.65333 0.826663 0.562698i \(-0.190236\pi\)
0.826663 + 0.562698i \(0.190236\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) −10.3923 + 8.48528i −0.492642 + 0.402241i
\(446\) 0 0
\(447\) 19.7990i 0.936460i
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −6.92820 −0.325515
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 29.3939i 1.37499i 0.726190 + 0.687494i \(0.241289\pi\)
−0.726190 + 0.687494i \(0.758711\pi\)
\(458\) 0 0
\(459\) 4.89898i 0.228665i
\(460\) 0 0
\(461\) 14.1421i 0.658665i 0.944214 + 0.329332i \(0.106824\pi\)
−0.944214 + 0.329332i \(0.893176\pi\)
\(462\) 0 0
\(463\) 16.9706i 0.788689i −0.918963 0.394344i \(-0.870972\pi\)
0.918963 0.394344i \(-0.129028\pi\)
\(464\) 0 0
\(465\) −12.0000 + 9.79796i −0.556487 + 0.454369i
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −10.3923 −0.478852
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −24.0000 4.89898i −1.10120 0.224781i
\(476\) 0 0
\(477\) 3.46410 0.158610
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.8564 + 16.9706i 0.629187 + 0.770594i
\(486\) 0 0
\(487\) 16.9706i 0.769010i 0.923123 + 0.384505i \(0.125628\pi\)
−0.923123 + 0.384505i \(0.874372\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 29.3939i 1.32653i 0.748386 + 0.663264i \(0.230829\pi\)
−0.748386 + 0.663264i \(0.769171\pi\)
\(492\) 0 0
\(493\) −13.8564 −0.624061
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.89898i 0.219308i −0.993970 0.109654i \(-0.965026\pi\)
0.993970 0.109654i \(-0.0349744\pi\)
\(500\) 0 0
\(501\) 14.1421i 0.631824i
\(502\) 0 0
\(503\) 36.7696i 1.63947i 0.572741 + 0.819737i \(0.305880\pi\)
−0.572741 + 0.819737i \(0.694120\pi\)
\(504\) 0 0
\(505\) −4.00000 4.89898i −0.177998 0.218002i
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) 0 0
\(509\) 14.1421i 0.626839i −0.949615 0.313420i \(-0.898525\pi\)
0.949615 0.313420i \(-0.101475\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.89898i 0.216295i
\(514\) 0 0
\(515\) 24.0000 + 29.3939i 1.05757 + 1.29525i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −3.46410 −0.152057
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 33.9411i 1.47850i
\(528\) 0 0
\(529\) 15.0000 0.652174
\(530\) 0 0
\(531\) 9.79796i 0.425195i
\(532\) 0 0
\(533\) −20.7846 −0.900281
\(534\) 0 0
\(535\) 20.7846 16.9706i 0.898597 0.733701i
\(536\) 0 0
\(537\) 19.5959i 0.845626i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 16.9706i 0.729621i −0.931082 0.364811i \(-0.881134\pi\)
0.931082 0.364811i \(-0.118866\pi\)
\(542\) 0 0
\(543\) 16.9706i 0.728277i
\(544\) 0 0
\(545\) 24.0000 + 29.3939i 1.02805 + 1.25910i
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13.8564 −0.590303
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −6.00000 + 4.89898i −0.254686 + 0.207950i
\(556\) 0 0
\(557\) −31.1769 −1.32101 −0.660504 0.750822i \(-0.729657\pi\)
−0.660504 + 0.750822i \(0.729657\pi\)
\(558\) 0 0
\(559\) −13.8564 −0.586064
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 20.7846 + 25.4558i 0.874415 + 1.07094i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 24.4949i 1.02508i −0.858663 0.512540i \(-0.828705\pi\)
0.858663 0.512540i \(-0.171295\pi\)
\(572\) 0 0
\(573\) 13.8564 0.578860
\(574\) 0 0
\(575\) −13.8564 2.82843i −0.577852 0.117954i
\(576\) 0 0
\(577\) 19.5959i 0.815789i 0.913029 + 0.407894i \(0.133737\pi\)
−0.913029 + 0.407894i \(0.866263\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 6.00000 4.89898i 0.248069 0.202548i
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 33.9411i 1.39852i
\(590\) 0 0
\(591\) −10.3923 −0.427482
\(592\) 0 0
\(593\) 4.89898i 0.201177i 0.994928 + 0.100588i \(0.0320726\pi\)
−0.994928 + 0.100588i \(0.967927\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −20.7846 −0.850657
\(598\) 0 0
\(599\) 27.7128 1.13231 0.566157 0.824297i \(-0.308429\pi\)
0.566157 + 0.824297i \(0.308429\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) −19.0526 + 15.5563i −0.774597 + 0.632456i
\(606\) 0 0
\(607\) 33.9411i 1.37763i 0.724938 + 0.688814i \(0.241868\pi\)
−0.724938 + 0.688814i \(0.758132\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.79796i 0.396383i
\(612\) 0 0
\(613\) −3.46410 −0.139914 −0.0699569 0.997550i \(-0.522286\pi\)
−0.0699569 + 0.997550i \(0.522286\pi\)
\(614\) 0 0
\(615\) −10.3923 + 8.48528i −0.419058 + 0.342160i
\(616\) 0 0
\(617\) 4.89898i 0.197225i −0.995126 0.0986127i \(-0.968559\pi\)
0.995126 0.0986127i \(-0.0314405\pi\)
\(618\) 0 0
\(619\) 44.0908i 1.77216i 0.463533 + 0.886080i \(0.346582\pi\)
−0.463533 + 0.886080i \(0.653418\pi\)
\(620\) 0 0
\(621\) 2.82843i 0.113501i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −23.0000 9.79796i −0.920000 0.391918i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.9706i 0.676661i
\(630\) 0 0
\(631\) 48.4974 1.93065 0.965326 0.261048i \(-0.0840679\pi\)
0.965326 + 0.261048i \(0.0840679\pi\)
\(632\) 0 0
\(633\) 14.6969i 0.584151i
\(634\) 0 0
\(635\) −24.0000 29.3939i −0.952411 1.16646i
\(636\) 0 0
\(637\) −24.2487 −0.960769
\(638\) 0 0
\(639\) −13.8564 −0.548151
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) −6.92820 + 5.65685i −0.272798 + 0.222738i
\(646\) 0 0
\(647\) 31.1127i 1.22317i −0.791180 0.611583i \(-0.790533\pi\)
0.791180 0.611583i \(-0.209467\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.1769 1.22005 0.610023 0.792383i \(-0.291160\pi\)
0.610023 + 0.792383i \(0.291160\pi\)
\(654\) 0 0
\(655\) −27.7128 33.9411i −1.08283 1.32619i
\(656\) 0 0
\(657\) 9.79796i 0.382255i
\(658\) 0 0
\(659\) 9.79796i 0.381674i 0.981622 + 0.190837i \(0.0611202\pi\)
−0.981622 + 0.190837i \(0.938880\pi\)
\(660\) 0 0
\(661\) 33.9411i 1.32016i 0.751197 + 0.660078i \(0.229477\pi\)
−0.751197 + 0.660078i \(0.770523\pi\)
\(662\) 0 0
\(663\) 16.9706i 0.659082i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.1918i 1.51073i −0.655302 0.755367i \(-0.727459\pi\)
0.655302 0.755367i \(-0.272541\pi\)
\(674\) 0 0
\(675\) 1.00000 4.89898i 0.0384900 0.188562i
\(676\) 0 0
\(677\) 17.3205 0.665681 0.332841 0.942983i \(-0.391993\pi\)
0.332841 + 0.942983i \(0.391993\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) 6.92820 + 8.48528i 0.264713 + 0.324206i
\(686\) 0 0
\(687\) 16.9706i 0.647467i
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 34.2929i 1.30456i 0.757977 + 0.652281i \(0.226188\pi\)
−0.757977 + 0.652281i \(0.773812\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.7846 + 25.4558i 0.788405 + 0.965595i
\(696\) 0 0
\(697\) 29.3939i 1.11337i
\(698\) 0 0
\(699\) 4.89898i 0.185296i
\(700\) 0 0
\(701\) 2.82843i 0.106828i 0.998572 + 0.0534141i \(0.0170103\pi\)
−0.998572 + 0.0534141i \(0.982990\pi\)
\(702\) 0 0
\(703\) 16.9706i 0.640057i
\(704\) 0 0
\(705\) −4.00000 4.89898i −0.150649 0.184506i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16.9706i 0.637343i −0.947865 0.318671i \(-0.896763\pi\)
0.947865 0.318671i \(-0.103237\pi\)
\(710\) 0 0
\(711\) 6.92820 0.259828
\(712\) 0 0
\(713\) 19.5959i 0.733873i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 13.8564 0.517477
\(718\) 0 0
\(719\) −41.5692 −1.55027 −0.775135 0.631795i \(-0.782318\pi\)
−0.775135 + 0.631795i \(0.782318\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14.0000 −0.520666
\(724\) 0 0
\(725\) −13.8564 2.82843i −0.514614 0.105045i
\(726\) 0 0
\(727\) 50.9117i 1.88821i 0.329645 + 0.944105i \(0.393071\pi\)
−0.329645 + 0.944105i \(0.606929\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 19.5959i 0.724781i
\(732\) 0 0
\(733\) −51.9615 −1.91924 −0.959621 0.281295i \(-0.909236\pi\)
−0.959621 + 0.281295i \(0.909236\pi\)
\(734\) 0 0
\(735\) −12.1244 + 9.89949i −0.447214 + 0.365148i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 14.6969i 0.540636i 0.962771 + 0.270318i \(0.0871288\pi\)
−0.962771 + 0.270318i \(0.912871\pi\)
\(740\) 0 0
\(741\) 16.9706i 0.623429i
\(742\) 0 0
\(743\) 14.1421i 0.518825i 0.965767 + 0.259412i \(0.0835289\pi\)
−0.965767 + 0.259412i \(0.916471\pi\)
\(744\) 0 0
\(745\) 28.0000 + 34.2929i 1.02584 + 1.25639i
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.92820 0.252814 0.126407 0.991978i \(-0.459656\pi\)
0.126407 + 0.991978i \(0.459656\pi\)
\(752\) 0 0
\(753\) 9.79796i 0.357057i
\(754\) 0 0
\(755\) 12.0000 9.79796i 0.436725 0.356584i
\(756\) 0 0
\(757\) 45.0333 1.63676 0.818382 0.574675i \(-0.194871\pi\)
0.818382 + 0.574675i \(0.194871\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 6.92820 + 8.48528i 0.250490 + 0.306786i
\(766\) 0 0
\(767\) 33.9411i 1.22554i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 14.6969i 0.529297i
\(772\) 0 0
\(773\) 17.3205 0.622975 0.311488 0.950250i \(-0.399173\pi\)
0.311488 + 0.950250i \(0.399173\pi\)
\(774\) 0 0
\(775\) 6.92820 33.9411i 0.248868 1.21920i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 29.3939i 1.05314i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.82843i 0.101080i
\(784\) 0 0
\(785\) 18.0000 14.6969i 0.642448 0.524556i
\(786\) 0 0
\(787\) 44.0000 1.56843 0.784215 0.620489i \(-0.213066\pi\)
0.784215 + 0.620489i \(0.213066\pi\)
\(788\) 0 0
\(789\) 14.1421i 0.503473i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −6.00000 + 4.89898i −0.212798 + 0.173749i
\(796\) 0 0
\(797\) 17.3205 0.613524 0.306762 0.951786i \(-0.400754\pi\)
0.306762 + 0.951786i \(0.400754\pi\)
\(798\) 0 0
\(799\) 13.8564 0.490204
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\)