Defining parameters
Level: | \( N \) | \(=\) | \( 1920 = 2^{7} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1920.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(13\), \(31\), \(43\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1920, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 416 | 48 | 368 |
Cusp forms | 352 | 48 | 304 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1920, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1920, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(960, [\chi])\)\(^{\oplus 2}\)