Properties

Label 1920.2.b.g.191.1
Level $1920$
Weight $2$
Character 1920.191
Analytic conductor $15.331$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(191,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,0,-8,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.1
Root \(-1.49094 + 1.49094i\) of defining polynomial
Character \(\chi\) \(=\) 1920.191
Dual form 1920.2.b.g.191.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15558 - 1.29021i) q^{3} -1.00000 q^{5} -4.31116i q^{7} +(-0.329281 + 2.98187i) q^{9} -5.96375i q^{11} -4.89157i q^{13} +(1.15558 + 1.29021i) q^{15} -1.07217i q^{17} +4.23301 q^{19} +(-5.56229 + 4.98187i) q^{21} +5.38333 q^{23} +1.00000 q^{25} +(4.22775 - 3.02095i) q^{27} +2.80291 q^{29} -0.927826i q^{31} +(-7.69448 + 6.89157i) q^{33} +4.31116i q^{35} -8.35305i q^{37} +(-6.31116 + 5.65259i) q^{39} +6.50228i q^{41} -11.4720 q^{43} +(0.329281 - 2.98187i) q^{45} +1.92186 q^{47} -11.5861 q^{49} +(-1.38333 + 1.23898i) q^{51} +1.46147 q^{53} +5.96375i q^{55} +(-4.89157 - 5.46147i) q^{57} +5.34144i q^{59} -5.42522i q^{61} +(12.8553 + 1.41958i) q^{63} +4.89157i q^{65} +3.47199 q^{67} +(-6.22085 - 6.94562i) q^{69} +6.47796 q^{71} +14.4660 q^{73} +(-1.15558 - 1.29021i) q^{75} -25.7106 q^{77} -1.91134i q^{79} +(-8.78315 - 1.96375i) q^{81} +3.20273i q^{83} +1.07217i q^{85} +(-3.23898 - 3.61634i) q^{87} +0.538528i q^{89} -21.0883 q^{91} +(-1.19709 + 1.07217i) q^{93} -4.23301 q^{95} -7.78315 q^{97} +(17.7831 + 1.96375i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - 8 q^{5} - 4 q^{9} - 2 q^{15} - 8 q^{19} - 4 q^{21} + 12 q^{23} + 8 q^{25} + 14 q^{27} + 8 q^{29} - 8 q^{33} - 28 q^{39} - 36 q^{43} + 4 q^{45} - 4 q^{47} + 20 q^{51} + 16 q^{63} - 28 q^{67}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.15558 1.29021i −0.667173 0.744903i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.31116i 1.62946i −0.579838 0.814732i \(-0.696884\pi\)
0.579838 0.814732i \(-0.303116\pi\)
\(8\) 0 0
\(9\) −0.329281 + 2.98187i −0.109760 + 0.993958i
\(10\) 0 0
\(11\) 5.96375i 1.79814i −0.437807 0.899069i \(-0.644245\pi\)
0.437807 0.899069i \(-0.355755\pi\)
\(12\) 0 0
\(13\) 4.89157i 1.35668i −0.734749 0.678339i \(-0.762700\pi\)
0.734749 0.678339i \(-0.237300\pi\)
\(14\) 0 0
\(15\) 1.15558 + 1.29021i 0.298369 + 0.333131i
\(16\) 0 0
\(17\) 1.07217i 0.260040i −0.991511 0.130020i \(-0.958496\pi\)
0.991511 0.130020i \(-0.0415042\pi\)
\(18\) 0 0
\(19\) 4.23301 0.971120 0.485560 0.874203i \(-0.338616\pi\)
0.485560 + 0.874203i \(0.338616\pi\)
\(20\) 0 0
\(21\) −5.56229 + 4.98187i −1.21379 + 1.08713i
\(22\) 0 0
\(23\) 5.38333 1.12250 0.561251 0.827646i \(-0.310320\pi\)
0.561251 + 0.827646i \(0.310320\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.22775 3.02095i 0.813631 0.581381i
\(28\) 0 0
\(29\) 2.80291 0.520487 0.260244 0.965543i \(-0.416197\pi\)
0.260244 + 0.965543i \(0.416197\pi\)
\(30\) 0 0
\(31\) 0.927826i 0.166642i −0.996523 0.0833212i \(-0.973447\pi\)
0.996523 0.0833212i \(-0.0265527\pi\)
\(32\) 0 0
\(33\) −7.69448 + 6.89157i −1.33944 + 1.19967i
\(34\) 0 0
\(35\) 4.31116i 0.728718i
\(36\) 0 0
\(37\) 8.35305i 1.37323i −0.727020 0.686616i \(-0.759095\pi\)
0.727020 0.686616i \(-0.240905\pi\)
\(38\) 0 0
\(39\) −6.31116 + 5.65259i −1.01059 + 0.905139i
\(40\) 0 0
\(41\) 6.50228i 1.01548i 0.861509 + 0.507742i \(0.169520\pi\)
−0.861509 + 0.507742i \(0.830480\pi\)
\(42\) 0 0
\(43\) −11.4720 −1.74946 −0.874731 0.484608i \(-0.838962\pi\)
−0.874731 + 0.484608i \(0.838962\pi\)
\(44\) 0 0
\(45\) 0.329281 2.98187i 0.0490863 0.444512i
\(46\) 0 0
\(47\) 1.92186 0.280332 0.140166 0.990128i \(-0.455236\pi\)
0.140166 + 0.990128i \(0.455236\pi\)
\(48\) 0 0
\(49\) −11.5861 −1.65515
\(50\) 0 0
\(51\) −1.38333 + 1.23898i −0.193705 + 0.173492i
\(52\) 0 0
\(53\) 1.46147 0.200749 0.100374 0.994950i \(-0.467996\pi\)
0.100374 + 0.994950i \(0.467996\pi\)
\(54\) 0 0
\(55\) 5.96375i 0.804152i
\(56\) 0 0
\(57\) −4.89157 5.46147i −0.647905 0.723390i
\(58\) 0 0
\(59\) 5.34144i 0.695396i 0.937607 + 0.347698i \(0.113037\pi\)
−0.937607 + 0.347698i \(0.886963\pi\)
\(60\) 0 0
\(61\) 5.42522i 0.694628i −0.937749 0.347314i \(-0.887094\pi\)
0.937749 0.347314i \(-0.112906\pi\)
\(62\) 0 0
\(63\) 12.8553 + 1.41958i 1.61962 + 0.178850i
\(64\) 0 0
\(65\) 4.89157i 0.606725i
\(66\) 0 0
\(67\) 3.47199 0.424171 0.212086 0.977251i \(-0.431974\pi\)
0.212086 + 0.977251i \(0.431974\pi\)
\(68\) 0 0
\(69\) −6.22085 6.94562i −0.748903 0.836155i
\(70\) 0 0
\(71\) 6.47796 0.768793 0.384396 0.923168i \(-0.374410\pi\)
0.384396 + 0.923168i \(0.374410\pi\)
\(72\) 0 0
\(73\) 14.4660 1.69312 0.846560 0.532293i \(-0.178670\pi\)
0.846560 + 0.532293i \(0.178670\pi\)
\(74\) 0 0
\(75\) −1.15558 1.29021i −0.133435 0.148981i
\(76\) 0 0
\(77\) −25.7106 −2.93000
\(78\) 0 0
\(79\) 1.91134i 0.215042i −0.994203 0.107521i \(-0.965709\pi\)
0.994203 0.107521i \(-0.0342913\pi\)
\(80\) 0 0
\(81\) −8.78315 1.96375i −0.975905 0.218194i
\(82\) 0 0
\(83\) 3.20273i 0.351545i 0.984431 + 0.175773i \(0.0562423\pi\)
−0.984431 + 0.175773i \(0.943758\pi\)
\(84\) 0 0
\(85\) 1.07217i 0.116294i
\(86\) 0 0
\(87\) −3.23898 3.61634i −0.347255 0.387713i
\(88\) 0 0
\(89\) 0.538528i 0.0570838i 0.999593 + 0.0285419i \(0.00908640\pi\)
−0.999593 + 0.0285419i \(0.990914\pi\)
\(90\) 0 0
\(91\) −21.0883 −2.21066
\(92\) 0 0
\(93\) −1.19709 + 1.07217i −0.124132 + 0.111179i
\(94\) 0 0
\(95\) −4.23301 −0.434298
\(96\) 0 0
\(97\) −7.78315 −0.790259 −0.395129 0.918625i \(-0.629300\pi\)
−0.395129 + 0.918625i \(0.629300\pi\)
\(98\) 0 0
\(99\) 17.7831 + 1.96375i 1.78727 + 0.197364i
\(100\) 0 0
\(101\) −10.4417 −1.03899 −0.519494 0.854474i \(-0.673880\pi\)
−0.519494 + 0.854474i \(0.673880\pi\)
\(102\) 0 0
\(103\) 15.6163i 1.53872i −0.638813 0.769362i \(-0.720574\pi\)
0.638813 0.769362i \(-0.279426\pi\)
\(104\) 0 0
\(105\) 5.56229 4.98187i 0.542824 0.486181i
\(106\) 0 0
\(107\) 8.51985i 0.823645i −0.911264 0.411823i \(-0.864892\pi\)
0.911264 0.411823i \(-0.135108\pi\)
\(108\) 0 0
\(109\) 8.64662i 0.828196i 0.910232 + 0.414098i \(0.135903\pi\)
−0.910232 + 0.414098i \(0.864097\pi\)
\(110\) 0 0
\(111\) −10.7772 + 9.65259i −1.02292 + 0.916184i
\(112\) 0 0
\(113\) 16.6385i 1.56522i 0.622515 + 0.782608i \(0.286111\pi\)
−0.622515 + 0.782608i \(0.713889\pi\)
\(114\) 0 0
\(115\) −5.38333 −0.501998
\(116\) 0 0
\(117\) 14.5861 + 1.61070i 1.34848 + 0.148909i
\(118\) 0 0
\(119\) −4.62231 −0.423726
\(120\) 0 0
\(121\) −24.5663 −2.23330
\(122\) 0 0
\(123\) 8.38930 7.51388i 0.756438 0.677504i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 12.1549i 1.07857i −0.842123 0.539285i \(-0.818695\pi\)
0.842123 0.539285i \(-0.181305\pi\)
\(128\) 0 0
\(129\) 13.2568 + 14.8013i 1.16719 + 1.30318i
\(130\) 0 0
\(131\) 6.74234i 0.589081i 0.955639 + 0.294541i \(0.0951667\pi\)
−0.955639 + 0.294541i \(0.904833\pi\)
\(132\) 0 0
\(133\) 18.2492i 1.58240i
\(134\) 0 0
\(135\) −4.22775 + 3.02095i −0.363867 + 0.260002i
\(136\) 0 0
\(137\) 22.8553i 1.95266i 0.216282 + 0.976331i \(0.430607\pi\)
−0.216282 + 0.976331i \(0.569393\pi\)
\(138\) 0 0
\(139\) 3.15596 0.267685 0.133842 0.991003i \(-0.457268\pi\)
0.133842 + 0.991003i \(0.457268\pi\)
\(140\) 0 0
\(141\) −2.22085 2.47960i −0.187030 0.208820i
\(142\) 0 0
\(143\) −29.1721 −2.43950
\(144\) 0 0
\(145\) −2.80291 −0.232769
\(146\) 0 0
\(147\) 13.3886 + 14.9484i 1.10427 + 1.23293i
\(148\) 0 0
\(149\) −8.61037 −0.705389 −0.352695 0.935738i \(-0.614735\pi\)
−0.352695 + 0.935738i \(0.614735\pi\)
\(150\) 0 0
\(151\) 14.0999i 1.14744i 0.819053 + 0.573719i \(0.194500\pi\)
−0.819053 + 0.573719i \(0.805500\pi\)
\(152\) 0 0
\(153\) 3.19709 + 0.353047i 0.258469 + 0.0285421i
\(154\) 0 0
\(155\) 0.927826i 0.0745247i
\(156\) 0 0
\(157\) 14.2087i 1.13398i 0.823726 + 0.566989i \(0.191892\pi\)
−0.823726 + 0.566989i \(0.808108\pi\)
\(158\) 0 0
\(159\) −1.68884 1.88561i −0.133934 0.149538i
\(160\) 0 0
\(161\) 23.2084i 1.82908i
\(162\) 0 0
\(163\) 17.2551 1.35153 0.675763 0.737119i \(-0.263814\pi\)
0.675763 + 0.737119i \(0.263814\pi\)
\(164\) 0 0
\(165\) 7.69448 6.89157i 0.599015 0.536508i
\(166\) 0 0
\(167\) −8.39982 −0.649997 −0.324999 0.945714i \(-0.605364\pi\)
−0.324999 + 0.945714i \(0.605364\pi\)
\(168\) 0 0
\(169\) −10.9275 −0.840577
\(170\) 0 0
\(171\) −1.39385 + 12.6223i −0.106590 + 0.965252i
\(172\) 0 0
\(173\) 20.4892 1.55777 0.778884 0.627168i \(-0.215786\pi\)
0.778884 + 0.627168i \(0.215786\pi\)
\(174\) 0 0
\(175\) 4.31116i 0.325893i
\(176\) 0 0
\(177\) 6.89157 6.17245i 0.518002 0.463949i
\(178\) 0 0
\(179\) 14.5861i 1.09021i 0.838367 + 0.545107i \(0.183511\pi\)
−0.838367 + 0.545107i \(0.816489\pi\)
\(180\) 0 0
\(181\) 6.32168i 0.469886i 0.972009 + 0.234943i \(0.0754904\pi\)
−0.972009 + 0.234943i \(0.924510\pi\)
\(182\) 0 0
\(183\) −6.99967 + 6.26926i −0.517431 + 0.463437i
\(184\) 0 0
\(185\) 8.35305i 0.614128i
\(186\) 0 0
\(187\) −6.39418 −0.467589
\(188\) 0 0
\(189\) −13.0238 18.2265i −0.947340 1.32578i
\(190\) 0 0
\(191\) 3.54526 0.256526 0.128263 0.991740i \(-0.459060\pi\)
0.128263 + 0.991740i \(0.459060\pi\)
\(192\) 0 0
\(193\) 4.86020 0.349845 0.174923 0.984582i \(-0.444032\pi\)
0.174923 + 0.984582i \(0.444032\pi\)
\(194\) 0 0
\(195\) 6.31116 5.65259i 0.451951 0.404791i
\(196\) 0 0
\(197\) −1.17277 −0.0835567 −0.0417784 0.999127i \(-0.513302\pi\)
−0.0417784 + 0.999127i \(0.513302\pi\)
\(198\) 0 0
\(199\) 18.0162i 1.27713i −0.769567 0.638566i \(-0.779528\pi\)
0.769567 0.638566i \(-0.220472\pi\)
\(200\) 0 0
\(201\) −4.01216 4.47960i −0.282996 0.315966i
\(202\) 0 0
\(203\) 12.0838i 0.848115i
\(204\) 0 0
\(205\) 6.50228i 0.454139i
\(206\) 0 0
\(207\) −1.77263 + 16.0524i −0.123206 + 1.11572i
\(208\) 0 0
\(209\) 25.2446i 1.74621i
\(210\) 0 0
\(211\) −12.6780 −0.872789 −0.436395 0.899755i \(-0.643745\pi\)
−0.436395 + 0.899755i \(0.643745\pi\)
\(212\) 0 0
\(213\) −7.48579 8.35793i −0.512918 0.572676i
\(214\) 0 0
\(215\) 11.4720 0.782383
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) −16.7166 18.6642i −1.12960 1.26121i
\(220\) 0 0
\(221\) −5.24462 −0.352791
\(222\) 0 0
\(223\) 5.54450i 0.371287i −0.982617 0.185643i \(-0.940563\pi\)
0.982617 0.185643i \(-0.0594369\pi\)
\(224\) 0 0
\(225\) −0.329281 + 2.98187i −0.0219521 + 0.198792i
\(226\) 0 0
\(227\) 6.50792i 0.431946i 0.976399 + 0.215973i \(0.0692922\pi\)
−0.976399 + 0.215973i \(0.930708\pi\)
\(228\) 0 0
\(229\) 11.1003i 0.733527i 0.930314 + 0.366763i \(0.119534\pi\)
−0.930314 + 0.366763i \(0.880466\pi\)
\(230\) 0 0
\(231\) 29.7106 + 33.1721i 1.95482 + 2.18257i
\(232\) 0 0
\(233\) 3.70642i 0.242816i 0.992603 + 0.121408i \(0.0387409\pi\)
−0.992603 + 0.121408i \(0.961259\pi\)
\(234\) 0 0
\(235\) −1.92186 −0.125368
\(236\) 0 0
\(237\) −2.46602 + 2.20870i −0.160186 + 0.143470i
\(238\) 0 0
\(239\) 24.4660 1.58258 0.791288 0.611444i \(-0.209411\pi\)
0.791288 + 0.611444i \(0.209411\pi\)
\(240\) 0 0
\(241\) 14.1919 0.914179 0.457090 0.889421i \(-0.348892\pi\)
0.457090 + 0.889421i \(0.348892\pi\)
\(242\) 0 0
\(243\) 7.61596 + 13.6014i 0.488564 + 0.872528i
\(244\) 0 0
\(245\) 11.5861 0.740206
\(246\) 0 0
\(247\) 20.7061i 1.31750i
\(248\) 0 0
\(249\) 4.13219 3.70100i 0.261867 0.234541i
\(250\) 0 0
\(251\) 5.96375i 0.376428i −0.982128 0.188214i \(-0.939730\pi\)
0.982128 0.188214i \(-0.0602699\pi\)
\(252\) 0 0
\(253\) 32.1048i 2.01841i
\(254\) 0 0
\(255\) 1.38333 1.23898i 0.0866275 0.0775880i
\(256\) 0 0
\(257\) 0.783477i 0.0488719i −0.999701 0.0244360i \(-0.992221\pi\)
0.999701 0.0244360i \(-0.00777898\pi\)
\(258\) 0 0
\(259\) −36.0113 −2.23763
\(260\) 0 0
\(261\) −0.922945 + 8.35793i −0.0571289 + 0.517343i
\(262\) 0 0
\(263\) −9.45583 −0.583072 −0.291536 0.956560i \(-0.594166\pi\)
−0.291536 + 0.956560i \(0.594166\pi\)
\(264\) 0 0
\(265\) −1.46147 −0.0897775
\(266\) 0 0
\(267\) 0.694813 0.622310i 0.0425219 0.0380848i
\(268\) 0 0
\(269\) 32.1767 1.96185 0.980923 0.194396i \(-0.0622747\pi\)
0.980923 + 0.194396i \(0.0622747\pi\)
\(270\) 0 0
\(271\) 3.31224i 0.201204i −0.994927 0.100602i \(-0.967923\pi\)
0.994927 0.100602i \(-0.0320769\pi\)
\(272\) 0 0
\(273\) 24.3692 + 27.2084i 1.47489 + 1.64673i
\(274\) 0 0
\(275\) 5.96375i 0.359628i
\(276\) 0 0
\(277\) 27.4294i 1.64808i 0.566535 + 0.824038i \(0.308284\pi\)
−0.566535 + 0.824038i \(0.691716\pi\)
\(278\) 0 0
\(279\) 2.76666 + 0.305515i 0.165636 + 0.0182907i
\(280\) 0 0
\(281\) 11.6744i 0.696436i −0.937414 0.348218i \(-0.886787\pi\)
0.937414 0.348218i \(-0.113213\pi\)
\(282\) 0 0
\(283\) −11.0060 −0.654237 −0.327118 0.944983i \(-0.606078\pi\)
−0.327118 + 0.944983i \(0.606078\pi\)
\(284\) 0 0
\(285\) 4.89157 + 5.46147i 0.289752 + 0.323510i
\(286\) 0 0
\(287\) 28.0323 1.65470
\(288\) 0 0
\(289\) 15.8504 0.932379
\(290\) 0 0
\(291\) 8.99403 + 10.0419i 0.527239 + 0.588666i
\(292\) 0 0
\(293\) 13.5663 0.792551 0.396276 0.918132i \(-0.370302\pi\)
0.396276 + 0.918132i \(0.370302\pi\)
\(294\) 0 0
\(295\) 5.34144i 0.310991i
\(296\) 0 0
\(297\) −18.0162 25.2132i −1.04540 1.46302i
\(298\) 0 0
\(299\) 26.3330i 1.52287i
\(300\) 0 0
\(301\) 49.4575i 2.85069i
\(302\) 0 0
\(303\) 12.0662 + 13.4720i 0.693185 + 0.773946i
\(304\) 0 0
\(305\) 5.42522i 0.310647i
\(306\) 0 0
\(307\) 16.9215 0.965763 0.482881 0.875686i \(-0.339590\pi\)
0.482881 + 0.875686i \(0.339590\pi\)
\(308\) 0 0
\(309\) −20.1484 + 18.0459i −1.14620 + 1.02660i
\(310\) 0 0
\(311\) −17.6896 −1.00309 −0.501543 0.865133i \(-0.667234\pi\)
−0.501543 + 0.865133i \(0.667234\pi\)
\(312\) 0 0
\(313\) 17.2776 0.976588 0.488294 0.872679i \(-0.337619\pi\)
0.488294 + 0.872679i \(0.337619\pi\)
\(314\) 0 0
\(315\) −12.8553 1.41958i −0.724315 0.0799843i
\(316\) 0 0
\(317\) 3.61558 0.203071 0.101536 0.994832i \(-0.467624\pi\)
0.101536 + 0.994832i \(0.467624\pi\)
\(318\) 0 0
\(319\) 16.7159i 0.935908i
\(320\) 0 0
\(321\) −10.9924 + 9.84535i −0.613536 + 0.549514i
\(322\) 0 0
\(323\) 4.53853i 0.252530i
\(324\) 0 0
\(325\) 4.89157i 0.271336i
\(326\) 0 0
\(327\) 11.1560 9.99185i 0.616926 0.552550i
\(328\) 0 0
\(329\) 8.28542i 0.456790i
\(330\) 0 0
\(331\) −10.2449 −0.563113 −0.281557 0.959545i \(-0.590851\pi\)
−0.281557 + 0.959545i \(0.590851\pi\)
\(332\) 0 0
\(333\) 24.9077 + 2.75050i 1.36494 + 0.150726i
\(334\) 0 0
\(335\) −3.47199 −0.189695
\(336\) 0 0
\(337\) −4.39418 −0.239366 −0.119683 0.992812i \(-0.538188\pi\)
−0.119683 + 0.992812i \(0.538188\pi\)
\(338\) 0 0
\(339\) 21.4671 19.2270i 1.16593 1.04427i
\(340\) 0 0
\(341\) −5.53332 −0.299646
\(342\) 0 0
\(343\) 19.7712i 1.06755i
\(344\) 0 0
\(345\) 6.22085 + 6.94562i 0.334920 + 0.373940i
\(346\) 0 0
\(347\) 7.89754i 0.423962i 0.977274 + 0.211981i \(0.0679915\pi\)
−0.977274 + 0.211981i \(0.932008\pi\)
\(348\) 0 0
\(349\) 11.4615i 0.613519i −0.951787 0.306759i \(-0.900755\pi\)
0.951787 0.306759i \(-0.0992447\pi\)
\(350\) 0 0
\(351\) −14.7772 20.6804i −0.788748 1.10384i
\(352\) 0 0
\(353\) 31.9324i 1.69959i −0.527114 0.849794i \(-0.676726\pi\)
0.527114 0.849794i \(-0.323274\pi\)
\(354\) 0 0
\(355\) −6.47796 −0.343814
\(356\) 0 0
\(357\) 5.34144 + 5.96375i 0.282699 + 0.315635i
\(358\) 0 0
\(359\) 21.0673 1.11189 0.555945 0.831219i \(-0.312357\pi\)
0.555945 + 0.831219i \(0.312357\pi\)
\(360\) 0 0
\(361\) −1.08161 −0.0569267
\(362\) 0 0
\(363\) 28.3883 + 31.6957i 1.49000 + 1.66359i
\(364\) 0 0
\(365\) −14.4660 −0.757186
\(366\) 0 0
\(367\) 16.4998i 0.861281i 0.902524 + 0.430640i \(0.141712\pi\)
−0.902524 + 0.430640i \(0.858288\pi\)
\(368\) 0 0
\(369\) −19.3890 2.14108i −1.00935 0.111460i
\(370\) 0 0
\(371\) 6.30063i 0.327113i
\(372\) 0 0
\(373\) 15.2760i 0.790961i 0.918474 + 0.395480i \(0.129422\pi\)
−0.918474 + 0.395480i \(0.870578\pi\)
\(374\) 0 0
\(375\) 1.15558 + 1.29021i 0.0596738 + 0.0666261i
\(376\) 0 0
\(377\) 13.7106i 0.706134i
\(378\) 0 0
\(379\) 3.76699 0.193497 0.0967486 0.995309i \(-0.469156\pi\)
0.0967486 + 0.995309i \(0.469156\pi\)
\(380\) 0 0
\(381\) −15.6823 + 14.0459i −0.803430 + 0.719593i
\(382\) 0 0
\(383\) 17.7282 0.905870 0.452935 0.891544i \(-0.350377\pi\)
0.452935 + 0.891544i \(0.350377\pi\)
\(384\) 0 0
\(385\) 25.7106 1.31034
\(386\) 0 0
\(387\) 3.77751 34.2080i 0.192022 1.73889i
\(388\) 0 0
\(389\) −4.92294 −0.249603 −0.124802 0.992182i \(-0.539829\pi\)
−0.124802 + 0.992182i \(0.539829\pi\)
\(390\) 0 0
\(391\) 5.77187i 0.291896i
\(392\) 0 0
\(393\) 8.69904 7.79130i 0.438808 0.393019i
\(394\) 0 0
\(395\) 1.91134i 0.0961698i
\(396\) 0 0
\(397\) 19.3246i 0.969875i −0.874549 0.484937i \(-0.838842\pi\)
0.874549 0.484937i \(-0.161158\pi\)
\(398\) 0 0
\(399\) −23.5453 + 21.0883i −1.17874 + 1.05574i
\(400\) 0 0
\(401\) 24.8834i 1.24262i −0.783565 0.621309i \(-0.786601\pi\)
0.783565 0.621309i \(-0.213399\pi\)
\(402\) 0 0
\(403\) −4.53853 −0.226080
\(404\) 0 0
\(405\) 8.78315 + 1.96375i 0.436438 + 0.0975794i
\(406\) 0 0
\(407\) −49.8155 −2.46926
\(408\) 0 0
\(409\) 16.5136 0.816543 0.408271 0.912861i \(-0.366132\pi\)
0.408271 + 0.912861i \(0.366132\pi\)
\(410\) 0 0
\(411\) 29.4882 26.4111i 1.45454 1.30276i
\(412\) 0 0
\(413\) 23.0278 1.13312
\(414\) 0 0
\(415\) 3.20273i 0.157216i
\(416\) 0 0
\(417\) −3.64695 4.07185i −0.178592 0.199399i
\(418\) 0 0
\(419\) 3.26959i 0.159730i 0.996806 + 0.0798650i \(0.0254489\pi\)
−0.996806 + 0.0798650i \(0.974551\pi\)
\(420\) 0 0
\(421\) 5.78642i 0.282013i −0.990009 0.141006i \(-0.954966\pi\)
0.990009 0.141006i \(-0.0450338\pi\)
\(422\) 0 0
\(423\) −0.632831 + 5.73074i −0.0307693 + 0.278638i
\(424\) 0 0
\(425\) 1.07217i 0.0520081i
\(426\) 0 0
\(427\) −23.3890 −1.13187
\(428\) 0 0
\(429\) 33.7106 + 37.6381i 1.62757 + 1.81719i
\(430\) 0 0
\(431\) −36.3659 −1.75169 −0.875843 0.482597i \(-0.839694\pi\)
−0.875843 + 0.482597i \(0.839694\pi\)
\(432\) 0 0
\(433\) 39.3494 1.89101 0.945507 0.325602i \(-0.105567\pi\)
0.945507 + 0.325602i \(0.105567\pi\)
\(434\) 0 0
\(435\) 3.23898 + 3.61634i 0.155297 + 0.173390i
\(436\) 0 0
\(437\) 22.7877 1.09008
\(438\) 0 0
\(439\) 22.6174i 1.07947i −0.841835 0.539736i \(-0.818524\pi\)
0.841835 0.539736i \(-0.181476\pi\)
\(440\) 0 0
\(441\) 3.81507 34.5482i 0.181670 1.64515i
\(442\) 0 0
\(443\) 14.1354i 0.671595i −0.941934 0.335797i \(-0.890994\pi\)
0.941934 0.335797i \(-0.109006\pi\)
\(444\) 0 0
\(445\) 0.538528i 0.0255287i
\(446\) 0 0
\(447\) 9.94995 + 11.1092i 0.470617 + 0.525446i
\(448\) 0 0
\(449\) 2.03625i 0.0960966i −0.998845 0.0480483i \(-0.984700\pi\)
0.998845 0.0480483i \(-0.0153001\pi\)
\(450\) 0 0
\(451\) 38.7779 1.82598
\(452\) 0 0
\(453\) 18.1919 16.2936i 0.854729 0.765539i
\(454\) 0 0
\(455\) 21.0883 0.988636
\(456\) 0 0
\(457\) 6.24007 0.291898 0.145949 0.989292i \(-0.453376\pi\)
0.145949 + 0.989292i \(0.453376\pi\)
\(458\) 0 0
\(459\) −3.23898 4.53289i −0.151183 0.211577i
\(460\) 0 0
\(461\) −33.2922 −1.55057 −0.775285 0.631612i \(-0.782394\pi\)
−0.775285 + 0.631612i \(0.782394\pi\)
\(462\) 0 0
\(463\) 7.50497i 0.348786i 0.984676 + 0.174393i \(0.0557962\pi\)
−0.984676 + 0.174393i \(0.944204\pi\)
\(464\) 0 0
\(465\) 1.19709 1.07217i 0.0555137 0.0497209i
\(466\) 0 0
\(467\) 22.9739i 1.06311i −0.847025 0.531554i \(-0.821608\pi\)
0.847025 0.531554i \(-0.178392\pi\)
\(468\) 0 0
\(469\) 14.9683i 0.691172i
\(470\) 0 0
\(471\) 18.3322 16.4193i 0.844703 0.756559i
\(472\) 0 0
\(473\) 68.4161i 3.14577i
\(474\) 0 0
\(475\) 4.23301 0.194224
\(476\) 0 0
\(477\) −0.481235 + 4.35793i −0.0220342 + 0.199536i
\(478\) 0 0
\(479\) 29.4219 1.34432 0.672162 0.740405i \(-0.265366\pi\)
0.672162 + 0.740405i \(0.265366\pi\)
\(480\) 0 0
\(481\) −40.8595 −1.86303
\(482\) 0 0
\(483\) −29.9437 + 26.8191i −1.36248 + 1.22031i
\(484\) 0 0
\(485\) 7.78315 0.353415
\(486\) 0 0
\(487\) 5.39949i 0.244674i −0.992489 0.122337i \(-0.960961\pi\)
0.992489 0.122337i \(-0.0390389\pi\)
\(488\) 0 0
\(489\) −19.9397 22.2627i −0.901702 1.00676i
\(490\) 0 0
\(491\) 6.42977i 0.290172i 0.989419 + 0.145086i \(0.0463458\pi\)
−0.989419 + 0.145086i \(0.953654\pi\)
\(492\) 0 0
\(493\) 3.00521i 0.135348i
\(494\) 0 0
\(495\) −17.7831 1.96375i −0.799293 0.0882639i
\(496\) 0 0
\(497\) 27.9275i 1.25272i
\(498\) 0 0
\(499\) −12.2330 −0.547625 −0.273812 0.961783i \(-0.588285\pi\)
−0.273812 + 0.961783i \(0.588285\pi\)
\(500\) 0 0
\(501\) 9.70664 + 10.8375i 0.433661 + 0.484185i
\(502\) 0 0
\(503\) 4.68852 0.209051 0.104525 0.994522i \(-0.466668\pi\)
0.104525 + 0.994522i \(0.466668\pi\)
\(504\) 0 0
\(505\) 10.4417 0.464650
\(506\) 0 0
\(507\) 12.6276 + 14.0988i 0.560810 + 0.626148i
\(508\) 0 0
\(509\) 2.87541 0.127450 0.0637252 0.997967i \(-0.479702\pi\)
0.0637252 + 0.997967i \(0.479702\pi\)
\(510\) 0 0
\(511\) 62.3653i 2.75888i
\(512\) 0 0
\(513\) 17.8961 12.7877i 0.790133 0.564591i
\(514\) 0 0
\(515\) 15.6163i 0.688138i
\(516\) 0 0
\(517\) 11.4615i 0.504075i
\(518\) 0 0
\(519\) −23.6769 26.4354i −1.03930 1.16039i
\(520\) 0 0
\(521\) 7.27760i 0.318837i −0.987211 0.159419i \(-0.949038\pi\)
0.987211 0.159419i \(-0.0509620\pi\)
\(522\) 0 0
\(523\) −33.5551 −1.46726 −0.733631 0.679548i \(-0.762176\pi\)
−0.733631 + 0.679548i \(0.762176\pi\)
\(524\) 0 0
\(525\) −5.56229 + 4.98187i −0.242758 + 0.217427i
\(526\) 0 0
\(527\) −0.994791 −0.0433338
\(528\) 0 0
\(529\) 5.98024 0.260010
\(530\) 0 0
\(531\) −15.9275 1.75883i −0.691194 0.0763269i
\(532\) 0 0
\(533\) 31.8064 1.37769
\(534\) 0 0
\(535\) 8.51985i 0.368345i
\(536\) 0 0
\(537\) 18.8191 16.8553i 0.812103 0.727361i
\(538\) 0 0
\(539\) 69.0963i 2.97619i
\(540\) 0 0
\(541\) 26.2492i 1.12854i 0.825590 + 0.564270i \(0.190842\pi\)
−0.825590 + 0.564270i \(0.809158\pi\)
\(542\) 0 0
\(543\) 8.15629 7.30519i 0.350020 0.313496i
\(544\) 0 0
\(545\) 8.64662i 0.370381i
\(546\) 0 0
\(547\) −36.8490 −1.57555 −0.787775 0.615963i \(-0.788767\pi\)
−0.787775 + 0.615963i \(0.788767\pi\)
\(548\) 0 0
\(549\) 16.1773 + 1.78642i 0.690431 + 0.0762426i
\(550\) 0 0
\(551\) 11.8648 0.505456
\(552\) 0 0
\(553\) −8.24007 −0.350403
\(554\) 0 0
\(555\) 10.7772 9.65259i 0.457466 0.409730i
\(556\) 0 0
\(557\) −32.5379 −1.37867 −0.689337 0.724441i \(-0.742098\pi\)
−0.689337 + 0.724441i \(0.742098\pi\)
\(558\) 0 0
\(559\) 56.1161i 2.37346i
\(560\) 0 0
\(561\) 7.38897 + 8.24983i 0.311963 + 0.348308i
\(562\) 0 0
\(563\) 16.5199i 0.696229i −0.937452 0.348114i \(-0.886822\pi\)
0.937452 0.348114i \(-0.113178\pi\)
\(564\) 0 0
\(565\) 16.6385i 0.699986i
\(566\) 0 0
\(567\) −8.46602 + 37.8655i −0.355540 + 1.59020i
\(568\) 0 0
\(569\) 31.5696i 1.32347i 0.749740 + 0.661733i \(0.230179\pi\)
−0.749740 + 0.661733i \(0.769821\pi\)
\(570\) 0 0
\(571\) 19.9556 0.835116 0.417558 0.908650i \(-0.362886\pi\)
0.417558 + 0.908650i \(0.362886\pi\)
\(572\) 0 0
\(573\) −4.09682 4.57412i −0.171147 0.191087i
\(574\) 0 0
\(575\) 5.38333 0.224500
\(576\) 0 0
\(577\) 4.63425 0.192926 0.0964631 0.995337i \(-0.469247\pi\)
0.0964631 + 0.995337i \(0.469247\pi\)
\(578\) 0 0
\(579\) −5.61634 6.27068i −0.233407 0.260601i
\(580\) 0 0
\(581\) 13.8075 0.572830
\(582\) 0 0
\(583\) 8.71585i 0.360974i
\(584\) 0 0
\(585\) −14.5861 1.61070i −0.603059 0.0665943i
\(586\) 0 0
\(587\) 11.4638i 0.473163i 0.971612 + 0.236582i \(0.0760271\pi\)
−0.971612 + 0.236582i \(0.923973\pi\)
\(588\) 0 0
\(589\) 3.92750i 0.161830i
\(590\) 0 0
\(591\) 1.35523 + 1.51313i 0.0557468 + 0.0622416i
\(592\) 0 0
\(593\) 10.5569i 0.433518i 0.976225 + 0.216759i \(0.0695487\pi\)
−0.976225 + 0.216759i \(0.930451\pi\)
\(594\) 0 0
\(595\) 4.62231 0.189496
\(596\) 0 0
\(597\) −23.2446 + 20.8191i −0.951339 + 0.852068i
\(598\) 0 0
\(599\) −16.3210 −0.666859 −0.333429 0.942775i \(-0.608206\pi\)
−0.333429 + 0.942775i \(0.608206\pi\)
\(600\) 0 0
\(601\) 17.8793 0.729312 0.364656 0.931142i \(-0.381187\pi\)
0.364656 + 0.931142i \(0.381187\pi\)
\(602\) 0 0
\(603\) −1.14326 + 10.3530i −0.0465572 + 0.421609i
\(604\) 0 0
\(605\) 24.5663 0.998762
\(606\) 0 0
\(607\) 24.2499i 0.984274i 0.870518 + 0.492137i \(0.163784\pi\)
−0.870518 + 0.492137i \(0.836216\pi\)
\(608\) 0 0
\(609\) −15.5906 + 13.9637i −0.631763 + 0.565840i
\(610\) 0 0
\(611\) 9.40091i 0.380320i
\(612\) 0 0
\(613\) 22.3201i 0.901499i 0.892650 + 0.450750i \(0.148843\pi\)
−0.892650 + 0.450750i \(0.851157\pi\)
\(614\) 0 0
\(615\) −8.38930 + 7.51388i −0.338289 + 0.302989i
\(616\) 0 0
\(617\) 27.5614i 1.10958i −0.831990 0.554790i \(-0.812798\pi\)
0.831990 0.554790i \(-0.187202\pi\)
\(618\) 0 0
\(619\) 28.7552 1.15577 0.577885 0.816118i \(-0.303878\pi\)
0.577885 + 0.816118i \(0.303878\pi\)
\(620\) 0 0
\(621\) 22.7594 16.2627i 0.913303 0.652602i
\(622\) 0 0
\(623\) 2.32168 0.0930160
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −32.5708 + 29.1721i −1.30075 + 1.16502i
\(628\) 0 0
\(629\) −8.95592 −0.357096
\(630\) 0 0
\(631\) 39.9070i 1.58867i 0.607479 + 0.794336i \(0.292181\pi\)
−0.607479 + 0.794336i \(0.707819\pi\)
\(632\) 0 0
\(633\) 14.6504 + 16.3573i 0.582301 + 0.650143i
\(634\) 0 0
\(635\) 12.1549i 0.482351i
\(636\) 0 0
\(637\) 56.6741i 2.24551i
\(638\) 0 0
\(639\) −2.13307 + 19.3165i −0.0843829 + 0.764148i
\(640\) 0 0
\(641\) 15.3857i 0.607698i 0.952720 + 0.303849i \(0.0982719\pi\)
−0.952720 + 0.303849i \(0.901728\pi\)
\(642\) 0 0
\(643\) 2.75614 0.108691 0.0543457 0.998522i \(-0.482693\pi\)
0.0543457 + 0.998522i \(0.482693\pi\)
\(644\) 0 0
\(645\) −13.2568 14.8013i −0.521985 0.582800i
\(646\) 0 0
\(647\) 4.25765 0.167385 0.0836927 0.996492i \(-0.473329\pi\)
0.0836927 + 0.996492i \(0.473329\pi\)
\(648\) 0 0
\(649\) 31.8550 1.25042
\(650\) 0 0
\(651\) 4.62231 + 5.16084i 0.181163 + 0.202269i
\(652\) 0 0
\(653\) 5.07640 0.198655 0.0993274 0.995055i \(-0.468331\pi\)
0.0993274 + 0.995055i \(0.468331\pi\)
\(654\) 0 0
\(655\) 6.74234i 0.263445i
\(656\) 0 0
\(657\) −4.76339 + 43.1359i −0.185837 + 1.68289i
\(658\) 0 0
\(659\) 32.5531i 1.26809i 0.773297 + 0.634044i \(0.218606\pi\)
−0.773297 + 0.634044i \(0.781394\pi\)
\(660\) 0 0
\(661\) 21.9961i 0.855548i 0.903886 + 0.427774i \(0.140702\pi\)
−0.903886 + 0.427774i \(0.859298\pi\)
\(662\) 0 0
\(663\) 6.06057 + 6.76666i 0.235373 + 0.262795i
\(664\) 0 0
\(665\) 18.2492i 0.707673i
\(666\) 0 0
\(667\) 15.0890 0.584248
\(668\) 0 0
\(669\) −7.15356 + 6.40710i −0.276573 + 0.247713i
\(670\) 0 0
\(671\) −32.3547 −1.24904
\(672\) 0 0
\(673\) −6.70609 −0.258501 −0.129250 0.991612i \(-0.541257\pi\)
−0.129250 + 0.991612i \(0.541257\pi\)
\(674\) 0 0
\(675\) 4.22775 3.02095i 0.162726 0.116276i
\(676\) 0 0
\(677\) −25.0764 −0.963764 −0.481882 0.876236i \(-0.660047\pi\)
−0.481882 + 0.876236i \(0.660047\pi\)
\(678\) 0 0
\(679\) 33.5544i 1.28770i
\(680\) 0 0
\(681\) 8.39657 7.52040i 0.321757 0.288182i
\(682\) 0 0
\(683\) 3.30282i 0.126379i −0.998002 0.0631895i \(-0.979873\pi\)
0.998002 0.0631895i \(-0.0201272\pi\)
\(684\) 0 0
\(685\) 22.8553i 0.873257i
\(686\) 0 0
\(687\) 14.3217 12.8272i 0.546406 0.489389i
\(688\) 0 0
\(689\) 7.14890i 0.272351i
\(690\) 0 0
\(691\) −3.32200 −0.126375 −0.0631875 0.998002i \(-0.520127\pi\)
−0.0631875 + 0.998002i \(0.520127\pi\)
\(692\) 0 0
\(693\) 8.46602 76.6659i 0.321598 2.91230i
\(694\) 0 0
\(695\) −3.15596 −0.119712
\(696\) 0 0
\(697\) 6.97157 0.264067
\(698\) 0 0
\(699\) 4.78206 4.28306i 0.180874 0.162000i
\(700\) 0 0
\(701\) 22.2887 0.841832 0.420916 0.907100i \(-0.361709\pi\)
0.420916 + 0.907100i \(0.361709\pi\)
\(702\) 0 0
\(703\) 35.3585i 1.33357i
\(704\) 0 0
\(705\) 2.22085 + 2.47960i 0.0836422 + 0.0933871i
\(706\) 0 0
\(707\) 45.0158i 1.69299i
\(708\) 0 0
\(709\) 24.1048i 0.905276i 0.891694 + 0.452638i \(0.149517\pi\)
−0.891694 + 0.452638i \(0.850483\pi\)
\(710\) 0 0
\(711\) 5.69937 + 0.629367i 0.213743 + 0.0236031i
\(712\) 0 0
\(713\) 4.99479i 0.187056i
\(714\) 0 0
\(715\) 29.1721 1.09098
\(716\) 0 0
\(717\) −28.2724 31.5663i −1.05585 1.17886i
\(718\) 0 0
\(719\) −43.5889 −1.62559 −0.812795 0.582550i \(-0.802055\pi\)
−0.812795 + 0.582550i \(0.802055\pi\)
\(720\) 0 0
\(721\) −67.3245 −2.50729
\(722\) 0 0
\(723\) −16.3998 18.3105i −0.609916 0.680975i
\(724\) 0 0
\(725\) 2.80291 0.104097
\(726\) 0 0
\(727\) 33.2784i 1.23423i −0.786875 0.617113i \(-0.788302\pi\)
0.786875 0.617113i \(-0.211698\pi\)
\(728\) 0 0
\(729\) 8.74777 25.5436i 0.323992 0.946060i
\(730\) 0 0
\(731\) 12.3000i 0.454931i
\(732\) 0 0
\(733\) 27.2132i 1.00514i −0.864535 0.502572i \(-0.832387\pi\)
0.864535 0.502572i \(-0.167613\pi\)
\(734\) 0 0
\(735\) −13.3886 14.9484i −0.493846 0.551382i
\(736\) 0 0
\(737\) 20.7061i 0.762719i
\(738\) 0 0
\(739\) 6.81106 0.250549 0.125275 0.992122i \(-0.460019\pi\)
0.125275 + 0.992122i \(0.460019\pi\)
\(740\) 0 0
\(741\) −26.7152 + 23.9275i −0.981407 + 0.878999i
\(742\) 0 0
\(743\) −32.6160 −1.19657 −0.598283 0.801285i \(-0.704150\pi\)
−0.598283 + 0.801285i \(0.704150\pi\)
\(744\) 0 0
\(745\) 8.61037 0.315460
\(746\) 0 0
\(747\) −9.55014 1.05460i −0.349421 0.0385857i
\(748\) 0 0
\(749\) −36.7304 −1.34210
\(750\) 0 0
\(751\) 42.1950i 1.53972i −0.638214 0.769859i \(-0.720327\pi\)
0.638214 0.769859i \(-0.279673\pi\)
\(752\) 0 0
\(753\) −7.69448 + 6.89157i −0.280403 + 0.251143i
\(754\) 0 0
\(755\) 14.0999i 0.513149i
\(756\) 0 0
\(757\) 16.5692i 0.602219i −0.953590 0.301110i \(-0.902643\pi\)
0.953590 0.301110i \(-0.0973570\pi\)
\(758\) 0 0
\(759\) −41.4219 + 37.0996i −1.50352 + 1.34663i
\(760\) 0 0
\(761\) 49.6284i 1.79903i −0.436893 0.899514i \(-0.643921\pi\)
0.436893 0.899514i \(-0.356079\pi\)
\(762\) 0 0
\(763\) 37.2769 1.34952
\(764\) 0 0
\(765\) −3.19709 0.353047i −0.115591 0.0127644i
\(766\) 0 0
\(767\) 26.1280 0.943429
\(768\) 0 0
\(769\) −20.5617 −0.741475 −0.370738 0.928738i \(-0.620895\pi\)
−0.370738 + 0.928738i \(0.620895\pi\)
\(770\) 0 0
\(771\) −1.01085 + 0.905368i −0.0364048 + 0.0326060i
\(772\) 0 0
\(773\) −38.3935 −1.38092 −0.690459 0.723371i \(-0.742592\pi\)
−0.690459 + 0.723371i \(0.742592\pi\)
\(774\) 0 0
\(775\) 0.927826i 0.0333285i
\(776\) 0 0
\(777\) 41.6138 + 46.4621i 1.49289 + 1.66682i
\(778\) 0 0
\(779\) 27.5242i 0.986157i
\(780\) 0 0
\(781\) 38.6329i 1.38240i
\(782\) 0 0
\(783\) 11.8500 8.46744i 0.423485 0.302602i
\(784\) 0 0
\(785\) 14.2087i 0.507130i
\(786\) 0 0
\(787\) −24.9426 −0.889107 −0.444553 0.895752i \(-0.646638\pi\)
−0.444553 + 0.895752i \(0.646638\pi\)
\(788\) 0 0
\(789\) 10.9269 + 12.2000i 0.389010 + 0.434332i
\(790\) 0 0
\(791\) 71.7310 2.55046
\(792\) 0 0
\(793\) −26.5379 −0.942387
\(794\) 0 0
\(795\) 1.68884 + 1.88561i 0.0598972 + 0.0668755i
\(796\) 0 0
\(797\) 48.2394 1.70873 0.854364 0.519675i \(-0.173947\pi\)
0.854364 + 0.519675i \(0.173947\pi\)
\(798\) 0 0
\(799\) 2.06057i 0.0728976i
\(800\) 0 0
\(801\) −1.60582 0.177327i −0.0567389 0.00626554i
\(802\) 0 0
\(803\) 86.2717i 3.04446i
\(804\) 0 0
\(805\) 23.2084i 0.817988i
\(806\) 0 0
\(807\) −37.1826 41.5146i −1.30889 1.46138i
\(808\) 0 0
\(809\) 22.7877i 0.801173i 0.916259 + 0.400586i \(0.131194\pi\)
−0.916259 + 0.400586i \(0.868806\pi\)
\(810\) 0 0
\(811\) 31.2981 1.09903 0.549513 0.835485i \(-0.314813\pi\)
0.549513 + 0.835485i \(0.314813\pi\)
\(812\) 0 0
\(813\) −4.27349 + 3.82755i −0.149878 + 0.134238i
\(814\) 0 0
\(815\) −17.2551 −0.604421
\(816\) 0 0
\(817\) −48.5611 −1.69894
\(818\) 0 0
\(819\) 6.94399 62.8828i 0.242643 2.19730i
\(820\) 0 0
\(821\) −41.4452 −1.44645 −0.723223 0.690614i \(-0.757340\pi\)
−0.723223 + 0.690614i \(0.757340\pi\)
\(822\) 0 0
\(823\) 29.1497i 1.01609i −0.861330 0.508047i \(-0.830368\pi\)
0.861330 0.508047i \(-0.169632\pi\)
\(824\) 0 0
\(825\) −7.69448 + 6.89157i −0.267888 + 0.239934i
\(826\) 0 0
\(827\) 49.2956i 1.71418i −0.515170 0.857088i \(-0.672271\pi\)
0.515170 0.857088i \(-0.327729\pi\)
\(828\) 0 0
\(829\) 0.646625i 0.0224582i −0.999937 0.0112291i \(-0.996426\pi\)
0.999937 0.0112291i \(-0.00357441\pi\)
\(830\) 0 0
\(831\) 35.3897 31.6969i 1.22766 1.09955i
\(832\) 0 0
\(833\) 12.4223i 0.430406i
\(834\) 0 0
\(835\) 8.39982 0.290688
\(836\) 0 0
\(837\) −2.80291 3.92262i −0.0968828 0.135585i
\(838\) 0 0
\(839\) 32.6336 1.12664 0.563318 0.826240i \(-0.309524\pi\)
0.563318 + 0.826240i \(0.309524\pi\)
\(840\) 0 0
\(841\) −21.1437 −0.729093
\(842\) 0 0
\(843\) −15.0624 + 13.4907i −0.518777 + 0.464643i
\(844\) 0 0
\(845\) 10.9275 0.375917
\(846\) 0 0
\(847\) 105.909i 3.63908i
\(848\) 0 0
\(849\) 12.7183 + 14.2000i 0.436489 + 0.487343i
\(850\) 0 0
\(851\) 44.9672i 1.54146i
\(852\) 0 0
\(853\) 12.1855i 0.417223i 0.977999 + 0.208611i \(0.0668944\pi\)
−0.977999 + 0.208611i \(0.933106\pi\)
\(854\) 0 0
\(855\) 1.39385 12.6223i 0.0476687 0.431674i
\(856\) 0 0
\(857\) 11.2890i 0.385626i 0.981236 + 0.192813i \(0.0617610\pi\)
−0.981236 + 0.192813i \(0.938239\pi\)
\(858\) 0 0
\(859\) −15.0348 −0.512982 −0.256491 0.966547i \(-0.582566\pi\)
−0.256491 + 0.966547i \(0.582566\pi\)
\(860\) 0 0
\(861\) −32.3935 36.1676i −1.10397 1.23259i
\(862\) 0 0
\(863\) −28.5561 −0.972061 −0.486031 0.873942i \(-0.661556\pi\)
−0.486031 + 0.873942i \(0.661556\pi\)
\(864\) 0 0
\(865\) −20.4892 −0.696655
\(866\) 0 0
\(867\) −18.3164 20.4504i −0.622058 0.694532i
\(868\) 0 0
\(869\) −11.3987 −0.386675
\(870\) 0 0
\(871\) 16.9835i 0.575464i
\(872\) 0 0
\(873\) 2.56284 23.2084i 0.0867391 0.785484i
\(874\) 0 0
\(875\) 4.31116i 0.145744i
\(876\) 0 0
\(877\) 0.00815412i 0.000275345i 1.00000 0.000137673i \(4.38225e-5\pi\)
−1.00000 0.000137673i \(0.999956\pi\)
\(878\) 0 0
\(879\) −15.6769 17.5034i −0.528769 0.590374i
\(880\) 0 0
\(881\) 0.420669i 0.0141727i −0.999975 0.00708635i \(-0.997744\pi\)
0.999975 0.00708635i \(-0.00225567\pi\)
\(882\) 0 0
\(883\) −4.48782 −0.151027 −0.0755137 0.997145i \(-0.524060\pi\)
−0.0755137 + 0.997145i \(0.524060\pi\)
\(884\) 0 0
\(885\) −6.89157 + 6.17245i −0.231658 + 0.207485i
\(886\) 0 0
\(887\) 36.5225 1.22630 0.613152 0.789965i \(-0.289901\pi\)
0.613152 + 0.789965i \(0.289901\pi\)
\(888\) 0 0
\(889\) −52.4015 −1.75749
\(890\) 0 0
\(891\) −11.7113 + 52.3805i −0.392343 + 1.75481i
\(892\) 0 0
\(893\) 8.13524 0.272236
\(894\) 0 0
\(895\) 14.5861i 0.487558i
\(896\) 0 0
\(897\) −33.9750 + 30.4298i −1.13439 + 1.01602i
\(898\) 0 0
\(899\) 2.60061i 0.0867353i
\(900\) 0 0
\(901\) 1.56695i 0.0522028i
\(902\) 0 0
\(903\) 63.8106 57.1520i 2.12348 1.90190i
\(904\) 0 0
\(905\) 6.32168i 0.210140i
\(906\) 0 0
\(907\) 28.4040 0.943141 0.471570 0.881828i \(-0.343687\pi\)
0.471570 + 0.881828i \(0.343687\pi\)
\(908\) 0 0
\(909\) 3.43826 31.1359i 0.114040 1.03271i
\(910\) 0 0
\(911\) −57.8993 −1.91829 −0.959144 0.282919i \(-0.908697\pi\)
−0.959144 + 0.282919i \(0.908697\pi\)
\(912\) 0 0
\(913\) 19.1003 0.632127
\(914\) 0 0
\(915\) 6.99967 6.26926i 0.231402 0.207255i
\(916\) 0 0
\(917\) 29.0673 0.959887
\(918\) 0 0
\(919\) 25.1327i 0.829053i 0.910037 + 0.414526i \(0.136053\pi\)
−0.910037 + 0.414526i \(0.863947\pi\)
\(920\) 0 0
\(921\) −19.5541 21.8323i −0.644331 0.719399i
\(922\) 0 0
\(923\) 31.6874i 1.04300i
\(924\) 0 0
\(925\) 8.35305i 0.274646i
\(926\) 0 0
\(927\) 46.5660 + 5.14216i 1.52943 + 0.168891i
\(928\) 0 0
\(929\) 29.4575i 0.966471i 0.875491 + 0.483235i \(0.160538\pi\)
−0.875491 + 0.483235i \(0.839462\pi\)
\(930\) 0 0
\(931\) −49.0439 −1.60735
\(932\) 0 0
\(933\) 20.4417 + 22.8233i 0.669232 + 0.747201i
\(934\) 0 0
\(935\) 6.39418 0.209112
\(936\) 0 0
\(937\) −43.8782 −1.43344 −0.716719 0.697362i \(-0.754357\pi\)
−0.716719 + 0.697362i \(0.754357\pi\)
\(938\) 0 0
\(939\) −19.9656 22.2917i −0.651553 0.727463i
\(940\) 0 0
\(941\) 19.6138 0.639393 0.319696 0.947520i \(-0.396419\pi\)
0.319696 + 0.947520i \(0.396419\pi\)
\(942\) 0 0
\(943\) 35.0039i 1.13988i
\(944\) 0 0
\(945\) 13.0238 + 18.2265i 0.423663 + 0.592908i
\(946\) 0 0
\(947\) 30.7241i 0.998399i −0.866487 0.499200i \(-0.833627\pi\)
0.866487 0.499200i \(-0.166373\pi\)
\(948\) 0 0
\(949\) 70.7616i 2.29702i
\(950\) 0 0
\(951\) −4.17809 4.66486i −0.135484 0.151268i
\(952\) 0 0
\(953\) 44.2048i 1.43193i 0.698135 + 0.715966i \(0.254014\pi\)
−0.698135 + 0.715966i \(0.745986\pi\)
\(954\) 0 0
\(955\) −3.54526 −0.114722
\(956\) 0 0
\(957\) −21.5670 + 19.3165i −0.697161 + 0.624413i
\(958\) 0 0
\(959\) 98.5328 3.18179
\(960\) 0 0
\(961\) 30.1391 0.972230
\(962\) 0 0
\(963\) 25.4051 + 2.80542i 0.818669 + 0.0904036i
\(964\) 0 0
\(965\) −4.86020 −0.156455
\(966\) 0 0
\(967\) 26.2057i 0.842718i 0.906894 + 0.421359i \(0.138447\pi\)
−0.906894 + 0.421359i \(0.861553\pi\)
\(968\) 0 0
\(969\) −5.85565 + 5.24462i −0.188111 + 0.168481i
\(970\) 0 0
\(971\) 13.6025i 0.436527i 0.975890 + 0.218263i \(0.0700391\pi\)
−0.975890 + 0.218263i \(0.929961\pi\)
\(972\) 0 0
\(973\) 13.6058i 0.436183i
\(974\) 0 0
\(975\) −6.31116 + 5.65259i −0.202119 + 0.181028i
\(976\) 0 0
\(977\) 11.9226i 0.381438i −0.981645 0.190719i \(-0.938918\pi\)
0.981645 0.190719i \(-0.0610820\pi\)
\(978\) 0 0
\(979\) 3.21164 0.102645
\(980\) 0 0
\(981\) −25.7831 2.84717i −0.823193 0.0909031i
\(982\) 0 0
\(983\) −50.9377 −1.62466 −0.812330 0.583198i \(-0.801801\pi\)
−0.812330 + 0.583198i \(0.801801\pi\)
\(984\) 0 0
\(985\) 1.17277 0.0373677
\(986\) 0 0
\(987\) −10.6899 + 9.57445i −0.340264 + 0.304758i
\(988\) 0 0
\(989\) −61.7575 −1.96377
\(990\) 0 0
\(991\) 26.3661i 0.837546i 0.908091 + 0.418773i \(0.137540\pi\)
−0.908091 + 0.418773i \(0.862460\pi\)
\(992\) 0 0
\(993\) 11.8388 + 13.2181i 0.375694 + 0.419465i
\(994\) 0 0
\(995\) 18.0162i 0.571151i
\(996\) 0 0
\(997\) 4.18548i 0.132556i −0.997801 0.0662778i \(-0.978888\pi\)
0.997801 0.0662778i \(-0.0211123\pi\)
\(998\) 0 0
\(999\) −25.2341 35.3146i −0.798372 1.11730i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.b.g.191.1 yes 8
3.2 odd 2 1920.2.b.h.191.2 yes 8
4.3 odd 2 1920.2.b.a.191.8 yes 8
8.3 odd 2 1920.2.b.h.191.1 yes 8
8.5 even 2 1920.2.b.b.191.8 yes 8
12.11 even 2 1920.2.b.b.191.7 yes 8
24.5 odd 2 1920.2.b.a.191.7 8
24.11 even 2 inner 1920.2.b.g.191.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.b.a.191.7 8 24.5 odd 2
1920.2.b.a.191.8 yes 8 4.3 odd 2
1920.2.b.b.191.7 yes 8 12.11 even 2
1920.2.b.b.191.8 yes 8 8.5 even 2
1920.2.b.g.191.1 yes 8 1.1 even 1 trivial
1920.2.b.g.191.2 yes 8 24.11 even 2 inner
1920.2.b.h.191.1 yes 8 8.3 odd 2
1920.2.b.h.191.2 yes 8 3.2 odd 2