Properties

Label 1920.2.a.z.1.2
Level $1920$
Weight $2$
Character 1920.1
Self dual yes
Analytic conductor $15.331$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 1920.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} +3.12311 q^{7} +1.00000 q^{9} -2.00000 q^{11} -3.12311 q^{13} -1.00000 q^{15} +7.12311 q^{17} +3.12311 q^{19} -3.12311 q^{21} -3.12311 q^{23} +1.00000 q^{25} -1.00000 q^{27} +8.24621 q^{29} -1.12311 q^{31} +2.00000 q^{33} +3.12311 q^{35} +3.12311 q^{37} +3.12311 q^{39} -2.00000 q^{41} -10.2462 q^{43} +1.00000 q^{45} +4.87689 q^{47} +2.75379 q^{49} -7.12311 q^{51} +10.0000 q^{53} -2.00000 q^{55} -3.12311 q^{57} -6.00000 q^{59} -2.00000 q^{61} +3.12311 q^{63} -3.12311 q^{65} -10.2462 q^{67} +3.12311 q^{69} +8.00000 q^{71} +12.2462 q^{73} -1.00000 q^{75} -6.24621 q^{77} +13.1231 q^{79} +1.00000 q^{81} +4.00000 q^{83} +7.12311 q^{85} -8.24621 q^{87} -10.0000 q^{89} -9.75379 q^{91} +1.12311 q^{93} +3.12311 q^{95} +10.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 2 q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{15} + 6 q^{17} - 2 q^{19} + 2 q^{21} + 2 q^{23} + 2 q^{25} - 2 q^{27} + 6 q^{31} + 4 q^{33} - 2 q^{35} - 2 q^{37} - 2 q^{39} - 4 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.12311 1.18042 0.590211 0.807249i \(-0.299044\pi\)
0.590211 + 0.807249i \(0.299044\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −3.12311 −0.866194 −0.433097 0.901347i \(-0.642579\pi\)
−0.433097 + 0.901347i \(0.642579\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 7.12311 1.72761 0.863803 0.503829i \(-0.168076\pi\)
0.863803 + 0.503829i \(0.168076\pi\)
\(18\) 0 0
\(19\) 3.12311 0.716490 0.358245 0.933628i \(-0.383375\pi\)
0.358245 + 0.933628i \(0.383375\pi\)
\(20\) 0 0
\(21\) −3.12311 −0.681518
\(22\) 0 0
\(23\) −3.12311 −0.651213 −0.325606 0.945505i \(-0.605568\pi\)
−0.325606 + 0.945505i \(0.605568\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 8.24621 1.53128 0.765641 0.643268i \(-0.222422\pi\)
0.765641 + 0.643268i \(0.222422\pi\)
\(30\) 0 0
\(31\) −1.12311 −0.201716 −0.100858 0.994901i \(-0.532159\pi\)
−0.100858 + 0.994901i \(0.532159\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 3.12311 0.527901
\(36\) 0 0
\(37\) 3.12311 0.513435 0.256718 0.966486i \(-0.417359\pi\)
0.256718 + 0.966486i \(0.417359\pi\)
\(38\) 0 0
\(39\) 3.12311 0.500097
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −10.2462 −1.56253 −0.781266 0.624198i \(-0.785426\pi\)
−0.781266 + 0.624198i \(0.785426\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 4.87689 0.711368 0.355684 0.934606i \(-0.384248\pi\)
0.355684 + 0.934606i \(0.384248\pi\)
\(48\) 0 0
\(49\) 2.75379 0.393398
\(50\) 0 0
\(51\) −7.12311 −0.997434
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) −3.12311 −0.413665
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 3.12311 0.393474
\(64\) 0 0
\(65\) −3.12311 −0.387374
\(66\) 0 0
\(67\) −10.2462 −1.25177 −0.625887 0.779914i \(-0.715263\pi\)
−0.625887 + 0.779914i \(0.715263\pi\)
\(68\) 0 0
\(69\) 3.12311 0.375978
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 12.2462 1.43331 0.716655 0.697428i \(-0.245672\pi\)
0.716655 + 0.697428i \(0.245672\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −6.24621 −0.711822
\(78\) 0 0
\(79\) 13.1231 1.47646 0.738232 0.674546i \(-0.235661\pi\)
0.738232 + 0.674546i \(0.235661\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 7.12311 0.772609
\(86\) 0 0
\(87\) −8.24621 −0.884087
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −9.75379 −1.02247
\(92\) 0 0
\(93\) 1.12311 0.116461
\(94\) 0 0
\(95\) 3.12311 0.320424
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) −13.3693 −1.31732 −0.658659 0.752442i \(-0.728876\pi\)
−0.658659 + 0.752442i \(0.728876\pi\)
\(104\) 0 0
\(105\) −3.12311 −0.304784
\(106\) 0 0
\(107\) 14.2462 1.37723 0.688617 0.725126i \(-0.258218\pi\)
0.688617 + 0.725126i \(0.258218\pi\)
\(108\) 0 0
\(109\) −12.2462 −1.17297 −0.586487 0.809959i \(-0.699490\pi\)
−0.586487 + 0.809959i \(0.699490\pi\)
\(110\) 0 0
\(111\) −3.12311 −0.296432
\(112\) 0 0
\(113\) 15.1231 1.42266 0.711331 0.702857i \(-0.248093\pi\)
0.711331 + 0.702857i \(0.248093\pi\)
\(114\) 0 0
\(115\) −3.12311 −0.291231
\(116\) 0 0
\(117\) −3.12311 −0.288731
\(118\) 0 0
\(119\) 22.2462 2.03931
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 15.1231 1.34196 0.670979 0.741476i \(-0.265874\pi\)
0.670979 + 0.741476i \(0.265874\pi\)
\(128\) 0 0
\(129\) 10.2462 0.902129
\(130\) 0 0
\(131\) −8.24621 −0.720475 −0.360237 0.932861i \(-0.617304\pi\)
−0.360237 + 0.932861i \(0.617304\pi\)
\(132\) 0 0
\(133\) 9.75379 0.845761
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −11.1231 −0.950311 −0.475156 0.879902i \(-0.657608\pi\)
−0.475156 + 0.879902i \(0.657608\pi\)
\(138\) 0 0
\(139\) 9.36932 0.794695 0.397348 0.917668i \(-0.369931\pi\)
0.397348 + 0.917668i \(0.369931\pi\)
\(140\) 0 0
\(141\) −4.87689 −0.410709
\(142\) 0 0
\(143\) 6.24621 0.522334
\(144\) 0 0
\(145\) 8.24621 0.684811
\(146\) 0 0
\(147\) −2.75379 −0.227129
\(148\) 0 0
\(149\) 3.75379 0.307522 0.153761 0.988108i \(-0.450861\pi\)
0.153761 + 0.988108i \(0.450861\pi\)
\(150\) 0 0
\(151\) 7.36932 0.599707 0.299853 0.953985i \(-0.403062\pi\)
0.299853 + 0.953985i \(0.403062\pi\)
\(152\) 0 0
\(153\) 7.12311 0.575869
\(154\) 0 0
\(155\) −1.12311 −0.0902100
\(156\) 0 0
\(157\) 5.36932 0.428518 0.214259 0.976777i \(-0.431266\pi\)
0.214259 + 0.976777i \(0.431266\pi\)
\(158\) 0 0
\(159\) −10.0000 −0.793052
\(160\) 0 0
\(161\) −9.75379 −0.768706
\(162\) 0 0
\(163\) 24.4924 1.91839 0.959197 0.282738i \(-0.0912426\pi\)
0.959197 + 0.282738i \(0.0912426\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) 19.1231 1.47979 0.739895 0.672722i \(-0.234875\pi\)
0.739895 + 0.672722i \(0.234875\pi\)
\(168\) 0 0
\(169\) −3.24621 −0.249709
\(170\) 0 0
\(171\) 3.12311 0.238830
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 3.12311 0.236085
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) −4.24621 −0.317377 −0.158688 0.987329i \(-0.550727\pi\)
−0.158688 + 0.987329i \(0.550727\pi\)
\(180\) 0 0
\(181\) 16.2462 1.20757 0.603786 0.797147i \(-0.293658\pi\)
0.603786 + 0.797147i \(0.293658\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 3.12311 0.229615
\(186\) 0 0
\(187\) −14.2462 −1.04179
\(188\) 0 0
\(189\) −3.12311 −0.227173
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 7.75379 0.558130 0.279065 0.960272i \(-0.409976\pi\)
0.279065 + 0.960272i \(0.409976\pi\)
\(194\) 0 0
\(195\) 3.12311 0.223650
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −21.6155 −1.53228 −0.766142 0.642671i \(-0.777826\pi\)
−0.766142 + 0.642671i \(0.777826\pi\)
\(200\) 0 0
\(201\) 10.2462 0.722712
\(202\) 0 0
\(203\) 25.7538 1.80756
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) −3.12311 −0.217071
\(208\) 0 0
\(209\) −6.24621 −0.432059
\(210\) 0 0
\(211\) −19.1231 −1.31649 −0.658244 0.752804i \(-0.728701\pi\)
−0.658244 + 0.752804i \(0.728701\pi\)
\(212\) 0 0
\(213\) −8.00000 −0.548151
\(214\) 0 0
\(215\) −10.2462 −0.698786
\(216\) 0 0
\(217\) −3.50758 −0.238110
\(218\) 0 0
\(219\) −12.2462 −0.827522
\(220\) 0 0
\(221\) −22.2462 −1.49644
\(222\) 0 0
\(223\) −23.1231 −1.54844 −0.774219 0.632918i \(-0.781857\pi\)
−0.774219 + 0.632918i \(0.781857\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 6.24621 0.410971
\(232\) 0 0
\(233\) −15.6155 −1.02301 −0.511504 0.859281i \(-0.670911\pi\)
−0.511504 + 0.859281i \(0.670911\pi\)
\(234\) 0 0
\(235\) 4.87689 0.318134
\(236\) 0 0
\(237\) −13.1231 −0.852437
\(238\) 0 0
\(239\) −10.2462 −0.662772 −0.331386 0.943495i \(-0.607516\pi\)
−0.331386 + 0.943495i \(0.607516\pi\)
\(240\) 0 0
\(241\) −24.2462 −1.56184 −0.780918 0.624634i \(-0.785248\pi\)
−0.780918 + 0.624634i \(0.785248\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 2.75379 0.175933
\(246\) 0 0
\(247\) −9.75379 −0.620619
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −12.2462 −0.772974 −0.386487 0.922295i \(-0.626312\pi\)
−0.386487 + 0.922295i \(0.626312\pi\)
\(252\) 0 0
\(253\) 6.24621 0.392696
\(254\) 0 0
\(255\) −7.12311 −0.446066
\(256\) 0 0
\(257\) −25.8617 −1.61321 −0.806605 0.591090i \(-0.798698\pi\)
−0.806605 + 0.591090i \(0.798698\pi\)
\(258\) 0 0
\(259\) 9.75379 0.606071
\(260\) 0 0
\(261\) 8.24621 0.510428
\(262\) 0 0
\(263\) 9.36932 0.577737 0.288868 0.957369i \(-0.406721\pi\)
0.288868 + 0.957369i \(0.406721\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) 0 0
\(269\) 8.24621 0.502780 0.251390 0.967886i \(-0.419112\pi\)
0.251390 + 0.967886i \(0.419112\pi\)
\(270\) 0 0
\(271\) −1.12311 −0.0682238 −0.0341119 0.999418i \(-0.510860\pi\)
−0.0341119 + 0.999418i \(0.510860\pi\)
\(272\) 0 0
\(273\) 9.75379 0.590326
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −23.1231 −1.38933 −0.694666 0.719332i \(-0.744448\pi\)
−0.694666 + 0.719332i \(0.744448\pi\)
\(278\) 0 0
\(279\) −1.12311 −0.0672386
\(280\) 0 0
\(281\) −16.2462 −0.969168 −0.484584 0.874745i \(-0.661029\pi\)
−0.484584 + 0.874745i \(0.661029\pi\)
\(282\) 0 0
\(283\) −13.7538 −0.817578 −0.408789 0.912629i \(-0.634049\pi\)
−0.408789 + 0.912629i \(0.634049\pi\)
\(284\) 0 0
\(285\) −3.12311 −0.184997
\(286\) 0 0
\(287\) −6.24621 −0.368702
\(288\) 0 0
\(289\) 33.7386 1.98463
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 20.7386 1.21156 0.605782 0.795631i \(-0.292860\pi\)
0.605782 + 0.795631i \(0.292860\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) 9.75379 0.564076
\(300\) 0 0
\(301\) −32.0000 −1.84445
\(302\) 0 0
\(303\) −14.0000 −0.804279
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 2.24621 0.128198 0.0640990 0.997944i \(-0.479583\pi\)
0.0640990 + 0.997944i \(0.479583\pi\)
\(308\) 0 0
\(309\) 13.3693 0.760554
\(310\) 0 0
\(311\) 13.7538 0.779906 0.389953 0.920835i \(-0.372491\pi\)
0.389953 + 0.920835i \(0.372491\pi\)
\(312\) 0 0
\(313\) −28.7386 −1.62440 −0.812202 0.583377i \(-0.801731\pi\)
−0.812202 + 0.583377i \(0.801731\pi\)
\(314\) 0 0
\(315\) 3.12311 0.175967
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) −16.4924 −0.923398
\(320\) 0 0
\(321\) −14.2462 −0.795146
\(322\) 0 0
\(323\) 22.2462 1.23781
\(324\) 0 0
\(325\) −3.12311 −0.173239
\(326\) 0 0
\(327\) 12.2462 0.677217
\(328\) 0 0
\(329\) 15.2311 0.839715
\(330\) 0 0
\(331\) −7.12311 −0.391521 −0.195761 0.980652i \(-0.562718\pi\)
−0.195761 + 0.980652i \(0.562718\pi\)
\(332\) 0 0
\(333\) 3.12311 0.171145
\(334\) 0 0
\(335\) −10.2462 −0.559810
\(336\) 0 0
\(337\) 24.7386 1.34760 0.673800 0.738914i \(-0.264661\pi\)
0.673800 + 0.738914i \(0.264661\pi\)
\(338\) 0 0
\(339\) −15.1231 −0.821374
\(340\) 0 0
\(341\) 2.24621 0.121639
\(342\) 0 0
\(343\) −13.2614 −0.716046
\(344\) 0 0
\(345\) 3.12311 0.168142
\(346\) 0 0
\(347\) 6.24621 0.335314 0.167657 0.985845i \(-0.446380\pi\)
0.167657 + 0.985845i \(0.446380\pi\)
\(348\) 0 0
\(349\) −22.4924 −1.20399 −0.601996 0.798499i \(-0.705628\pi\)
−0.601996 + 0.798499i \(0.705628\pi\)
\(350\) 0 0
\(351\) 3.12311 0.166699
\(352\) 0 0
\(353\) 29.8617 1.58938 0.794690 0.607015i \(-0.207633\pi\)
0.794690 + 0.607015i \(0.207633\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) 0 0
\(357\) −22.2462 −1.17739
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) −9.24621 −0.486643
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) 12.2462 0.640996
\(366\) 0 0
\(367\) 17.3693 0.906671 0.453335 0.891340i \(-0.350234\pi\)
0.453335 + 0.891340i \(0.350234\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 31.2311 1.62144
\(372\) 0 0
\(373\) 8.87689 0.459628 0.229814 0.973235i \(-0.426188\pi\)
0.229814 + 0.973235i \(0.426188\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −25.7538 −1.32639
\(378\) 0 0
\(379\) −21.3693 −1.09767 −0.548834 0.835931i \(-0.684928\pi\)
−0.548834 + 0.835931i \(0.684928\pi\)
\(380\) 0 0
\(381\) −15.1231 −0.774780
\(382\) 0 0
\(383\) 3.12311 0.159583 0.0797916 0.996812i \(-0.474575\pi\)
0.0797916 + 0.996812i \(0.474575\pi\)
\(384\) 0 0
\(385\) −6.24621 −0.318336
\(386\) 0 0
\(387\) −10.2462 −0.520844
\(388\) 0 0
\(389\) −22.4924 −1.14041 −0.570206 0.821502i \(-0.693136\pi\)
−0.570206 + 0.821502i \(0.693136\pi\)
\(390\) 0 0
\(391\) −22.2462 −1.12504
\(392\) 0 0
\(393\) 8.24621 0.415966
\(394\) 0 0
\(395\) 13.1231 0.660295
\(396\) 0 0
\(397\) 9.36932 0.470233 0.235116 0.971967i \(-0.424453\pi\)
0.235116 + 0.971967i \(0.424453\pi\)
\(398\) 0 0
\(399\) −9.75379 −0.488300
\(400\) 0 0
\(401\) −28.2462 −1.41055 −0.705274 0.708935i \(-0.749176\pi\)
−0.705274 + 0.708935i \(0.749176\pi\)
\(402\) 0 0
\(403\) 3.50758 0.174725
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −6.24621 −0.309613
\(408\) 0 0
\(409\) −14.4924 −0.716604 −0.358302 0.933606i \(-0.616644\pi\)
−0.358302 + 0.933606i \(0.616644\pi\)
\(410\) 0 0
\(411\) 11.1231 0.548662
\(412\) 0 0
\(413\) −18.7386 −0.922068
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) −9.36932 −0.458817
\(418\) 0 0
\(419\) 16.2462 0.793679 0.396840 0.917888i \(-0.370107\pi\)
0.396840 + 0.917888i \(0.370107\pi\)
\(420\) 0 0
\(421\) −34.9848 −1.70506 −0.852529 0.522681i \(-0.824932\pi\)
−0.852529 + 0.522681i \(0.824932\pi\)
\(422\) 0 0
\(423\) 4.87689 0.237123
\(424\) 0 0
\(425\) 7.12311 0.345521
\(426\) 0 0
\(427\) −6.24621 −0.302275
\(428\) 0 0
\(429\) −6.24621 −0.301570
\(430\) 0 0
\(431\) 16.4924 0.794412 0.397206 0.917729i \(-0.369980\pi\)
0.397206 + 0.917729i \(0.369980\pi\)
\(432\) 0 0
\(433\) −16.2462 −0.780743 −0.390372 0.920657i \(-0.627653\pi\)
−0.390372 + 0.920657i \(0.627653\pi\)
\(434\) 0 0
\(435\) −8.24621 −0.395376
\(436\) 0 0
\(437\) −9.75379 −0.466587
\(438\) 0 0
\(439\) 27.3693 1.30627 0.653133 0.757243i \(-0.273454\pi\)
0.653133 + 0.757243i \(0.273454\pi\)
\(440\) 0 0
\(441\) 2.75379 0.131133
\(442\) 0 0
\(443\) 36.4924 1.73381 0.866904 0.498476i \(-0.166107\pi\)
0.866904 + 0.498476i \(0.166107\pi\)
\(444\) 0 0
\(445\) −10.0000 −0.474045
\(446\) 0 0
\(447\) −3.75379 −0.177548
\(448\) 0 0
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 0 0
\(453\) −7.36932 −0.346241
\(454\) 0 0
\(455\) −9.75379 −0.457265
\(456\) 0 0
\(457\) −26.4924 −1.23926 −0.619632 0.784893i \(-0.712718\pi\)
−0.619632 + 0.784893i \(0.712718\pi\)
\(458\) 0 0
\(459\) −7.12311 −0.332478
\(460\) 0 0
\(461\) −23.7538 −1.10632 −0.553162 0.833074i \(-0.686579\pi\)
−0.553162 + 0.833074i \(0.686579\pi\)
\(462\) 0 0
\(463\) −28.8769 −1.34202 −0.671012 0.741447i \(-0.734140\pi\)
−0.671012 + 0.741447i \(0.734140\pi\)
\(464\) 0 0
\(465\) 1.12311 0.0520828
\(466\) 0 0
\(467\) −30.7386 −1.42241 −0.711207 0.702982i \(-0.751851\pi\)
−0.711207 + 0.702982i \(0.751851\pi\)
\(468\) 0 0
\(469\) −32.0000 −1.47762
\(470\) 0 0
\(471\) −5.36932 −0.247405
\(472\) 0 0
\(473\) 20.4924 0.942243
\(474\) 0 0
\(475\) 3.12311 0.143298
\(476\) 0 0
\(477\) 10.0000 0.457869
\(478\) 0 0
\(479\) −3.50758 −0.160265 −0.0801327 0.996784i \(-0.525534\pi\)
−0.0801327 + 0.996784i \(0.525534\pi\)
\(480\) 0 0
\(481\) −9.75379 −0.444734
\(482\) 0 0
\(483\) 9.75379 0.443813
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) −27.6155 −1.25138 −0.625690 0.780072i \(-0.715182\pi\)
−0.625690 + 0.780072i \(0.715182\pi\)
\(488\) 0 0
\(489\) −24.4924 −1.10759
\(490\) 0 0
\(491\) 34.4924 1.55662 0.778311 0.627879i \(-0.216077\pi\)
0.778311 + 0.627879i \(0.216077\pi\)
\(492\) 0 0
\(493\) 58.7386 2.64546
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) 24.9848 1.12072
\(498\) 0 0
\(499\) 29.3693 1.31475 0.657376 0.753563i \(-0.271667\pi\)
0.657376 + 0.753563i \(0.271667\pi\)
\(500\) 0 0
\(501\) −19.1231 −0.854357
\(502\) 0 0
\(503\) −39.6155 −1.76637 −0.883185 0.469026i \(-0.844605\pi\)
−0.883185 + 0.469026i \(0.844605\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 0 0
\(507\) 3.24621 0.144169
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 38.2462 1.69191
\(512\) 0 0
\(513\) −3.12311 −0.137888
\(514\) 0 0
\(515\) −13.3693 −0.589122
\(516\) 0 0
\(517\) −9.75379 −0.428971
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 30.7386 1.34411 0.672053 0.740503i \(-0.265413\pi\)
0.672053 + 0.740503i \(0.265413\pi\)
\(524\) 0 0
\(525\) −3.12311 −0.136304
\(526\) 0 0
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) −13.2462 −0.575922
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 6.24621 0.270553
\(534\) 0 0
\(535\) 14.2462 0.615917
\(536\) 0 0
\(537\) 4.24621 0.183238
\(538\) 0 0
\(539\) −5.50758 −0.237228
\(540\) 0 0
\(541\) 8.24621 0.354532 0.177266 0.984163i \(-0.443275\pi\)
0.177266 + 0.984163i \(0.443275\pi\)
\(542\) 0 0
\(543\) −16.2462 −0.697192
\(544\) 0 0
\(545\) −12.2462 −0.524570
\(546\) 0 0
\(547\) 26.2462 1.12221 0.561103 0.827746i \(-0.310377\pi\)
0.561103 + 0.827746i \(0.310377\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 25.7538 1.09715
\(552\) 0 0
\(553\) 40.9848 1.74285
\(554\) 0 0
\(555\) −3.12311 −0.132568
\(556\) 0 0
\(557\) 34.4924 1.46149 0.730745 0.682650i \(-0.239173\pi\)
0.730745 + 0.682650i \(0.239173\pi\)
\(558\) 0 0
\(559\) 32.0000 1.35346
\(560\) 0 0
\(561\) 14.2462 0.601476
\(562\) 0 0
\(563\) −26.7386 −1.12690 −0.563450 0.826150i \(-0.690526\pi\)
−0.563450 + 0.826150i \(0.690526\pi\)
\(564\) 0 0
\(565\) 15.1231 0.636234
\(566\) 0 0
\(567\) 3.12311 0.131158
\(568\) 0 0
\(569\) −24.7386 −1.03710 −0.518549 0.855048i \(-0.673528\pi\)
−0.518549 + 0.855048i \(0.673528\pi\)
\(570\) 0 0
\(571\) −43.6155 −1.82525 −0.912627 0.408794i \(-0.865949\pi\)
−0.912627 + 0.408794i \(0.865949\pi\)
\(572\) 0 0
\(573\) −4.00000 −0.167102
\(574\) 0 0
\(575\) −3.12311 −0.130243
\(576\) 0 0
\(577\) −22.9848 −0.956872 −0.478436 0.878123i \(-0.658796\pi\)
−0.478436 + 0.878123i \(0.658796\pi\)
\(578\) 0 0
\(579\) −7.75379 −0.322236
\(580\) 0 0
\(581\) 12.4924 0.518273
\(582\) 0 0
\(583\) −20.0000 −0.828315
\(584\) 0 0
\(585\) −3.12311 −0.129125
\(586\) 0 0
\(587\) −2.73863 −0.113036 −0.0565178 0.998402i \(-0.518000\pi\)
−0.0565178 + 0.998402i \(0.518000\pi\)
\(588\) 0 0
\(589\) −3.50758 −0.144527
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 0 0
\(593\) −17.8617 −0.733494 −0.366747 0.930321i \(-0.619528\pi\)
−0.366747 + 0.930321i \(0.619528\pi\)
\(594\) 0 0
\(595\) 22.2462 0.912006
\(596\) 0 0
\(597\) 21.6155 0.884665
\(598\) 0 0
\(599\) −8.49242 −0.346991 −0.173495 0.984835i \(-0.555506\pi\)
−0.173495 + 0.984835i \(0.555506\pi\)
\(600\) 0 0
\(601\) 34.9848 1.42706 0.713531 0.700624i \(-0.247095\pi\)
0.713531 + 0.700624i \(0.247095\pi\)
\(602\) 0 0
\(603\) −10.2462 −0.417258
\(604\) 0 0
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) 4.87689 0.197947 0.0989735 0.995090i \(-0.468444\pi\)
0.0989735 + 0.995090i \(0.468444\pi\)
\(608\) 0 0
\(609\) −25.7538 −1.04360
\(610\) 0 0
\(611\) −15.2311 −0.616183
\(612\) 0 0
\(613\) 17.3693 0.701540 0.350770 0.936462i \(-0.385920\pi\)
0.350770 + 0.936462i \(0.385920\pi\)
\(614\) 0 0
\(615\) 2.00000 0.0806478
\(616\) 0 0
\(617\) −31.6155 −1.27279 −0.636397 0.771362i \(-0.719576\pi\)
−0.636397 + 0.771362i \(0.719576\pi\)
\(618\) 0 0
\(619\) 12.8769 0.517566 0.258783 0.965935i \(-0.416679\pi\)
0.258783 + 0.965935i \(0.416679\pi\)
\(620\) 0 0
\(621\) 3.12311 0.125326
\(622\) 0 0
\(623\) −31.2311 −1.25125
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 6.24621 0.249450
\(628\) 0 0
\(629\) 22.2462 0.887015
\(630\) 0 0
\(631\) −43.8617 −1.74611 −0.873054 0.487623i \(-0.837864\pi\)
−0.873054 + 0.487623i \(0.837864\pi\)
\(632\) 0 0
\(633\) 19.1231 0.760075
\(634\) 0 0
\(635\) 15.1231 0.600142
\(636\) 0 0
\(637\) −8.60037 −0.340759
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −19.7538 −0.780228 −0.390114 0.920767i \(-0.627564\pi\)
−0.390114 + 0.920767i \(0.627564\pi\)
\(642\) 0 0
\(643\) −0.492423 −0.0194192 −0.00970962 0.999953i \(-0.503091\pi\)
−0.00970962 + 0.999953i \(0.503091\pi\)
\(644\) 0 0
\(645\) 10.2462 0.403444
\(646\) 0 0
\(647\) −4.87689 −0.191731 −0.0958653 0.995394i \(-0.530562\pi\)
−0.0958653 + 0.995394i \(0.530562\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 3.50758 0.137473
\(652\) 0 0
\(653\) −4.73863 −0.185437 −0.0927185 0.995692i \(-0.529556\pi\)
−0.0927185 + 0.995692i \(0.529556\pi\)
\(654\) 0 0
\(655\) −8.24621 −0.322206
\(656\) 0 0
\(657\) 12.2462 0.477770
\(658\) 0 0
\(659\) −26.0000 −1.01282 −0.506408 0.862294i \(-0.669027\pi\)
−0.506408 + 0.862294i \(0.669027\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) 22.2462 0.863971
\(664\) 0 0
\(665\) 9.75379 0.378236
\(666\) 0 0
\(667\) −25.7538 −0.997191
\(668\) 0 0
\(669\) 23.1231 0.893991
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) −3.75379 −0.144698 −0.0723490 0.997379i \(-0.523050\pi\)
−0.0723490 + 0.997379i \(0.523050\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −44.7386 −1.71945 −0.859723 0.510761i \(-0.829364\pi\)
−0.859723 + 0.510761i \(0.829364\pi\)
\(678\) 0 0
\(679\) 31.2311 1.19854
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.2462 1.00428 0.502142 0.864785i \(-0.332546\pi\)
0.502142 + 0.864785i \(0.332546\pi\)
\(684\) 0 0
\(685\) −11.1231 −0.424992
\(686\) 0 0
\(687\) 10.0000 0.381524
\(688\) 0 0
\(689\) −31.2311 −1.18981
\(690\) 0 0
\(691\) 4.87689 0.185526 0.0927629 0.995688i \(-0.470430\pi\)
0.0927629 + 0.995688i \(0.470430\pi\)
\(692\) 0 0
\(693\) −6.24621 −0.237274
\(694\) 0 0
\(695\) 9.36932 0.355398
\(696\) 0 0
\(697\) −14.2462 −0.539614
\(698\) 0 0
\(699\) 15.6155 0.590634
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 9.75379 0.367871
\(704\) 0 0
\(705\) −4.87689 −0.183674
\(706\) 0 0
\(707\) 43.7235 1.64439
\(708\) 0 0
\(709\) 14.9848 0.562768 0.281384 0.959595i \(-0.409207\pi\)
0.281384 + 0.959595i \(0.409207\pi\)
\(710\) 0 0
\(711\) 13.1231 0.492155
\(712\) 0 0
\(713\) 3.50758 0.131360
\(714\) 0 0
\(715\) 6.24621 0.233595
\(716\) 0 0
\(717\) 10.2462 0.382652
\(718\) 0 0
\(719\) −5.75379 −0.214580 −0.107290 0.994228i \(-0.534217\pi\)
−0.107290 + 0.994228i \(0.534217\pi\)
\(720\) 0 0
\(721\) −41.7538 −1.55499
\(722\) 0 0
\(723\) 24.2462 0.901726
\(724\) 0 0
\(725\) 8.24621 0.306257
\(726\) 0 0
\(727\) −11.6155 −0.430796 −0.215398 0.976526i \(-0.569105\pi\)
−0.215398 + 0.976526i \(0.569105\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −72.9848 −2.69944
\(732\) 0 0
\(733\) −3.61553 −0.133543 −0.0667713 0.997768i \(-0.521270\pi\)
−0.0667713 + 0.997768i \(0.521270\pi\)
\(734\) 0 0
\(735\) −2.75379 −0.101575
\(736\) 0 0
\(737\) 20.4924 0.754848
\(738\) 0 0
\(739\) 24.8769 0.915111 0.457556 0.889181i \(-0.348725\pi\)
0.457556 + 0.889181i \(0.348725\pi\)
\(740\) 0 0
\(741\) 9.75379 0.358314
\(742\) 0 0
\(743\) 37.8617 1.38901 0.694506 0.719487i \(-0.255623\pi\)
0.694506 + 0.719487i \(0.255623\pi\)
\(744\) 0 0
\(745\) 3.75379 0.137528
\(746\) 0 0
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) 44.4924 1.62572
\(750\) 0 0
\(751\) 27.3693 0.998721 0.499360 0.866394i \(-0.333568\pi\)
0.499360 + 0.866394i \(0.333568\pi\)
\(752\) 0 0
\(753\) 12.2462 0.446277
\(754\) 0 0
\(755\) 7.36932 0.268197
\(756\) 0 0
\(757\) −27.6155 −1.00370 −0.501852 0.864954i \(-0.667348\pi\)
−0.501852 + 0.864954i \(0.667348\pi\)
\(758\) 0 0
\(759\) −6.24621 −0.226723
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) −38.2462 −1.38461
\(764\) 0 0
\(765\) 7.12311 0.257536
\(766\) 0 0
\(767\) 18.7386 0.676613
\(768\) 0 0
\(769\) 48.2462 1.73980 0.869901 0.493226i \(-0.164182\pi\)
0.869901 + 0.493226i \(0.164182\pi\)
\(770\) 0 0
\(771\) 25.8617 0.931388
\(772\) 0 0
\(773\) −51.4773 −1.85151 −0.925754 0.378126i \(-0.876569\pi\)
−0.925754 + 0.378126i \(0.876569\pi\)
\(774\) 0 0
\(775\) −1.12311 −0.0403431
\(776\) 0 0
\(777\) −9.75379 −0.349915
\(778\) 0 0
\(779\) −6.24621 −0.223794
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 0 0
\(783\) −8.24621 −0.294696
\(784\) 0 0
\(785\) 5.36932 0.191639
\(786\) 0 0
\(787\) −21.7538 −0.775439 −0.387719 0.921777i \(-0.626737\pi\)
−0.387719 + 0.921777i \(0.626737\pi\)
\(788\) 0 0
\(789\) −9.36932 −0.333557
\(790\) 0 0
\(791\) 47.2311 1.67934
\(792\) 0 0
\(793\) 6.24621 0.221809
\(794\) 0 0
\(795\) −10.0000 −0.354663
\(796\) 0 0
\(797\) 28.2462 1.00053 0.500266 0.865872i \(-0.333236\pi\)
0.500266 + 0.865872i \(0.333236\pi\)
\(798\) 0 0
\(799\) 34.7386 1.22896
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) −24.4924 −0.864319
\(804\) 0 0
\(805\) −9.75379 −0.343776
\(806\) 0 0
\(807\) −8.24621 −0.290280
\(808\) 0 0
\(809\) 4.24621 0.149289 0.0746444 0.997210i \(-0.476218\pi\)
0.0746444 + 0.997210i \(0.476218\pi\)
\(810\) 0 0
\(811\) 8.87689 0.311710 0.155855 0.987780i \(-0.450187\pi\)
0.155855 + 0.987780i \(0.450187\pi\)
\(812\) 0 0
\(813\) 1.12311 0.0393890
\(814\) 0 0
\(815\) 24.4924 0.857932
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) 0 0
\(819\) −9.75379 −0.340825
\(820\) 0 0
\(821\) −24.7386 −0.863384 −0.431692 0.902021i \(-0.642083\pi\)
−0.431692 + 0.902021i \(0.642083\pi\)
\(822\) 0 0
\(823\) −45.3693 −1.58147 −0.790737 0.612155i \(-0.790303\pi\)
−0.790737 + 0.612155i \(0.790303\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) −56.4924 −1.96443 −0.982217 0.187749i \(-0.939881\pi\)
−0.982217 + 0.187749i \(0.939881\pi\)
\(828\) 0 0
\(829\) 28.7386 0.998134 0.499067 0.866563i \(-0.333676\pi\)
0.499067 + 0.866563i \(0.333676\pi\)
\(830\) 0 0
\(831\) 23.1231 0.802132
\(832\) 0 0
\(833\) 19.6155 0.679638
\(834\) 0 0
\(835\) 19.1231 0.661782
\(836\) 0 0
\(837\) 1.12311 0.0388202
\(838\) 0 0
\(839\) −44.0000 −1.51905 −0.759524 0.650479i \(-0.774568\pi\)
−0.759524 + 0.650479i \(0.774568\pi\)
\(840\) 0 0
\(841\) 39.0000 1.34483
\(842\) 0 0
\(843\) 16.2462 0.559549
\(844\) 0 0
\(845\) −3.24621 −0.111673
\(846\) 0 0
\(847\) −21.8617 −0.751178
\(848\) 0 0
\(849\) 13.7538 0.472029
\(850\) 0 0
\(851\) −9.75379 −0.334356
\(852\) 0 0
\(853\) 12.8769 0.440896 0.220448 0.975399i \(-0.429248\pi\)
0.220448 + 0.975399i \(0.429248\pi\)
\(854\) 0 0
\(855\) 3.12311 0.106808
\(856\) 0 0
\(857\) 39.1231 1.33642 0.668210 0.743973i \(-0.267061\pi\)
0.668210 + 0.743973i \(0.267061\pi\)
\(858\) 0 0
\(859\) −16.8769 −0.575832 −0.287916 0.957656i \(-0.592962\pi\)
−0.287916 + 0.957656i \(0.592962\pi\)
\(860\) 0 0
\(861\) 6.24621 0.212870
\(862\) 0 0
\(863\) 22.6307 0.770357 0.385179 0.922842i \(-0.374140\pi\)
0.385179 + 0.922842i \(0.374140\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 0 0
\(867\) −33.7386 −1.14582
\(868\) 0 0
\(869\) −26.2462 −0.890342
\(870\) 0 0
\(871\) 32.0000 1.08428
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 3.12311 0.105580
\(876\) 0 0
\(877\) 12.3845 0.418194 0.209097 0.977895i \(-0.432948\pi\)
0.209097 + 0.977895i \(0.432948\pi\)
\(878\) 0 0
\(879\) −20.7386 −0.699497
\(880\) 0 0
\(881\) 18.4924 0.623026 0.311513 0.950242i \(-0.399164\pi\)
0.311513 + 0.950242i \(0.399164\pi\)
\(882\) 0 0
\(883\) −32.4924 −1.09346 −0.546729 0.837310i \(-0.684127\pi\)
−0.546729 + 0.837310i \(0.684127\pi\)
\(884\) 0 0
\(885\) 6.00000 0.201688
\(886\) 0 0
\(887\) 47.6155 1.59877 0.799386 0.600817i \(-0.205158\pi\)
0.799386 + 0.600817i \(0.205158\pi\)
\(888\) 0 0
\(889\) 47.2311 1.58408
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 15.2311 0.509688
\(894\) 0 0
\(895\) −4.24621 −0.141935
\(896\) 0 0
\(897\) −9.75379 −0.325670
\(898\) 0 0
\(899\) −9.26137 −0.308884
\(900\) 0 0
\(901\) 71.2311 2.37305
\(902\) 0 0
\(903\) 32.0000 1.06489
\(904\) 0 0
\(905\) 16.2462 0.540042
\(906\) 0 0
\(907\) 36.9848 1.22806 0.614031 0.789282i \(-0.289547\pi\)
0.614031 + 0.789282i \(0.289547\pi\)
\(908\) 0 0
\(909\) 14.0000 0.464351
\(910\) 0 0
\(911\) −58.7386 −1.94610 −0.973049 0.230599i \(-0.925931\pi\)
−0.973049 + 0.230599i \(0.925931\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) 2.00000 0.0661180
\(916\) 0 0
\(917\) −25.7538 −0.850465
\(918\) 0 0
\(919\) 30.8769 1.01853 0.509267 0.860608i \(-0.329916\pi\)
0.509267 + 0.860608i \(0.329916\pi\)
\(920\) 0 0
\(921\) −2.24621 −0.0740152
\(922\) 0 0
\(923\) −24.9848 −0.822386
\(924\) 0 0
\(925\) 3.12311 0.102687
\(926\) 0 0
\(927\) −13.3693 −0.439106
\(928\) 0 0
\(929\) −18.4924 −0.606717 −0.303358 0.952877i \(-0.598108\pi\)
−0.303358 + 0.952877i \(0.598108\pi\)
\(930\) 0 0
\(931\) 8.60037 0.281866
\(932\) 0 0
\(933\) −13.7538 −0.450279
\(934\) 0 0
\(935\) −14.2462 −0.465901
\(936\) 0 0
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) 0 0
\(939\) 28.7386 0.937850
\(940\) 0 0
\(941\) −55.4773 −1.80851 −0.904254 0.426996i \(-0.859572\pi\)
−0.904254 + 0.426996i \(0.859572\pi\)
\(942\) 0 0
\(943\) 6.24621 0.203405
\(944\) 0 0
\(945\) −3.12311 −0.101595
\(946\) 0 0
\(947\) −22.7386 −0.738906 −0.369453 0.929249i \(-0.620455\pi\)
−0.369453 + 0.929249i \(0.620455\pi\)
\(948\) 0 0
\(949\) −38.2462 −1.24152
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) 36.8769 1.19456 0.597280 0.802033i \(-0.296248\pi\)
0.597280 + 0.802033i \(0.296248\pi\)
\(954\) 0 0
\(955\) 4.00000 0.129437
\(956\) 0 0
\(957\) 16.4924 0.533124
\(958\) 0 0
\(959\) −34.7386 −1.12177
\(960\) 0 0
\(961\) −29.7386 −0.959311
\(962\) 0 0
\(963\) 14.2462 0.459078
\(964\) 0 0
\(965\) 7.75379 0.249603
\(966\) 0 0
\(967\) −26.6307 −0.856385 −0.428193 0.903688i \(-0.640849\pi\)
−0.428193 + 0.903688i \(0.640849\pi\)
\(968\) 0 0
\(969\) −22.2462 −0.714651
\(970\) 0 0
\(971\) −15.7538 −0.505563 −0.252782 0.967523i \(-0.581345\pi\)
−0.252782 + 0.967523i \(0.581345\pi\)
\(972\) 0 0
\(973\) 29.2614 0.938076
\(974\) 0 0
\(975\) 3.12311 0.100019
\(976\) 0 0
\(977\) 39.1231 1.25166 0.625830 0.779960i \(-0.284761\pi\)
0.625830 + 0.779960i \(0.284761\pi\)
\(978\) 0 0
\(979\) 20.0000 0.639203
\(980\) 0 0
\(981\) −12.2462 −0.390991
\(982\) 0 0
\(983\) −22.6307 −0.721807 −0.360903 0.932603i \(-0.617532\pi\)
−0.360903 + 0.932603i \(0.617532\pi\)
\(984\) 0 0
\(985\) 2.00000 0.0637253
\(986\) 0 0
\(987\) −15.2311 −0.484810
\(988\) 0 0
\(989\) 32.0000 1.01754
\(990\) 0 0
\(991\) −6.87689 −0.218452 −0.109226 0.994017i \(-0.534837\pi\)
−0.109226 + 0.994017i \(0.534837\pi\)
\(992\) 0 0
\(993\) 7.12311 0.226045
\(994\) 0 0
\(995\) −21.6155 −0.685258
\(996\) 0 0
\(997\) 35.6155 1.12796 0.563978 0.825790i \(-0.309270\pi\)
0.563978 + 0.825790i \(0.309270\pi\)
\(998\) 0 0
\(999\) −3.12311 −0.0988107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.a.z.1.2 yes 2
3.2 odd 2 5760.2.a.bx.1.2 2
4.3 odd 2 1920.2.a.bb.1.1 yes 2
5.4 even 2 9600.2.a.dg.1.1 2
8.3 odd 2 1920.2.a.y.1.1 2
8.5 even 2 1920.2.a.ba.1.2 yes 2
12.11 even 2 5760.2.a.cc.1.1 2
16.3 odd 4 3840.2.k.bc.1921.4 4
16.5 even 4 3840.2.k.bd.1921.3 4
16.11 odd 4 3840.2.k.bc.1921.2 4
16.13 even 4 3840.2.k.bd.1921.1 4
20.19 odd 2 9600.2.a.cl.1.2 2
24.5 odd 2 5760.2.a.cg.1.2 2
24.11 even 2 5760.2.a.cj.1.1 2
40.19 odd 2 9600.2.a.cw.1.2 2
40.29 even 2 9600.2.a.ct.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.a.y.1.1 2 8.3 odd 2
1920.2.a.z.1.2 yes 2 1.1 even 1 trivial
1920.2.a.ba.1.2 yes 2 8.5 even 2
1920.2.a.bb.1.1 yes 2 4.3 odd 2
3840.2.k.bc.1921.2 4 16.11 odd 4
3840.2.k.bc.1921.4 4 16.3 odd 4
3840.2.k.bd.1921.1 4 16.13 even 4
3840.2.k.bd.1921.3 4 16.5 even 4
5760.2.a.bx.1.2 2 3.2 odd 2
5760.2.a.cc.1.1 2 12.11 even 2
5760.2.a.cg.1.2 2 24.5 odd 2
5760.2.a.cj.1.1 2 24.11 even 2
9600.2.a.cl.1.2 2 20.19 odd 2
9600.2.a.ct.1.1 2 40.29 even 2
9600.2.a.cw.1.2 2 40.19 odd 2
9600.2.a.dg.1.1 2 5.4 even 2