Properties

Label 1920.2.a.y
Level $1920$
Weight $2$
Character orbit 1920.a
Self dual yes
Analytic conductor $15.331$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3312771881\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - q^{5} + (\beta + 1) q^{7} + q^{9} - 2 q^{11} + ( - \beta - 1) q^{13} + q^{15} + ( - \beta + 3) q^{17} + ( - \beta - 1) q^{19} + ( - \beta - 1) q^{21} + ( - \beta - 1) q^{23} + q^{25} - q^{27}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{9} - 4 q^{11} - 2 q^{13} + 2 q^{15} + 6 q^{17} - 2 q^{19} - 2 q^{21} - 2 q^{23} + 2 q^{25} - 2 q^{27} - 6 q^{31} + 4 q^{33} - 2 q^{35} + 2 q^{37} + 2 q^{39} - 4 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 −1.00000 0 −1.00000 0 −3.12311 0 1.00000 0
1.2 0 −1.00000 0 −1.00000 0 5.12311 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.a.y 2
3.b odd 2 1 5760.2.a.cj 2
4.b odd 2 1 1920.2.a.ba yes 2
5.b even 2 1 9600.2.a.cw 2
8.b even 2 1 1920.2.a.bb yes 2
8.d odd 2 1 1920.2.a.z yes 2
12.b even 2 1 5760.2.a.cg 2
16.e even 4 2 3840.2.k.bc 4
16.f odd 4 2 3840.2.k.bd 4
20.d odd 2 1 9600.2.a.ct 2
24.f even 2 1 5760.2.a.bx 2
24.h odd 2 1 5760.2.a.cc 2
40.e odd 2 1 9600.2.a.dg 2
40.f even 2 1 9600.2.a.cl 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.a.y 2 1.a even 1 1 trivial
1920.2.a.z yes 2 8.d odd 2 1
1920.2.a.ba yes 2 4.b odd 2 1
1920.2.a.bb yes 2 8.b even 2 1
3840.2.k.bc 4 16.e even 4 2
3840.2.k.bd 4 16.f odd 4 2
5760.2.a.bx 2 24.f even 2 1
5760.2.a.cc 2 24.h odd 2 1
5760.2.a.cg 2 12.b even 2 1
5760.2.a.cj 2 3.b odd 2 1
9600.2.a.cl 2 40.f even 2 1
9600.2.a.ct 2 20.d odd 2 1
9600.2.a.cw 2 5.b even 2 1
9600.2.a.dg 2 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1920))\):

\( T_{7}^{2} - 2T_{7} - 16 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$17$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$29$ \( T^{2} - 68 \) Copy content Toggle raw display
$31$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$37$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 18T + 64 \) Copy content Toggle raw display
$53$ \( (T + 10)^{2} \) Copy content Toggle raw display
$59$ \( (T + 6)^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$79$ \( T^{2} + 18T + 64 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less