Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1920,2,Mod(1,1920)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1920.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1920 = 2^{7} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1920.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(15.3312771881\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1920.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | −1.00000 | −0.577350 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −1.00000 | −0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 1.00000 | 0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 2.00000 | 0.603023 | 0.301511 | − | 0.953463i | \(-0.402509\pi\) | ||||
0.301511 | + | 0.953463i | \(0.402509\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −4.00000 | −1.10940 | −0.554700 | − | 0.832050i | \(-0.687167\pi\) | ||||
−0.554700 | + | 0.832050i | \(0.687167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 1.00000 | 0.258199 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | −1.00000 | −0.192450 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 10.0000 | 1.79605 | 0.898027 | − | 0.439941i | \(-0.145001\pi\) | ||||
0.898027 | + | 0.439941i | \(0.145001\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | −2.00000 | −0.348155 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −4.00000 | −0.657596 | −0.328798 | − | 0.944400i | \(-0.606644\pi\) | ||||
−0.328798 | + | 0.944400i | \(0.606644\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 4.00000 | 0.640513 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | −1.00000 | −0.149071 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −2.00000 | −0.274721 | −0.137361 | − | 0.990521i | \(-0.543862\pi\) | ||||
−0.137361 | + | 0.990521i | \(0.543862\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −2.00000 | −0.269680 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 6.00000 | 0.781133 | 0.390567 | − | 0.920575i | \(-0.372279\pi\) | ||||
0.390567 | + | 0.920575i | \(0.372279\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −6.00000 | −0.768221 | −0.384111 | − | 0.923287i | \(-0.625492\pi\) | ||||
−0.384111 | + | 0.923287i | \(0.625492\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 4.00000 | 0.496139 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.00000 | 0.488678 | 0.244339 | − | 0.969690i | \(-0.421429\pi\) | ||||
0.244339 | + | 0.969690i | \(0.421429\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 8.00000 | 0.949425 | 0.474713 | − | 0.880141i | \(-0.342552\pi\) | ||||
0.474713 | + | 0.880141i | \(0.342552\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 14.0000 | 1.63858 | 0.819288 | − | 0.573382i | \(-0.194369\pi\) | ||||
0.819288 | + | 0.573382i | \(0.194369\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | −1.00000 | −0.115470 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 2.00000 | 0.225018 | 0.112509 | − | 0.993651i | \(-0.464111\pi\) | ||||
0.112509 | + | 0.993651i | \(0.464111\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 4.00000 | 0.439057 | 0.219529 | − | 0.975606i | \(-0.429548\pi\) | ||||
0.219529 | + | 0.975606i | \(0.429548\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 2.00000 | 0.214423 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 14.0000 | 1.48400 | 0.741999 | − | 0.670402i | \(-0.233878\pi\) | ||||
0.741999 | + | 0.670402i | \(0.233878\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | −10.0000 | −1.03695 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −6.00000 | −0.609208 | −0.304604 | − | 0.952479i | \(-0.598524\pi\) | ||||
−0.304604 | + | 0.952479i | \(0.598524\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 2.00000 | 0.201008 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 18.0000 | 1.79107 | 0.895533 | − | 0.444994i | \(-0.146794\pi\) | ||||
0.895533 | + | 0.444994i | \(0.146794\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 16.0000 | 1.54678 | 0.773389 | − | 0.633932i | \(-0.218560\pi\) | ||||
0.773389 | + | 0.633932i | \(0.218560\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 4.00000 | 0.379663 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 8.00000 | 0.752577 | 0.376288 | − | 0.926503i | \(-0.377200\pi\) | ||||
0.376288 | + | 0.926503i | \(0.377200\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | −4.00000 | −0.369800 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | −6.00000 | −0.541002 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −1.00000 | −0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 12.0000 | 1.06483 | 0.532414 | − | 0.846484i | \(-0.321285\pi\) | ||||
0.532414 | + | 0.846484i | \(0.321285\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −4.00000 | −0.352180 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 18.0000 | 1.57267 | 0.786334 | − | 0.617802i | \(-0.211977\pi\) | ||||
0.786334 | + | 0.617802i | \(0.211977\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 1.00000 | 0.0860663 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 12.0000 | 1.02523 | 0.512615 | − | 0.858619i | \(-0.328677\pi\) | ||||
0.512615 | + | 0.858619i | \(0.328677\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 16.0000 | 1.35710 | 0.678551 | − | 0.734553i | \(-0.262608\pi\) | ||||
0.678551 | + | 0.734553i | \(0.262608\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −8.00000 | −0.668994 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 2.00000 | 0.166091 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 7.00000 | 0.577350 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 6.00000 | 0.488273 | 0.244137 | − | 0.969741i | \(-0.421495\pi\) | ||||
0.244137 | + | 0.969741i | \(0.421495\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −10.0000 | −0.803219 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −8.00000 | −0.638470 | −0.319235 | − | 0.947676i | \(-0.603426\pi\) | ||||
−0.319235 | + | 0.947676i | \(0.603426\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 2.00000 | 0.158610 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −20.0000 | −1.56652 | −0.783260 | − | 0.621694i | \(-0.786445\pi\) | ||||
−0.783260 | + | 0.621694i | \(0.786445\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 2.00000 | 0.155700 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −8.00000 | −0.619059 | −0.309529 | − | 0.950890i | \(-0.600171\pi\) | ||||
−0.309529 | + | 0.950890i | \(0.600171\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 3.00000 | 0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −14.0000 | −1.06440 | −0.532200 | − | 0.846619i | \(-0.678635\pi\) | ||||
−0.532200 | + | 0.846619i | \(0.678635\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | −6.00000 | −0.450988 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −2.00000 | −0.149487 | −0.0747435 | − | 0.997203i | \(-0.523814\pi\) | ||||
−0.0747435 | + | 0.997203i | \(0.523814\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 22.0000 | 1.63525 | 0.817624 | − | 0.575753i | \(-0.195291\pi\) | ||||
0.817624 | + | 0.575753i | \(0.195291\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 6.00000 | 0.443533 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 4.00000 | 0.294086 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −12.0000 | −0.868290 | −0.434145 | − | 0.900843i | \(-0.642949\pi\) | ||||
−0.434145 | + | 0.900843i | \(0.642949\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 6.00000 | 0.431889 | 0.215945 | − | 0.976406i | \(-0.430717\pi\) | ||||
0.215945 | + | 0.976406i | \(0.430717\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | −4.00000 | −0.286446 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 6.00000 | 0.427482 | 0.213741 | − | 0.976890i | \(-0.431435\pi\) | ||||
0.213741 | + | 0.976890i | \(0.431435\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 2.00000 | 0.141776 | 0.0708881 | − | 0.997484i | \(-0.477417\pi\) | ||||
0.0708881 | + | 0.997484i | \(0.477417\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −4.00000 | −0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −6.00000 | −0.419058 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −16.0000 | −1.10149 | −0.550743 | − | 0.834675i | \(-0.685655\pi\) | ||||
−0.550743 | + | 0.834675i | \(0.685655\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | −8.00000 | −0.548151 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −4.00000 | −0.272798 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −14.0000 | −0.946032 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −4.00000 | −0.267860 | −0.133930 | − | 0.990991i | \(-0.542760\pi\) | ||||
−0.133930 | + | 0.990991i | \(0.542760\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 1.00000 | 0.0666667 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 24.0000 | 1.59294 | 0.796468 | − | 0.604681i | \(-0.206699\pi\) | ||||
0.796468 | + | 0.604681i | \(0.206699\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
−0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 20.0000 | 1.31024 | 0.655122 | − | 0.755523i | \(-0.272617\pi\) | ||||
0.655122 | + | 0.755523i | \(0.272617\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | −2.00000 | −0.129914 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −20.0000 | −1.29369 | −0.646846 | − | 0.762620i | \(-0.723912\pi\) | ||||
−0.646846 | + | 0.762620i | \(0.723912\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −2.00000 | −0.128831 | −0.0644157 | − | 0.997923i | \(-0.520518\pi\) | ||||
−0.0644157 | + | 0.997923i | \(0.520518\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | −1.00000 | −0.0641500 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 7.00000 | 0.447214 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −4.00000 | −0.253490 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 6.00000 | 0.378717 | 0.189358 | − | 0.981908i | \(-0.439359\pi\) | ||||
0.189358 | + | 0.981908i | \(0.439359\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −24.0000 | −1.49708 | −0.748539 | − | 0.663090i | \(-0.769245\pi\) | ||||
−0.748539 | + | 0.663090i | \(0.769245\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −2.00000 | −0.123797 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −24.0000 | −1.47990 | −0.739952 | − | 0.672660i | \(-0.765152\pi\) | ||||
−0.739952 | + | 0.672660i | \(0.765152\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 2.00000 | 0.122859 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | −14.0000 | −0.856786 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 14.0000 | 0.853595 | 0.426798 | − | 0.904347i | \(-0.359642\pi\) | ||||
0.426798 | + | 0.904347i | \(0.359642\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 26.0000 | 1.57939 | 0.789694 | − | 0.613501i | \(-0.210239\pi\) | ||||
0.789694 | + | 0.613501i | \(0.210239\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 2.00000 | 0.120605 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 8.00000 | 0.480673 | 0.240337 | − | 0.970690i | \(-0.422742\pi\) | ||||
0.240337 | + | 0.970690i | \(0.422742\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 10.0000 | 0.598684 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −18.0000 | −1.07379 | −0.536895 | − | 0.843649i | \(-0.680403\pi\) | ||||
−0.536895 | + | 0.843649i | \(0.680403\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −28.0000 | −1.66443 | −0.832214 | − | 0.554455i | \(-0.812927\pi\) | ||||
−0.832214 | + | 0.554455i | \(0.812927\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 6.00000 | 0.351726 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 6.00000 | 0.350524 | 0.175262 | − | 0.984522i | \(-0.443923\pi\) | ||||
0.175262 | + | 0.984522i | \(0.443923\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −6.00000 | −0.349334 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | −2.00000 | −0.116052 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | −18.0000 | −1.03407 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 6.00000 | 0.343559 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −4.00000 | −0.228292 | −0.114146 | − | 0.993464i | \(-0.536413\pi\) | ||||
−0.114146 | + | 0.993464i | \(0.536413\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 4.00000 | 0.227552 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 20.0000 | 1.13410 | 0.567048 | − | 0.823685i | \(-0.308085\pi\) | ||||
0.567048 | + | 0.823685i | \(0.308085\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 14.0000 | 0.791327 | 0.395663 | − | 0.918396i | \(-0.370515\pi\) | ||||
0.395663 | + | 0.918396i | \(0.370515\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 22.0000 | 1.23564 | 0.617822 | − | 0.786318i | \(-0.288015\pi\) | ||||
0.617822 | + | 0.786318i | \(0.288015\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −4.00000 | −0.223957 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −16.0000 | −0.893033 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −4.00000 | −0.221880 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 10.0000 | 0.553001 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 20.0000 | 1.09930 | 0.549650 | − | 0.835395i | \(-0.314761\pi\) | ||||
0.549650 | + | 0.835395i | \(0.314761\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | −4.00000 | −0.219199 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −4.00000 | −0.218543 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −34.0000 | −1.85210 | −0.926049 | − | 0.377403i | \(-0.876817\pi\) | ||||
−0.926049 | + | 0.377403i | \(0.876817\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −8.00000 | −0.434500 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 20.0000 | 1.08306 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −24.0000 | −1.28839 | −0.644194 | − | 0.764862i | \(-0.722807\pi\) | ||||
−0.644194 | + | 0.764862i | \(0.722807\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 2.00000 | 0.107058 | 0.0535288 | − | 0.998566i | \(-0.482953\pi\) | ||||
0.0535288 | + | 0.998566i | \(0.482953\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 4.00000 | 0.213504 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −4.00000 | −0.212899 | −0.106449 | − | 0.994318i | \(-0.533948\pi\) | ||||
−0.106449 | + | 0.994318i | \(0.533948\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −8.00000 | −0.424596 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 12.0000 | 0.633336 | 0.316668 | − | 0.948536i | \(-0.397436\pi\) | ||||
0.316668 | + | 0.948536i | \(0.397436\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 7.00000 | 0.367405 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −14.0000 | −0.732793 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 8.00000 | 0.417597 | 0.208798 | − | 0.977959i | \(-0.433045\pi\) | ||||
0.208798 | + | 0.977959i | \(0.433045\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 6.00000 | 0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −24.0000 | −1.24267 | −0.621336 | − | 0.783544i | \(-0.713410\pi\) | ||||
−0.621336 | + | 0.783544i | \(0.713410\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 1.00000 | 0.0516398 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 8.00000 | 0.412021 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −4.00000 | −0.205466 | −0.102733 | − | 0.994709i | \(-0.532759\pi\) | ||||
−0.102733 | + | 0.994709i | \(0.532759\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −12.0000 | −0.614779 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −32.0000 | −1.63512 | −0.817562 | − | 0.575841i | \(-0.804675\pi\) | ||||
−0.817562 | + | 0.575841i | \(0.804675\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 4.00000 | 0.203331 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 10.0000 | 0.507020 | 0.253510 | − | 0.967333i | \(-0.418415\pi\) | ||||
0.253510 | + | 0.967333i | \(0.418415\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | −18.0000 | −0.907980 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −2.00000 | −0.100631 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 28.0000 | 1.40528 | 0.702640 | − | 0.711546i | \(-0.252005\pi\) | ||||
0.702640 | + | 0.711546i | \(0.252005\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 10.0000 | 0.499376 | 0.249688 | − | 0.968326i | \(-0.419672\pi\) | ||||
0.249688 | + | 0.968326i | \(0.419672\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −40.0000 | −1.99254 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | −1.00000 | −0.0496904 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −8.00000 | −0.396545 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −34.0000 | −1.68119 | −0.840596 | − | 0.541663i | \(-0.817795\pi\) | ||||
−0.840596 | + | 0.541663i | \(0.817795\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −12.0000 | −0.591916 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −4.00000 | −0.196352 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | −16.0000 | −0.783523 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 6.00000 | 0.293119 | 0.146560 | − | 0.989202i | \(-0.453180\pi\) | ||||
0.146560 | + | 0.989202i | \(0.453180\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 34.0000 | 1.65706 | 0.828529 | − | 0.559946i | \(-0.189178\pi\) | ||||
0.828529 | + | 0.559946i | \(0.189178\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 8.00000 | 0.386244 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −12.0000 | −0.578020 | −0.289010 | − | 0.957326i | \(-0.593326\pi\) | ||||
−0.289010 | + | 0.957326i | \(0.593326\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −2.00000 | −0.0961139 | −0.0480569 | − | 0.998845i | \(-0.515303\pi\) | ||||
−0.0480569 | + | 0.998845i | \(0.515303\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | −2.00000 | −0.0958927 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −38.0000 | −1.81364 | −0.906821 | − | 0.421517i | \(-0.861498\pi\) | ||||
−0.906821 | + | 0.421517i | \(0.861498\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −7.00000 | −0.333333 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −32.0000 | −1.52037 | −0.760183 | − | 0.649709i | \(-0.774891\pi\) | ||||
−0.760183 | + | 0.649709i | \(0.774891\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −14.0000 | −0.663664 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | −6.00000 | −0.283790 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 2.00000 | 0.0943858 | 0.0471929 | − | 0.998886i | \(-0.484972\pi\) | ||||
0.0471929 | + | 0.998886i | \(0.484972\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 12.0000 | 0.565058 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | −6.00000 | −0.281905 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 18.0000 | 0.842004 | 0.421002 | − | 0.907060i | \(-0.361678\pi\) | ||||
0.421002 | + | 0.907060i | \(0.361678\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 14.0000 | 0.652045 | 0.326023 | − | 0.945362i | \(-0.394291\pi\) | ||||
0.326023 | + | 0.945362i | \(0.394291\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 16.0000 | 0.743583 | 0.371792 | − | 0.928316i | \(-0.378744\pi\) | ||||
0.371792 | + | 0.928316i | \(0.378744\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 10.0000 | 0.463739 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −12.0000 | −0.555294 | −0.277647 | − | 0.960683i | \(-0.589555\pi\) | ||||
−0.277647 | + | 0.960683i | \(0.589555\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 8.00000 | 0.368621 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 8.00000 | 0.367840 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −2.00000 | −0.0915737 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 16.0000 | 0.731059 | 0.365529 | − | 0.930800i | \(-0.380888\pi\) | ||||
0.365529 | + | 0.930800i | \(0.380888\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 16.0000 | 0.729537 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 6.00000 | 0.272446 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −28.0000 | −1.26880 | −0.634401 | − | 0.773004i | \(-0.718753\pi\) | ||||
−0.634401 | + | 0.773004i | \(0.718753\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 20.0000 | 0.904431 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 26.0000 | 1.17336 | 0.586682 | − | 0.809818i | \(-0.300434\pi\) | ||||
0.586682 | + | 0.809818i | \(0.300434\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | −2.00000 | −0.0898933 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −20.0000 | −0.895323 | −0.447661 | − | 0.894203i | \(-0.647743\pi\) | ||||
−0.447661 | + | 0.894203i | \(0.647743\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 8.00000 | 0.357414 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −32.0000 | −1.42681 | −0.713405 | − | 0.700752i | \(-0.752848\pi\) | ||||
−0.713405 | + | 0.700752i | \(0.752848\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −18.0000 | −0.800989 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | −3.00000 | −0.133235 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 34.0000 | 1.50702 | 0.753512 | − | 0.657434i | \(-0.228358\pi\) | ||||
0.753512 | + | 0.657434i | \(0.228358\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 4.00000 | 0.176261 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 14.0000 | 0.614532 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −38.0000 | −1.66481 | −0.832405 | − | 0.554168i | \(-0.813037\pi\) | ||||
−0.832405 | + | 0.554168i | \(0.813037\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 12.0000 | 0.524723 | 0.262362 | − | 0.964970i | \(-0.415499\pi\) | ||||
0.262362 | + | 0.964970i | \(0.415499\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 6.00000 | 0.260378 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −24.0000 | −1.03956 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −16.0000 | −0.691740 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 2.00000 | 0.0863064 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −14.0000 | −0.603023 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −2.00000 | −0.0859867 | −0.0429934 | − | 0.999075i | \(-0.513689\pi\) | ||||
−0.0429934 | + | 0.999075i | \(0.513689\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | −22.0000 | −0.944110 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 10.0000 | 0.428353 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −4.00000 | −0.171028 | −0.0855138 | − | 0.996337i | \(-0.527253\pi\) | ||||
−0.0855138 | + | 0.996337i | \(0.527253\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −6.00000 | −0.256074 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | −4.00000 | −0.169791 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 26.0000 | 1.10166 | 0.550828 | − | 0.834619i | \(-0.314312\pi\) | ||||
0.550828 | + | 0.834619i | \(0.314312\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.0000 | −0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 16.0000 | 0.674320 | 0.337160 | − | 0.941447i | \(-0.390534\pi\) | ||||
0.337160 | + | 0.941447i | \(0.390534\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −8.00000 | −0.336563 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 10.0000 | 0.419222 | 0.209611 | − | 0.977785i | \(-0.432780\pi\) | ||||
0.209611 | + | 0.977785i | \(0.432780\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −4.00000 | −0.167395 | −0.0836974 | − | 0.996491i | \(-0.526673\pi\) | ||||
−0.0836974 | + | 0.996491i | \(0.526673\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 12.0000 | 0.501307 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 18.0000 | 0.749350 | 0.374675 | − | 0.927156i | \(-0.377754\pi\) | ||||
0.374675 | + | 0.927156i | \(0.377754\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −6.00000 | −0.249351 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −4.00000 | −0.165663 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 4.00000 | 0.165380 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 24.0000 | 0.990586 | 0.495293 | − | 0.868726i | \(-0.335061\pi\) | ||||
0.495293 | + | 0.868726i | \(0.335061\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −6.00000 | −0.246807 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 16.0000 | 0.657041 | 0.328521 | − | 0.944497i | \(-0.393450\pi\) | ||||
0.328521 | + | 0.944497i | \(0.393450\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | −2.00000 | −0.0818546 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 4.00000 | 0.163436 | 0.0817178 | − | 0.996656i | \(-0.473959\pi\) | ||||
0.0817178 | + | 0.996656i | \(0.473959\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −22.0000 | −0.897399 | −0.448699 | − | 0.893683i | \(-0.648113\pi\) | ||||
−0.448699 | + | 0.893683i | \(0.648113\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 4.00000 | 0.162893 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 7.00000 | 0.284590 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 40.0000 | 1.62355 | 0.811775 | − | 0.583970i | \(-0.198502\pi\) | ||||
0.811775 | + | 0.583970i | \(0.198502\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 4.00000 | 0.161558 | 0.0807792 | − | 0.996732i | \(-0.474259\pi\) | ||||
0.0807792 | + | 0.996732i | \(0.474259\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 6.00000 | 0.241943 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −12.0000 | −0.483102 | −0.241551 | − | 0.970388i | \(-0.577656\pi\) | ||||
−0.241551 | + | 0.970388i | \(0.577656\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 48.0000 | 1.92928 | 0.964641 | − | 0.263566i | \(-0.0848986\pi\) | ||||
0.964641 | + | 0.263566i | \(0.0848986\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −14.0000 | −0.557331 | −0.278666 | − | 0.960388i | \(-0.589892\pi\) | ||||
−0.278666 | + | 0.960388i | \(0.589892\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 16.0000 | 0.635943 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −12.0000 | −0.476205 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 28.0000 | 1.10940 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 8.00000 | 0.316475 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −2.00000 | −0.0789953 | −0.0394976 | − | 0.999220i | \(-0.512576\pi\) | ||||
−0.0394976 | + | 0.999220i | \(0.512576\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −36.0000 | −1.41970 | −0.709851 | − | 0.704352i | \(-0.751238\pi\) | ||||
−0.709851 | + | 0.704352i | \(0.751238\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 4.00000 | 0.157500 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 32.0000 | 1.25805 | 0.629025 | − | 0.777385i | \(-0.283454\pi\) | ||||
0.629025 | + | 0.777385i | \(0.283454\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 12.0000 | 0.471041 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −14.0000 | −0.547862 | −0.273931 | − | 0.961749i | \(-0.588324\pi\) | ||||
−0.273931 | + | 0.961749i | \(0.588324\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −18.0000 | −0.703318 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 14.0000 | 0.546192 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −6.00000 | −0.233727 | −0.116863 | − | 0.993148i | \(-0.537284\pi\) | ||||
−0.116863 | + | 0.993148i | \(0.537284\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 10.0000 | 0.388955 | 0.194477 | − | 0.980907i | \(-0.437699\pi\) | ||||
0.194477 | + | 0.980907i | \(0.437699\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 4.00000 | 0.154649 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −12.0000 | −0.463255 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 46.0000 | 1.77317 | 0.886585 | − | 0.462566i | \(-0.153071\pi\) | ||||
0.886585 | + | 0.462566i | \(0.153071\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | −1.00000 | −0.0384900 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −38.0000 | −1.46046 | −0.730229 | − | 0.683202i | \(-0.760587\pi\) | ||||
−0.730229 | + | 0.683202i | \(0.760587\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −24.0000 | −0.919682 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −12.0000 | −0.459167 | −0.229584 | − | 0.973289i | \(-0.573736\pi\) | ||||
−0.229584 | + | 0.973289i | \(0.573736\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −12.0000 | −0.458496 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 14.0000 | 0.534133 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 8.00000 | 0.304776 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 8.00000 | 0.304334 | 0.152167 | − | 0.988355i | \(-0.451375\pi\) | ||||
0.152167 | + | 0.988355i | \(0.451375\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −16.0000 | −0.606915 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −20.0000 | −0.756469 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −30.0000 | −1.13308 | −0.566542 | − | 0.824033i | \(-0.691719\pi\) | ||||
−0.566542 | + | 0.824033i | \(0.691719\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −30.0000 | −1.12667 | −0.563337 | − | 0.826227i | \(-0.690483\pi\) | ||||
−0.563337 | + | 0.826227i | \(0.690483\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 2.00000 | 0.0750059 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 8.00000 | 0.299183 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 20.0000 | 0.746914 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 20.0000 | 0.745874 | 0.372937 | − | 0.927857i | \(-0.378351\pi\) | ||||
0.372937 | + | 0.927857i | \(0.378351\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 2.00000 | 0.0743808 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −2.00000 | −0.0742781 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 4.00000 | 0.148352 | 0.0741759 | − | 0.997245i | \(-0.476367\pi\) | ||||
0.0741759 | + | 0.997245i | \(0.476367\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 1.00000 | 0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 24.0000 | 0.886460 | 0.443230 | − | 0.896408i | \(-0.353832\pi\) | ||||
0.443230 | + | 0.896408i | \(0.353832\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | −7.00000 | −0.258199 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 8.00000 | 0.294684 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 36.0000 | 1.32428 | 0.662141 | − | 0.749380i | \(-0.269648\pi\) | ||||
0.662141 | + | 0.749380i | \(0.269648\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −32.0000 | −1.17397 | −0.586983 | − | 0.809599i | \(-0.699684\pi\) | ||||
−0.586983 | + | 0.809599i | \(0.699684\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −6.00000 | −0.219823 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 4.00000 | 0.146352 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 26.0000 | 0.948753 | 0.474377 | − | 0.880322i | \(-0.342673\pi\) | ||||
0.474377 | + | 0.880322i | \(0.342673\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | −6.00000 | −0.218652 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −6.00000 | −0.218362 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −48.0000 | −1.74459 | −0.872295 | − | 0.488980i | \(-0.837369\pi\) | ||||
−0.872295 | + | 0.488980i | \(0.837369\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −38.0000 | −1.37750 | −0.688749 | − | 0.724999i | \(-0.741840\pi\) | ||||
−0.688749 | + | 0.724999i | \(0.741840\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −24.0000 | −0.866590 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 10.0000 | 0.360609 | 0.180305 | − | 0.983611i | \(-0.442292\pi\) | ||||
0.180305 | + | 0.983611i | \(0.442292\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 24.0000 | 0.864339 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −26.0000 | −0.935155 | −0.467578 | − | 0.883952i | \(-0.654873\pi\) | ||||
−0.467578 | + | 0.883952i | \(0.654873\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 10.0000 | 0.359211 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 16.0000 | 0.572525 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 2.00000 | 0.0714742 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 8.00000 | 0.285532 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −12.0000 | −0.427754 | −0.213877 | − | 0.976861i | \(-0.568609\pi\) | ||||
−0.213877 | + | 0.976861i | \(0.568609\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 24.0000 | 0.854423 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 24.0000 | 0.852265 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | −2.00000 | −0.0709327 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 10.0000 | 0.354218 | 0.177109 | − | 0.984191i | \(-0.443325\pi\) | ||||
0.177109 | + | 0.984191i | \(0.443325\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 14.0000 | 0.494666 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 28.0000 | 0.988099 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | −14.0000 | −0.492823 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −10.0000 | −0.351581 | −0.175791 | − | 0.984428i | \(-0.556248\pi\) | ||||
−0.175791 | + | 0.984428i | \(0.556248\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 20.0000 | 0.702295 | 0.351147 | − | 0.936320i | \(-0.385792\pi\) | ||||
0.351147 | + | 0.936320i | \(0.385792\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | −26.0000 | −0.911860 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 20.0000 | 0.700569 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 6.00000 | 0.209401 | 0.104701 | − | 0.994504i | \(-0.466612\pi\) | ||||
0.104701 | + | 0.994504i | \(0.466612\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 44.0000 | 1.53374 | 0.766872 | − | 0.641800i | \(-0.221812\pi\) | ||||
0.766872 | + | 0.641800i | \(0.221812\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | −2.00000 | −0.0696311 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −12.0000 | −0.417281 | −0.208640 | − | 0.977992i | \(-0.566904\pi\) | ||||
−0.208640 | + | 0.977992i | \(0.566904\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −26.0000 | −0.903017 | −0.451509 | − | 0.892267i | \(-0.649114\pi\) | ||||
−0.451509 | + | 0.892267i | \(0.649114\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −8.00000 | −0.277517 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 8.00000 | 0.276851 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | −10.0000 | −0.345651 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 52.0000 | 1.79524 | 0.897620 | − | 0.440771i | \(-0.145295\pi\) | ||||
0.897620 | + | 0.440771i | \(0.145295\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 18.0000 | 0.619953 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −3.00000 | −0.103203 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 28.0000 | 0.960958 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 28.0000 | 0.958702 | 0.479351 | − | 0.877623i | \(-0.340872\pi\) | ||||
0.479351 | + | 0.877623i | \(0.340872\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 16.0000 | 0.546550 | 0.273275 | − | 0.961936i | \(-0.411893\pi\) | ||||
0.273275 | + | 0.961936i | \(0.411893\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 20.0000 | 0.682391 | 0.341196 | − | 0.939992i | \(-0.389168\pi\) | ||||
0.341196 | + | 0.939992i | \(0.389168\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 40.0000 | 1.36162 | 0.680808 | − | 0.732462i | \(-0.261629\pi\) | ||||
0.680808 | + | 0.732462i | \(0.261629\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 14.0000 | 0.476014 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 17.0000 | 0.577350 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 4.00000 | 0.135691 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −16.0000 | −0.542139 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | −6.00000 | −0.203069 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 24.0000 | 0.810422 | 0.405211 | − | 0.914223i | \(-0.367198\pi\) | ||||
0.405211 | + | 0.914223i | \(0.367198\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −6.00000 | −0.202375 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 14.0000 | 0.471672 | 0.235836 | − | 0.971793i | \(-0.424217\pi\) | ||||
0.235836 | + | 0.971793i | \(0.424217\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −36.0000 | −1.21150 | −0.605748 | − | 0.795656i | \(-0.707126\pi\) | ||||
−0.605748 | + | 0.795656i | \(0.707126\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 6.00000 | 0.201688 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 56.0000 | 1.88030 | 0.940148 | − | 0.340766i | \(-0.110687\pi\) | ||||
0.940148 | + | 0.340766i | \(0.110687\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 2.00000 | 0.0670025 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 2.00000 | 0.0668526 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −20.0000 | −0.667037 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −22.0000 | −0.731305 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 52.0000 | 1.72663 | 0.863316 | − | 0.504664i | \(-0.168384\pi\) | ||||
0.863316 | + | 0.504664i | \(0.168384\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 18.0000 | 0.597022 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 8.00000 | 0.264761 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | −6.00000 | −0.198354 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −38.0000 | −1.25350 | −0.626752 | − | 0.779219i | \(-0.715616\pi\) | ||||
−0.626752 | + | 0.779219i | \(0.715616\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 4.00000 | 0.131804 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −32.0000 | −1.05329 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −4.00000 | −0.131519 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | −4.00000 | −0.131377 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −6.00000 | −0.196854 | −0.0984268 | − | 0.995144i | \(-0.531381\pi\) | ||||
−0.0984268 | + | 0.995144i | \(0.531381\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | −20.0000 | −0.654771 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 2.00000 | 0.0653372 | 0.0326686 | − | 0.999466i | \(-0.489599\pi\) | ||||
0.0326686 | + | 0.999466i | \(0.489599\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | −14.0000 | −0.456873 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −46.0000 | −1.49956 | −0.749779 | − | 0.661689i | \(-0.769840\pi\) | ||||
−0.749779 | + | 0.661689i | \(0.769840\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 12.0000 | 0.389948 | 0.194974 | − | 0.980808i | \(-0.437538\pi\) | ||||
0.194974 | + | 0.980808i | \(0.437538\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −56.0000 | −1.81784 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −22.0000 | −0.713399 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −36.0000 | −1.16615 | −0.583077 | − | 0.812417i | \(-0.698151\pi\) | ||||
−0.583077 | + | 0.812417i | \(0.698151\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 12.0000 | 0.388311 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 4.00000 | 0.129302 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 69.0000 | 2.22581 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 16.0000 | 0.515593 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −6.00000 | −0.193147 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 28.0000 | 0.900419 | 0.450210 | − | 0.892923i | \(-0.351349\pi\) | ||||
0.450210 | + | 0.892923i | \(0.351349\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 54.0000 | 1.73294 | 0.866471 | − | 0.499227i | \(-0.166383\pi\) | ||||
0.866471 | + | 0.499227i | \(0.166383\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 4.00000 | 0.128103 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −16.0000 | −0.511885 | −0.255943 | − | 0.966692i | \(-0.582386\pi\) | ||||
−0.255943 | + | 0.966692i | \(0.582386\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 28.0000 | 0.894884 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −10.0000 | −0.319275 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 48.0000 | 1.53096 | 0.765481 | − | 0.643458i | \(-0.222501\pi\) | ||||
0.765481 | + | 0.643458i | \(0.222501\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −6.00000 | −0.191176 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 30.0000 | 0.952981 | 0.476491 | − | 0.879180i | \(-0.341909\pi\) | ||||
0.476491 | + | 0.879180i | \(0.341909\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | −20.0000 | −0.634681 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −2.00000 | −0.0634043 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 4.00000 | 0.126554 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1920.2.a.d.1.1 | ✓ | 1 | |
3.2 | odd | 2 | 5760.2.a.bi.1.1 | 1 | |||
4.3 | odd | 2 | 1920.2.a.o.1.1 | yes | 1 | ||
5.4 | even | 2 | 9600.2.a.bs.1.1 | 1 | |||
8.3 | odd | 2 | 1920.2.a.i.1.1 | yes | 1 | ||
8.5 | even | 2 | 1920.2.a.v.1.1 | yes | 1 | ||
12.11 | even | 2 | 5760.2.a.bk.1.1 | 1 | |||
16.3 | odd | 4 | 3840.2.k.l.1921.2 | 2 | |||
16.5 | even | 4 | 3840.2.k.q.1921.2 | 2 | |||
16.11 | odd | 4 | 3840.2.k.l.1921.1 | 2 | |||
16.13 | even | 4 | 3840.2.k.q.1921.1 | 2 | |||
20.19 | odd | 2 | 9600.2.a.o.1.1 | 1 | |||
24.5 | odd | 2 | 5760.2.a.n.1.1 | 1 | |||
24.11 | even | 2 | 5760.2.a.l.1.1 | 1 | |||
40.19 | odd | 2 | 9600.2.a.bp.1.1 | 1 | |||
40.29 | even | 2 | 9600.2.a.l.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1920.2.a.d.1.1 | ✓ | 1 | 1.1 | even | 1 | trivial | |
1920.2.a.i.1.1 | yes | 1 | 8.3 | odd | 2 | ||
1920.2.a.o.1.1 | yes | 1 | 4.3 | odd | 2 | ||
1920.2.a.v.1.1 | yes | 1 | 8.5 | even | 2 | ||
3840.2.k.l.1921.1 | 2 | 16.11 | odd | 4 | |||
3840.2.k.l.1921.2 | 2 | 16.3 | odd | 4 | |||
3840.2.k.q.1921.1 | 2 | 16.13 | even | 4 | |||
3840.2.k.q.1921.2 | 2 | 16.5 | even | 4 | |||
5760.2.a.l.1.1 | 1 | 24.11 | even | 2 | |||
5760.2.a.n.1.1 | 1 | 24.5 | odd | 2 | |||
5760.2.a.bi.1.1 | 1 | 3.2 | odd | 2 | |||
5760.2.a.bk.1.1 | 1 | 12.11 | even | 2 | |||
9600.2.a.l.1.1 | 1 | 40.29 | even | 2 | |||
9600.2.a.o.1.1 | 1 | 20.19 | odd | 2 | |||
9600.2.a.bp.1.1 | 1 | 40.19 | odd | 2 | |||
9600.2.a.bs.1.1 | 1 | 5.4 | even | 2 |