Properties

Label 1920.2.a.bb.1.2
Level $1920$
Weight $2$
Character 1920.1
Self dual yes
Analytic conductor $15.331$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 1920.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} +5.12311 q^{7} +1.00000 q^{9} +2.00000 q^{11} +5.12311 q^{13} +1.00000 q^{15} -1.12311 q^{17} +5.12311 q^{19} +5.12311 q^{21} -5.12311 q^{23} +1.00000 q^{25} +1.00000 q^{27} -8.24621 q^{29} -7.12311 q^{31} +2.00000 q^{33} +5.12311 q^{35} -5.12311 q^{37} +5.12311 q^{39} -2.00000 q^{41} -6.24621 q^{43} +1.00000 q^{45} -13.1231 q^{47} +19.2462 q^{49} -1.12311 q^{51} +10.0000 q^{53} +2.00000 q^{55} +5.12311 q^{57} +6.00000 q^{59} -2.00000 q^{61} +5.12311 q^{63} +5.12311 q^{65} -6.24621 q^{67} -5.12311 q^{69} -8.00000 q^{71} -4.24621 q^{73} +1.00000 q^{75} +10.2462 q^{77} -4.87689 q^{79} +1.00000 q^{81} -4.00000 q^{83} -1.12311 q^{85} -8.24621 q^{87} -10.0000 q^{89} +26.2462 q^{91} -7.12311 q^{93} +5.12311 q^{95} +10.0000 q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} + 6 q^{17} + 2 q^{19} + 2 q^{21} - 2 q^{23} + 2 q^{25} + 2 q^{27} - 6 q^{31} + 4 q^{33} + 2 q^{35} - 2 q^{37} + 2 q^{39} - 4 q^{41}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 5.12311 1.93635 0.968176 0.250270i \(-0.0805195\pi\)
0.968176 + 0.250270i \(0.0805195\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 5.12311 1.42089 0.710447 0.703751i \(-0.248493\pi\)
0.710447 + 0.703751i \(0.248493\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −1.12311 −0.272393 −0.136197 0.990682i \(-0.543488\pi\)
−0.136197 + 0.990682i \(0.543488\pi\)
\(18\) 0 0
\(19\) 5.12311 1.17532 0.587661 0.809108i \(-0.300049\pi\)
0.587661 + 0.809108i \(0.300049\pi\)
\(20\) 0 0
\(21\) 5.12311 1.11795
\(22\) 0 0
\(23\) −5.12311 −1.06824 −0.534121 0.845408i \(-0.679357\pi\)
−0.534121 + 0.845408i \(0.679357\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.24621 −1.53128 −0.765641 0.643268i \(-0.777578\pi\)
−0.765641 + 0.643268i \(0.777578\pi\)
\(30\) 0 0
\(31\) −7.12311 −1.27935 −0.639674 0.768647i \(-0.720931\pi\)
−0.639674 + 0.768647i \(0.720931\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 5.12311 0.865963
\(36\) 0 0
\(37\) −5.12311 −0.842233 −0.421117 0.907006i \(-0.638362\pi\)
−0.421117 + 0.907006i \(0.638362\pi\)
\(38\) 0 0
\(39\) 5.12311 0.820353
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −6.24621 −0.952538 −0.476269 0.879300i \(-0.658011\pi\)
−0.476269 + 0.879300i \(0.658011\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −13.1231 −1.91420 −0.957101 0.289755i \(-0.906426\pi\)
−0.957101 + 0.289755i \(0.906426\pi\)
\(48\) 0 0
\(49\) 19.2462 2.74946
\(50\) 0 0
\(51\) −1.12311 −0.157266
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 5.12311 0.678572
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 5.12311 0.645451
\(64\) 0 0
\(65\) 5.12311 0.635443
\(66\) 0 0
\(67\) −6.24621 −0.763096 −0.381548 0.924349i \(-0.624609\pi\)
−0.381548 + 0.924349i \(0.624609\pi\)
\(68\) 0 0
\(69\) −5.12311 −0.616749
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −4.24621 −0.496981 −0.248491 0.968634i \(-0.579935\pi\)
−0.248491 + 0.968634i \(0.579935\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 10.2462 1.16766
\(78\) 0 0
\(79\) −4.87689 −0.548693 −0.274347 0.961631i \(-0.588462\pi\)
−0.274347 + 0.961631i \(0.588462\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −1.12311 −0.121818
\(86\) 0 0
\(87\) −8.24621 −0.884087
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 26.2462 2.75135
\(92\) 0 0
\(93\) −7.12311 −0.738632
\(94\) 0 0
\(95\) 5.12311 0.525620
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) −11.3693 −1.12025 −0.560126 0.828407i \(-0.689247\pi\)
−0.560126 + 0.828407i \(0.689247\pi\)
\(104\) 0 0
\(105\) 5.12311 0.499964
\(106\) 0 0
\(107\) 2.24621 0.217149 0.108575 0.994088i \(-0.465371\pi\)
0.108575 + 0.994088i \(0.465371\pi\)
\(108\) 0 0
\(109\) 4.24621 0.406713 0.203357 0.979105i \(-0.434815\pi\)
0.203357 + 0.979105i \(0.434815\pi\)
\(110\) 0 0
\(111\) −5.12311 −0.486264
\(112\) 0 0
\(113\) 6.87689 0.646924 0.323462 0.946241i \(-0.395153\pi\)
0.323462 + 0.946241i \(0.395153\pi\)
\(114\) 0 0
\(115\) −5.12311 −0.477732
\(116\) 0 0
\(117\) 5.12311 0.473631
\(118\) 0 0
\(119\) −5.75379 −0.527449
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.87689 −0.610226 −0.305113 0.952316i \(-0.598694\pi\)
−0.305113 + 0.952316i \(0.598694\pi\)
\(128\) 0 0
\(129\) −6.24621 −0.549948
\(130\) 0 0
\(131\) −8.24621 −0.720475 −0.360237 0.932861i \(-0.617304\pi\)
−0.360237 + 0.932861i \(0.617304\pi\)
\(132\) 0 0
\(133\) 26.2462 2.27584
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −2.87689 −0.245790 −0.122895 0.992420i \(-0.539218\pi\)
−0.122895 + 0.992420i \(0.539218\pi\)
\(138\) 0 0
\(139\) 15.3693 1.30361 0.651804 0.758387i \(-0.274012\pi\)
0.651804 + 0.758387i \(0.274012\pi\)
\(140\) 0 0
\(141\) −13.1231 −1.10516
\(142\) 0 0
\(143\) 10.2462 0.856831
\(144\) 0 0
\(145\) −8.24621 −0.684811
\(146\) 0 0
\(147\) 19.2462 1.58740
\(148\) 0 0
\(149\) 20.2462 1.65863 0.829317 0.558778i \(-0.188730\pi\)
0.829317 + 0.558778i \(0.188730\pi\)
\(150\) 0 0
\(151\) 17.3693 1.41349 0.706747 0.707466i \(-0.250162\pi\)
0.706747 + 0.707466i \(0.250162\pi\)
\(152\) 0 0
\(153\) −1.12311 −0.0907977
\(154\) 0 0
\(155\) −7.12311 −0.572142
\(156\) 0 0
\(157\) −19.3693 −1.54584 −0.772920 0.634504i \(-0.781205\pi\)
−0.772920 + 0.634504i \(0.781205\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) −26.2462 −2.06849
\(162\) 0 0
\(163\) 8.49242 0.665178 0.332589 0.943072i \(-0.392078\pi\)
0.332589 + 0.943072i \(0.392078\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) −10.8769 −0.841679 −0.420840 0.907135i \(-0.638265\pi\)
−0.420840 + 0.907135i \(0.638265\pi\)
\(168\) 0 0
\(169\) 13.2462 1.01894
\(170\) 0 0
\(171\) 5.12311 0.391774
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 5.12311 0.387270
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) −12.2462 −0.915325 −0.457662 0.889126i \(-0.651313\pi\)
−0.457662 + 0.889126i \(0.651313\pi\)
\(180\) 0 0
\(181\) −0.246211 −0.0183007 −0.00915037 0.999958i \(-0.502913\pi\)
−0.00915037 + 0.999958i \(0.502913\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) −5.12311 −0.376658
\(186\) 0 0
\(187\) −2.24621 −0.164259
\(188\) 0 0
\(189\) 5.12311 0.372651
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 24.2462 1.74528 0.872640 0.488364i \(-0.162406\pi\)
0.872640 + 0.488364i \(0.162406\pi\)
\(194\) 0 0
\(195\) 5.12311 0.366873
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −19.6155 −1.39051 −0.695254 0.718764i \(-0.744708\pi\)
−0.695254 + 0.718764i \(0.744708\pi\)
\(200\) 0 0
\(201\) −6.24621 −0.440574
\(202\) 0 0
\(203\) −42.2462 −2.96510
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) −5.12311 −0.356080
\(208\) 0 0
\(209\) 10.2462 0.708745
\(210\) 0 0
\(211\) 10.8769 0.748796 0.374398 0.927268i \(-0.377849\pi\)
0.374398 + 0.927268i \(0.377849\pi\)
\(212\) 0 0
\(213\) −8.00000 −0.548151
\(214\) 0 0
\(215\) −6.24621 −0.425988
\(216\) 0 0
\(217\) −36.4924 −2.47727
\(218\) 0 0
\(219\) −4.24621 −0.286932
\(220\) 0 0
\(221\) −5.75379 −0.387042
\(222\) 0 0
\(223\) 14.8769 0.996231 0.498115 0.867111i \(-0.334026\pi\)
0.498115 + 0.867111i \(0.334026\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 10.2462 0.674151
\(232\) 0 0
\(233\) 25.6155 1.67813 0.839065 0.544032i \(-0.183103\pi\)
0.839065 + 0.544032i \(0.183103\pi\)
\(234\) 0 0
\(235\) −13.1231 −0.856057
\(236\) 0 0
\(237\) −4.87689 −0.316788
\(238\) 0 0
\(239\) −6.24621 −0.404034 −0.202017 0.979382i \(-0.564750\pi\)
−0.202017 + 0.979382i \(0.564750\pi\)
\(240\) 0 0
\(241\) −7.75379 −0.499465 −0.249733 0.968315i \(-0.580343\pi\)
−0.249733 + 0.968315i \(0.580343\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 19.2462 1.22960
\(246\) 0 0
\(247\) 26.2462 1.67001
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −4.24621 −0.268018 −0.134009 0.990980i \(-0.542785\pi\)
−0.134009 + 0.990980i \(0.542785\pi\)
\(252\) 0 0
\(253\) −10.2462 −0.644174
\(254\) 0 0
\(255\) −1.12311 −0.0703316
\(256\) 0 0
\(257\) 31.8617 1.98748 0.993740 0.111714i \(-0.0356342\pi\)
0.993740 + 0.111714i \(0.0356342\pi\)
\(258\) 0 0
\(259\) −26.2462 −1.63086
\(260\) 0 0
\(261\) −8.24621 −0.510428
\(262\) 0 0
\(263\) 15.3693 0.947713 0.473856 0.880602i \(-0.342862\pi\)
0.473856 + 0.880602i \(0.342862\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) −8.24621 −0.502780 −0.251390 0.967886i \(-0.580888\pi\)
−0.251390 + 0.967886i \(0.580888\pi\)
\(270\) 0 0
\(271\) −7.12311 −0.432698 −0.216349 0.976316i \(-0.569415\pi\)
−0.216349 + 0.976316i \(0.569415\pi\)
\(272\) 0 0
\(273\) 26.2462 1.58849
\(274\) 0 0
\(275\) 2.00000 0.120605
\(276\) 0 0
\(277\) −14.8769 −0.893866 −0.446933 0.894567i \(-0.647484\pi\)
−0.446933 + 0.894567i \(0.647484\pi\)
\(278\) 0 0
\(279\) −7.12311 −0.426449
\(280\) 0 0
\(281\) 0.246211 0.0146877 0.00734387 0.999973i \(-0.497662\pi\)
0.00734387 + 0.999973i \(0.497662\pi\)
\(282\) 0 0
\(283\) 30.2462 1.79795 0.898975 0.437999i \(-0.144313\pi\)
0.898975 + 0.437999i \(0.144313\pi\)
\(284\) 0 0
\(285\) 5.12311 0.303467
\(286\) 0 0
\(287\) −10.2462 −0.604815
\(288\) 0 0
\(289\) −15.7386 −0.925802
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) −28.7386 −1.67893 −0.839464 0.543415i \(-0.817131\pi\)
−0.839464 + 0.543415i \(0.817131\pi\)
\(294\) 0 0
\(295\) 6.00000 0.349334
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) −26.2462 −1.51786
\(300\) 0 0
\(301\) −32.0000 −1.84445
\(302\) 0 0
\(303\) 14.0000 0.804279
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 14.2462 0.813074 0.406537 0.913634i \(-0.366736\pi\)
0.406537 + 0.913634i \(0.366736\pi\)
\(308\) 0 0
\(309\) −11.3693 −0.646778
\(310\) 0 0
\(311\) −30.2462 −1.71511 −0.857553 0.514396i \(-0.828016\pi\)
−0.857553 + 0.514396i \(0.828016\pi\)
\(312\) 0 0
\(313\) 20.7386 1.17222 0.586108 0.810233i \(-0.300659\pi\)
0.586108 + 0.810233i \(0.300659\pi\)
\(314\) 0 0
\(315\) 5.12311 0.288654
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) −16.4924 −0.923398
\(320\) 0 0
\(321\) 2.24621 0.125371
\(322\) 0 0
\(323\) −5.75379 −0.320149
\(324\) 0 0
\(325\) 5.12311 0.284179
\(326\) 0 0
\(327\) 4.24621 0.234816
\(328\) 0 0
\(329\) −67.2311 −3.70657
\(330\) 0 0
\(331\) −1.12311 −0.0617315 −0.0308657 0.999524i \(-0.509826\pi\)
−0.0308657 + 0.999524i \(0.509826\pi\)
\(332\) 0 0
\(333\) −5.12311 −0.280744
\(334\) 0 0
\(335\) −6.24621 −0.341267
\(336\) 0 0
\(337\) −24.7386 −1.34760 −0.673800 0.738914i \(-0.735339\pi\)
−0.673800 + 0.738914i \(0.735339\pi\)
\(338\) 0 0
\(339\) 6.87689 0.373502
\(340\) 0 0
\(341\) −14.2462 −0.771476
\(342\) 0 0
\(343\) 62.7386 3.38757
\(344\) 0 0
\(345\) −5.12311 −0.275819
\(346\) 0 0
\(347\) 10.2462 0.550045 0.275023 0.961438i \(-0.411315\pi\)
0.275023 + 0.961438i \(0.411315\pi\)
\(348\) 0 0
\(349\) 10.4924 0.561646 0.280823 0.959760i \(-0.409393\pi\)
0.280823 + 0.959760i \(0.409393\pi\)
\(350\) 0 0
\(351\) 5.12311 0.273451
\(352\) 0 0
\(353\) −27.8617 −1.48293 −0.741465 0.670991i \(-0.765869\pi\)
−0.741465 + 0.670991i \(0.765869\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) 0 0
\(357\) −5.75379 −0.304523
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −4.24621 −0.222257
\(366\) 0 0
\(367\) 7.36932 0.384675 0.192338 0.981329i \(-0.438393\pi\)
0.192338 + 0.981329i \(0.438393\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 51.2311 2.65978
\(372\) 0 0
\(373\) 17.1231 0.886601 0.443300 0.896373i \(-0.353807\pi\)
0.443300 + 0.896373i \(0.353807\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −42.2462 −2.17579
\(378\) 0 0
\(379\) −3.36932 −0.173070 −0.0865351 0.996249i \(-0.527579\pi\)
−0.0865351 + 0.996249i \(0.527579\pi\)
\(380\) 0 0
\(381\) −6.87689 −0.352314
\(382\) 0 0
\(383\) 5.12311 0.261778 0.130889 0.991397i \(-0.458217\pi\)
0.130889 + 0.991397i \(0.458217\pi\)
\(384\) 0 0
\(385\) 10.2462 0.522195
\(386\) 0 0
\(387\) −6.24621 −0.317513
\(388\) 0 0
\(389\) 10.4924 0.531987 0.265993 0.963975i \(-0.414300\pi\)
0.265993 + 0.963975i \(0.414300\pi\)
\(390\) 0 0
\(391\) 5.75379 0.290982
\(392\) 0 0
\(393\) −8.24621 −0.415966
\(394\) 0 0
\(395\) −4.87689 −0.245383
\(396\) 0 0
\(397\) −15.3693 −0.771364 −0.385682 0.922632i \(-0.626034\pi\)
−0.385682 + 0.922632i \(0.626034\pi\)
\(398\) 0 0
\(399\) 26.2462 1.31395
\(400\) 0 0
\(401\) −11.7538 −0.586956 −0.293478 0.955966i \(-0.594813\pi\)
−0.293478 + 0.955966i \(0.594813\pi\)
\(402\) 0 0
\(403\) −36.4924 −1.81782
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −10.2462 −0.507886
\(408\) 0 0
\(409\) 18.4924 0.914391 0.457196 0.889366i \(-0.348854\pi\)
0.457196 + 0.889366i \(0.348854\pi\)
\(410\) 0 0
\(411\) −2.87689 −0.141907
\(412\) 0 0
\(413\) 30.7386 1.51255
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) 0 0
\(417\) 15.3693 0.752639
\(418\) 0 0
\(419\) 0.246211 0.0120282 0.00601410 0.999982i \(-0.498086\pi\)
0.00601410 + 0.999982i \(0.498086\pi\)
\(420\) 0 0
\(421\) 30.9848 1.51011 0.755054 0.655662i \(-0.227610\pi\)
0.755054 + 0.655662i \(0.227610\pi\)
\(422\) 0 0
\(423\) −13.1231 −0.638067
\(424\) 0 0
\(425\) −1.12311 −0.0544786
\(426\) 0 0
\(427\) −10.2462 −0.495849
\(428\) 0 0
\(429\) 10.2462 0.494692
\(430\) 0 0
\(431\) 16.4924 0.794412 0.397206 0.917729i \(-0.369980\pi\)
0.397206 + 0.917729i \(0.369980\pi\)
\(432\) 0 0
\(433\) 0.246211 0.0118322 0.00591608 0.999982i \(-0.498117\pi\)
0.00591608 + 0.999982i \(0.498117\pi\)
\(434\) 0 0
\(435\) −8.24621 −0.395376
\(436\) 0 0
\(437\) −26.2462 −1.25553
\(438\) 0 0
\(439\) −2.63068 −0.125556 −0.0627778 0.998028i \(-0.519996\pi\)
−0.0627778 + 0.998028i \(0.519996\pi\)
\(440\) 0 0
\(441\) 19.2462 0.916486
\(442\) 0 0
\(443\) −3.50758 −0.166650 −0.0833250 0.996522i \(-0.526554\pi\)
−0.0833250 + 0.996522i \(0.526554\pi\)
\(444\) 0 0
\(445\) −10.0000 −0.474045
\(446\) 0 0
\(447\) 20.2462 0.957613
\(448\) 0 0
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) 17.3693 0.816082
\(454\) 0 0
\(455\) 26.2462 1.23044
\(456\) 0 0
\(457\) 6.49242 0.303703 0.151851 0.988403i \(-0.451476\pi\)
0.151851 + 0.988403i \(0.451476\pi\)
\(458\) 0 0
\(459\) −1.12311 −0.0524221
\(460\) 0 0
\(461\) −40.2462 −1.87445 −0.937226 0.348721i \(-0.886616\pi\)
−0.937226 + 0.348721i \(0.886616\pi\)
\(462\) 0 0
\(463\) 37.1231 1.72526 0.862629 0.505838i \(-0.168817\pi\)
0.862629 + 0.505838i \(0.168817\pi\)
\(464\) 0 0
\(465\) −7.12311 −0.330326
\(466\) 0 0
\(467\) −18.7386 −0.867121 −0.433560 0.901125i \(-0.642743\pi\)
−0.433560 + 0.901125i \(0.642743\pi\)
\(468\) 0 0
\(469\) −32.0000 −1.47762
\(470\) 0 0
\(471\) −19.3693 −0.892491
\(472\) 0 0
\(473\) −12.4924 −0.574402
\(474\) 0 0
\(475\) 5.12311 0.235064
\(476\) 0 0
\(477\) 10.0000 0.457869
\(478\) 0 0
\(479\) 36.4924 1.66738 0.833691 0.552232i \(-0.186224\pi\)
0.833691 + 0.552232i \(0.186224\pi\)
\(480\) 0 0
\(481\) −26.2462 −1.19672
\(482\) 0 0
\(483\) −26.2462 −1.19424
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) −13.6155 −0.616978 −0.308489 0.951228i \(-0.599823\pi\)
−0.308489 + 0.951228i \(0.599823\pi\)
\(488\) 0 0
\(489\) 8.49242 0.384041
\(490\) 0 0
\(491\) −1.50758 −0.0680360 −0.0340180 0.999421i \(-0.510830\pi\)
−0.0340180 + 0.999421i \(0.510830\pi\)
\(492\) 0 0
\(493\) 9.26137 0.417111
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) −40.9848 −1.83842
\(498\) 0 0
\(499\) −4.63068 −0.207298 −0.103649 0.994614i \(-0.533052\pi\)
−0.103649 + 0.994614i \(0.533052\pi\)
\(500\) 0 0
\(501\) −10.8769 −0.485944
\(502\) 0 0
\(503\) −1.61553 −0.0720328 −0.0360164 0.999351i \(-0.511467\pi\)
−0.0360164 + 0.999351i \(0.511467\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 0 0
\(507\) 13.2462 0.588285
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) −21.7538 −0.962331
\(512\) 0 0
\(513\) 5.12311 0.226191
\(514\) 0 0
\(515\) −11.3693 −0.500992
\(516\) 0 0
\(517\) −26.2462 −1.15431
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 18.7386 0.819383 0.409692 0.912224i \(-0.365636\pi\)
0.409692 + 0.912224i \(0.365636\pi\)
\(524\) 0 0
\(525\) 5.12311 0.223591
\(526\) 0 0
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) 3.24621 0.141140
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) −10.2462 −0.443813
\(534\) 0 0
\(535\) 2.24621 0.0971122
\(536\) 0 0
\(537\) −12.2462 −0.528463
\(538\) 0 0
\(539\) 38.4924 1.65799
\(540\) 0 0
\(541\) −8.24621 −0.354532 −0.177266 0.984163i \(-0.556725\pi\)
−0.177266 + 0.984163i \(0.556725\pi\)
\(542\) 0 0
\(543\) −0.246211 −0.0105659
\(544\) 0 0
\(545\) 4.24621 0.181888
\(546\) 0 0
\(547\) −9.75379 −0.417042 −0.208521 0.978018i \(-0.566865\pi\)
−0.208521 + 0.978018i \(0.566865\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −42.2462 −1.79975
\(552\) 0 0
\(553\) −24.9848 −1.06246
\(554\) 0 0
\(555\) −5.12311 −0.217464
\(556\) 0 0
\(557\) 1.50758 0.0638781 0.0319391 0.999490i \(-0.489832\pi\)
0.0319391 + 0.999490i \(0.489832\pi\)
\(558\) 0 0
\(559\) −32.0000 −1.35346
\(560\) 0 0
\(561\) −2.24621 −0.0948351
\(562\) 0 0
\(563\) −22.7386 −0.958319 −0.479160 0.877728i \(-0.659058\pi\)
−0.479160 + 0.877728i \(0.659058\pi\)
\(564\) 0 0
\(565\) 6.87689 0.289313
\(566\) 0 0
\(567\) 5.12311 0.215150
\(568\) 0 0
\(569\) 24.7386 1.03710 0.518549 0.855048i \(-0.326472\pi\)
0.518549 + 0.855048i \(0.326472\pi\)
\(570\) 0 0
\(571\) 2.38447 0.0997870 0.0498935 0.998755i \(-0.484112\pi\)
0.0498935 + 0.998755i \(0.484112\pi\)
\(572\) 0 0
\(573\) −4.00000 −0.167102
\(574\) 0 0
\(575\) −5.12311 −0.213648
\(576\) 0 0
\(577\) 42.9848 1.78948 0.894741 0.446585i \(-0.147360\pi\)
0.894741 + 0.446585i \(0.147360\pi\)
\(578\) 0 0
\(579\) 24.2462 1.00764
\(580\) 0 0
\(581\) −20.4924 −0.850169
\(582\) 0 0
\(583\) 20.0000 0.828315
\(584\) 0 0
\(585\) 5.12311 0.211814
\(586\) 0 0
\(587\) −46.7386 −1.92911 −0.964555 0.263882i \(-0.914997\pi\)
−0.964555 + 0.263882i \(0.914997\pi\)
\(588\) 0 0
\(589\) −36.4924 −1.50364
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 0 0
\(593\) 39.8617 1.63693 0.818463 0.574560i \(-0.194827\pi\)
0.818463 + 0.574560i \(0.194827\pi\)
\(594\) 0 0
\(595\) −5.75379 −0.235882
\(596\) 0 0
\(597\) −19.6155 −0.802810
\(598\) 0 0
\(599\) −24.4924 −1.00073 −0.500367 0.865814i \(-0.666801\pi\)
−0.500367 + 0.865814i \(0.666801\pi\)
\(600\) 0 0
\(601\) −30.9848 −1.26390 −0.631949 0.775010i \(-0.717745\pi\)
−0.631949 + 0.775010i \(0.717745\pi\)
\(602\) 0 0
\(603\) −6.24621 −0.254365
\(604\) 0 0
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) −13.1231 −0.532650 −0.266325 0.963883i \(-0.585810\pi\)
−0.266325 + 0.963883i \(0.585810\pi\)
\(608\) 0 0
\(609\) −42.2462 −1.71190
\(610\) 0 0
\(611\) −67.2311 −2.71988
\(612\) 0 0
\(613\) −7.36932 −0.297644 −0.148822 0.988864i \(-0.547548\pi\)
−0.148822 + 0.988864i \(0.547548\pi\)
\(614\) 0 0
\(615\) −2.00000 −0.0806478
\(616\) 0 0
\(617\) 9.61553 0.387107 0.193553 0.981090i \(-0.437999\pi\)
0.193553 + 0.981090i \(0.437999\pi\)
\(618\) 0 0
\(619\) −21.1231 −0.849009 −0.424505 0.905426i \(-0.639552\pi\)
−0.424505 + 0.905426i \(0.639552\pi\)
\(620\) 0 0
\(621\) −5.12311 −0.205583
\(622\) 0 0
\(623\) −51.2311 −2.05253
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 10.2462 0.409194
\(628\) 0 0
\(629\) 5.75379 0.229419
\(630\) 0 0
\(631\) −13.8617 −0.551827 −0.275914 0.961182i \(-0.588980\pi\)
−0.275914 + 0.961182i \(0.588980\pi\)
\(632\) 0 0
\(633\) 10.8769 0.432318
\(634\) 0 0
\(635\) −6.87689 −0.272901
\(636\) 0 0
\(637\) 98.6004 3.90669
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) −36.2462 −1.43164 −0.715820 0.698285i \(-0.753947\pi\)
−0.715820 + 0.698285i \(0.753947\pi\)
\(642\) 0 0
\(643\) −32.4924 −1.28138 −0.640688 0.767801i \(-0.721351\pi\)
−0.640688 + 0.767801i \(0.721351\pi\)
\(644\) 0 0
\(645\) −6.24621 −0.245944
\(646\) 0 0
\(647\) 13.1231 0.515923 0.257961 0.966155i \(-0.416949\pi\)
0.257961 + 0.966155i \(0.416949\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) −36.4924 −1.43025
\(652\) 0 0
\(653\) 44.7386 1.75076 0.875379 0.483437i \(-0.160612\pi\)
0.875379 + 0.483437i \(0.160612\pi\)
\(654\) 0 0
\(655\) −8.24621 −0.322206
\(656\) 0 0
\(657\) −4.24621 −0.165660
\(658\) 0 0
\(659\) 26.0000 1.01282 0.506408 0.862294i \(-0.330973\pi\)
0.506408 + 0.862294i \(0.330973\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) −5.75379 −0.223459
\(664\) 0 0
\(665\) 26.2462 1.01778
\(666\) 0 0
\(667\) 42.2462 1.63578
\(668\) 0 0
\(669\) 14.8769 0.575174
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) −20.2462 −0.780434 −0.390217 0.920723i \(-0.627600\pi\)
−0.390217 + 0.920723i \(0.627600\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 4.73863 0.182120 0.0910602 0.995845i \(-0.470974\pi\)
0.0910602 + 0.995845i \(0.470974\pi\)
\(678\) 0 0
\(679\) 51.2311 1.96607
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −9.75379 −0.373218 −0.186609 0.982434i \(-0.559750\pi\)
−0.186609 + 0.982434i \(0.559750\pi\)
\(684\) 0 0
\(685\) −2.87689 −0.109920
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) 51.2311 1.95175
\(690\) 0 0
\(691\) −13.1231 −0.499226 −0.249613 0.968346i \(-0.580303\pi\)
−0.249613 + 0.968346i \(0.580303\pi\)
\(692\) 0 0
\(693\) 10.2462 0.389221
\(694\) 0 0
\(695\) 15.3693 0.582991
\(696\) 0 0
\(697\) 2.24621 0.0850813
\(698\) 0 0
\(699\) 25.6155 0.968868
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −26.2462 −0.989895
\(704\) 0 0
\(705\) −13.1231 −0.494245
\(706\) 0 0
\(707\) 71.7235 2.69744
\(708\) 0 0
\(709\) −50.9848 −1.91478 −0.957388 0.288805i \(-0.906742\pi\)
−0.957388 + 0.288805i \(0.906742\pi\)
\(710\) 0 0
\(711\) −4.87689 −0.182898
\(712\) 0 0
\(713\) 36.4924 1.36665
\(714\) 0 0
\(715\) 10.2462 0.383187
\(716\) 0 0
\(717\) −6.24621 −0.233269
\(718\) 0 0
\(719\) 22.2462 0.829644 0.414822 0.909903i \(-0.363844\pi\)
0.414822 + 0.909903i \(0.363844\pi\)
\(720\) 0 0
\(721\) −58.2462 −2.16920
\(722\) 0 0
\(723\) −7.75379 −0.288367
\(724\) 0 0
\(725\) −8.24621 −0.306257
\(726\) 0 0
\(727\) −29.6155 −1.09838 −0.549190 0.835698i \(-0.685064\pi\)
−0.549190 + 0.835698i \(0.685064\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 7.01515 0.259465
\(732\) 0 0
\(733\) 37.6155 1.38936 0.694681 0.719318i \(-0.255546\pi\)
0.694681 + 0.719318i \(0.255546\pi\)
\(734\) 0 0
\(735\) 19.2462 0.709907
\(736\) 0 0
\(737\) −12.4924 −0.460164
\(738\) 0 0
\(739\) −33.1231 −1.21845 −0.609227 0.792996i \(-0.708520\pi\)
−0.609227 + 0.792996i \(0.708520\pi\)
\(740\) 0 0
\(741\) 26.2462 0.964179
\(742\) 0 0
\(743\) 19.8617 0.728657 0.364328 0.931271i \(-0.381299\pi\)
0.364328 + 0.931271i \(0.381299\pi\)
\(744\) 0 0
\(745\) 20.2462 0.741764
\(746\) 0 0
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) 11.5076 0.420478
\(750\) 0 0
\(751\) −2.63068 −0.0959950 −0.0479975 0.998847i \(-0.515284\pi\)
−0.0479975 + 0.998847i \(0.515284\pi\)
\(752\) 0 0
\(753\) −4.24621 −0.154741
\(754\) 0 0
\(755\) 17.3693 0.632134
\(756\) 0 0
\(757\) 13.6155 0.494865 0.247432 0.968905i \(-0.420413\pi\)
0.247432 + 0.968905i \(0.420413\pi\)
\(758\) 0 0
\(759\) −10.2462 −0.371914
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 21.7538 0.787540
\(764\) 0 0
\(765\) −1.12311 −0.0406060
\(766\) 0 0
\(767\) 30.7386 1.10991
\(768\) 0 0
\(769\) 31.7538 1.14507 0.572535 0.819880i \(-0.305960\pi\)
0.572535 + 0.819880i \(0.305960\pi\)
\(770\) 0 0
\(771\) 31.8617 1.14747
\(772\) 0 0
\(773\) 47.4773 1.70764 0.853819 0.520569i \(-0.174280\pi\)
0.853819 + 0.520569i \(0.174280\pi\)
\(774\) 0 0
\(775\) −7.12311 −0.255870
\(776\) 0 0
\(777\) −26.2462 −0.941578
\(778\) 0 0
\(779\) −10.2462 −0.367109
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 0 0
\(783\) −8.24621 −0.294696
\(784\) 0 0
\(785\) −19.3693 −0.691321
\(786\) 0 0
\(787\) 38.2462 1.36333 0.681665 0.731664i \(-0.261256\pi\)
0.681665 + 0.731664i \(0.261256\pi\)
\(788\) 0 0
\(789\) 15.3693 0.547162
\(790\) 0 0
\(791\) 35.2311 1.25267
\(792\) 0 0
\(793\) −10.2462 −0.363854
\(794\) 0 0
\(795\) 10.0000 0.354663
\(796\) 0 0
\(797\) 11.7538 0.416341 0.208170 0.978093i \(-0.433249\pi\)
0.208170 + 0.978093i \(0.433249\pi\)
\(798\) 0 0
\(799\) 14.7386 0.521415
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) −8.49242 −0.299691
\(804\) 0 0
\(805\) −26.2462 −0.925057
\(806\) 0 0
\(807\) −8.24621 −0.290280
\(808\) 0 0
\(809\) −12.2462 −0.430554 −0.215277 0.976553i \(-0.569065\pi\)
−0.215277 + 0.976553i \(0.569065\pi\)
\(810\) 0 0
\(811\) −17.1231 −0.601274 −0.300637 0.953739i \(-0.597199\pi\)
−0.300637 + 0.953739i \(0.597199\pi\)
\(812\) 0 0
\(813\) −7.12311 −0.249818
\(814\) 0 0
\(815\) 8.49242 0.297477
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) 0 0
\(819\) 26.2462 0.917117
\(820\) 0 0
\(821\) 24.7386 0.863384 0.431692 0.902021i \(-0.357917\pi\)
0.431692 + 0.902021i \(0.357917\pi\)
\(822\) 0 0
\(823\) 20.6307 0.719140 0.359570 0.933118i \(-0.382923\pi\)
0.359570 + 0.933118i \(0.382923\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) 23.5076 0.817439 0.408719 0.912660i \(-0.365976\pi\)
0.408719 + 0.912660i \(0.365976\pi\)
\(828\) 0 0
\(829\) −20.7386 −0.720283 −0.360141 0.932898i \(-0.617272\pi\)
−0.360141 + 0.932898i \(0.617272\pi\)
\(830\) 0 0
\(831\) −14.8769 −0.516074
\(832\) 0 0
\(833\) −21.6155 −0.748934
\(834\) 0 0
\(835\) −10.8769 −0.376410
\(836\) 0 0
\(837\) −7.12311 −0.246211
\(838\) 0 0
\(839\) 44.0000 1.51905 0.759524 0.650479i \(-0.225432\pi\)
0.759524 + 0.650479i \(0.225432\pi\)
\(840\) 0 0
\(841\) 39.0000 1.34483
\(842\) 0 0
\(843\) 0.246211 0.00847997
\(844\) 0 0
\(845\) 13.2462 0.455684
\(846\) 0 0
\(847\) −35.8617 −1.23222
\(848\) 0 0
\(849\) 30.2462 1.03805
\(850\) 0 0
\(851\) 26.2462 0.899709
\(852\) 0 0
\(853\) 21.1231 0.723241 0.361621 0.932325i \(-0.382224\pi\)
0.361621 + 0.932325i \(0.382224\pi\)
\(854\) 0 0
\(855\) 5.12311 0.175207
\(856\) 0 0
\(857\) 30.8769 1.05473 0.527367 0.849637i \(-0.323179\pi\)
0.527367 + 0.849637i \(0.323179\pi\)
\(858\) 0 0
\(859\) 25.1231 0.857189 0.428595 0.903497i \(-0.359009\pi\)
0.428595 + 0.903497i \(0.359009\pi\)
\(860\) 0 0
\(861\) −10.2462 −0.349190
\(862\) 0 0
\(863\) −47.3693 −1.61247 −0.806235 0.591595i \(-0.798498\pi\)
−0.806235 + 0.591595i \(0.798498\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 0 0
\(867\) −15.7386 −0.534512
\(868\) 0 0
\(869\) −9.75379 −0.330875
\(870\) 0 0
\(871\) −32.0000 −1.08428
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 5.12311 0.173193
\(876\) 0 0
\(877\) 53.6155 1.81047 0.905234 0.424914i \(-0.139696\pi\)
0.905234 + 0.424914i \(0.139696\pi\)
\(878\) 0 0
\(879\) −28.7386 −0.969330
\(880\) 0 0
\(881\) −14.4924 −0.488262 −0.244131 0.969742i \(-0.578503\pi\)
−0.244131 + 0.969742i \(0.578503\pi\)
\(882\) 0 0
\(883\) −0.492423 −0.0165713 −0.00828567 0.999966i \(-0.502637\pi\)
−0.00828567 + 0.999966i \(0.502637\pi\)
\(884\) 0 0
\(885\) 6.00000 0.201688
\(886\) 0 0
\(887\) −6.38447 −0.214370 −0.107185 0.994239i \(-0.534184\pi\)
−0.107185 + 0.994239i \(0.534184\pi\)
\(888\) 0 0
\(889\) −35.2311 −1.18161
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 0 0
\(893\) −67.2311 −2.24980
\(894\) 0 0
\(895\) −12.2462 −0.409346
\(896\) 0 0
\(897\) −26.2462 −0.876335
\(898\) 0 0
\(899\) 58.7386 1.95904
\(900\) 0 0
\(901\) −11.2311 −0.374161
\(902\) 0 0
\(903\) −32.0000 −1.06489
\(904\) 0 0
\(905\) −0.246211 −0.00818434
\(906\) 0 0
\(907\) 28.9848 0.962426 0.481213 0.876604i \(-0.340196\pi\)
0.481213 + 0.876604i \(0.340196\pi\)
\(908\) 0 0
\(909\) 14.0000 0.464351
\(910\) 0 0
\(911\) 9.26137 0.306843 0.153421 0.988161i \(-0.450971\pi\)
0.153421 + 0.988161i \(0.450971\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) −2.00000 −0.0661180
\(916\) 0 0
\(917\) −42.2462 −1.39509
\(918\) 0 0
\(919\) −39.1231 −1.29055 −0.645276 0.763949i \(-0.723258\pi\)
−0.645276 + 0.763949i \(0.723258\pi\)
\(920\) 0 0
\(921\) 14.2462 0.469429
\(922\) 0 0
\(923\) −40.9848 −1.34903
\(924\) 0 0
\(925\) −5.12311 −0.168447
\(926\) 0 0
\(927\) −11.3693 −0.373417
\(928\) 0 0
\(929\) 14.4924 0.475481 0.237740 0.971329i \(-0.423593\pi\)
0.237740 + 0.971329i \(0.423593\pi\)
\(930\) 0 0
\(931\) 98.6004 3.23150
\(932\) 0 0
\(933\) −30.2462 −0.990217
\(934\) 0 0
\(935\) −2.24621 −0.0734590
\(936\) 0 0
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) 0 0
\(939\) 20.7386 0.676780
\(940\) 0 0
\(941\) 43.4773 1.41732 0.708659 0.705551i \(-0.249300\pi\)
0.708659 + 0.705551i \(0.249300\pi\)
\(942\) 0 0
\(943\) 10.2462 0.333663
\(944\) 0 0
\(945\) 5.12311 0.166655
\(946\) 0 0
\(947\) −26.7386 −0.868889 −0.434444 0.900699i \(-0.643055\pi\)
−0.434444 + 0.900699i \(0.643055\pi\)
\(948\) 0 0
\(949\) −21.7538 −0.706158
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) 0 0
\(953\) 45.1231 1.46168 0.730840 0.682548i \(-0.239128\pi\)
0.730840 + 0.682548i \(0.239128\pi\)
\(954\) 0 0
\(955\) −4.00000 −0.129437
\(956\) 0 0
\(957\) −16.4924 −0.533124
\(958\) 0 0
\(959\) −14.7386 −0.475935
\(960\) 0 0
\(961\) 19.7386 0.636730
\(962\) 0 0
\(963\) 2.24621 0.0723831
\(964\) 0 0
\(965\) 24.2462 0.780513
\(966\) 0 0
\(967\) 51.3693 1.65193 0.825963 0.563724i \(-0.190632\pi\)
0.825963 + 0.563724i \(0.190632\pi\)
\(968\) 0 0
\(969\) −5.75379 −0.184838
\(970\) 0 0
\(971\) 32.2462 1.03483 0.517415 0.855735i \(-0.326894\pi\)
0.517415 + 0.855735i \(0.326894\pi\)
\(972\) 0 0
\(973\) 78.7386 2.52424
\(974\) 0 0
\(975\) 5.12311 0.164071
\(976\) 0 0
\(977\) 30.8769 0.987839 0.493920 0.869508i \(-0.335564\pi\)
0.493920 + 0.869508i \(0.335564\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) 4.24621 0.135571
\(982\) 0 0
\(983\) 47.3693 1.51085 0.755423 0.655237i \(-0.227431\pi\)
0.755423 + 0.655237i \(0.227431\pi\)
\(984\) 0 0
\(985\) 2.00000 0.0637253
\(986\) 0 0
\(987\) −67.2311 −2.13999
\(988\) 0 0
\(989\) 32.0000 1.01754
\(990\) 0 0
\(991\) 15.1231 0.480401 0.240201 0.970723i \(-0.422787\pi\)
0.240201 + 0.970723i \(0.422787\pi\)
\(992\) 0 0
\(993\) −1.12311 −0.0356407
\(994\) 0 0
\(995\) −19.6155 −0.621854
\(996\) 0 0
\(997\) −5.61553 −0.177846 −0.0889228 0.996039i \(-0.528342\pi\)
−0.0889228 + 0.996039i \(0.528342\pi\)
\(998\) 0 0
\(999\) −5.12311 −0.162088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.a.bb.1.2 yes 2
3.2 odd 2 5760.2.a.cc.1.2 2
4.3 odd 2 1920.2.a.z.1.1 yes 2
5.4 even 2 9600.2.a.cl.1.1 2
8.3 odd 2 1920.2.a.ba.1.1 yes 2
8.5 even 2 1920.2.a.y.1.2 2
12.11 even 2 5760.2.a.bx.1.1 2
16.3 odd 4 3840.2.k.bd.1921.2 4
16.5 even 4 3840.2.k.bc.1921.1 4
16.11 odd 4 3840.2.k.bd.1921.4 4
16.13 even 4 3840.2.k.bc.1921.3 4
20.19 odd 2 9600.2.a.dg.1.2 2
24.5 odd 2 5760.2.a.cj.1.2 2
24.11 even 2 5760.2.a.cg.1.1 2
40.19 odd 2 9600.2.a.ct.1.2 2
40.29 even 2 9600.2.a.cw.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.a.y.1.2 2 8.5 even 2
1920.2.a.z.1.1 yes 2 4.3 odd 2
1920.2.a.ba.1.1 yes 2 8.3 odd 2
1920.2.a.bb.1.2 yes 2 1.1 even 1 trivial
3840.2.k.bc.1921.1 4 16.5 even 4
3840.2.k.bc.1921.3 4 16.13 even 4
3840.2.k.bd.1921.2 4 16.3 odd 4
3840.2.k.bd.1921.4 4 16.11 odd 4
5760.2.a.bx.1.1 2 12.11 even 2
5760.2.a.cc.1.2 2 3.2 odd 2
5760.2.a.cg.1.1 2 24.11 even 2
5760.2.a.cj.1.2 2 24.5 odd 2
9600.2.a.cl.1.1 2 5.4 even 2
9600.2.a.ct.1.2 2 40.19 odd 2
9600.2.a.cw.1.1 2 40.29 even 2
9600.2.a.dg.1.2 2 20.19 odd 2