Properties

Label 1920.2.a
Level $1920$
Weight $2$
Character orbit 1920.a
Rep. character $\chi_{1920}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $28$
Sturm bound $768$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(768\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1920))\).

Total New Old
Modular forms 416 32 384
Cusp forms 353 32 321
Eisenstein series 63 0 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(12\)
Minus space\(-\)\(20\)

Trace form

\( 32 q + 32 q^{9} + O(q^{10}) \) \( 32 q + 32 q^{9} + 32 q^{25} + 96 q^{49} + 64 q^{57} + 64 q^{73} + 32 q^{81} + 64 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1920))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
1920.2.a.a 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.a \(0\) \(-1\) \(-1\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-4q^{7}+q^{9}+2q^{11}+q^{15}+\cdots\)
1920.2.a.b 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.b \(0\) \(-1\) \(-1\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-2q^{7}+q^{9}-6q^{11}-2q^{13}+\cdots\)
1920.2.a.c 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.c \(0\) \(-1\) \(-1\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-2q^{7}+q^{9}+2q^{11}+6q^{13}+\cdots\)
1920.2.a.d 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.d \(0\) \(-1\) \(-1\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+q^{9}+2q^{11}-4q^{13}+\cdots\)
1920.2.a.e 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.e \(0\) \(-1\) \(-1\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+2q^{7}+q^{9}-2q^{11}-2q^{13}+\cdots\)
1920.2.a.f 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.f \(0\) \(-1\) \(-1\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+4q^{7}+q^{9}+6q^{11}+4q^{13}+\cdots\)
1920.2.a.g 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.f \(0\) \(-1\) \(1\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-4q^{7}+q^{9}+6q^{11}-4q^{13}+\cdots\)
1920.2.a.h 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.e \(0\) \(-1\) \(1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-2q^{7}+q^{9}-2q^{11}+2q^{13}+\cdots\)
1920.2.a.i 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.d \(0\) \(-1\) \(1\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{9}+2q^{11}+4q^{13}+\cdots\)
1920.2.a.j 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.b \(0\) \(-1\) \(1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+2q^{7}+q^{9}-6q^{11}+2q^{13}+\cdots\)
1920.2.a.k 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.c \(0\) \(-1\) \(1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+2q^{7}+q^{9}+2q^{11}-6q^{13}+\cdots\)
1920.2.a.l 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.a \(0\) \(-1\) \(1\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+4q^{7}+q^{9}+2q^{11}-q^{15}+\cdots\)
1920.2.a.m 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.f \(0\) \(1\) \(-1\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-4q^{7}+q^{9}-6q^{11}+4q^{13}+\cdots\)
1920.2.a.n 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.e \(0\) \(1\) \(-1\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-2q^{7}+q^{9}+2q^{11}-2q^{13}+\cdots\)
1920.2.a.o 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.d \(0\) \(1\) \(-1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{9}-2q^{11}-4q^{13}+\cdots\)
1920.2.a.p 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.c \(0\) \(1\) \(-1\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+2q^{7}+q^{9}-2q^{11}+6q^{13}+\cdots\)
1920.2.a.q 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.b \(0\) \(1\) \(-1\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+2q^{7}+q^{9}+6q^{11}-2q^{13}+\cdots\)
1920.2.a.r 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.a \(0\) \(1\) \(-1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+4q^{7}+q^{9}-2q^{11}-q^{15}+\cdots\)
1920.2.a.s 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.a \(0\) \(1\) \(1\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-4q^{7}+q^{9}-2q^{11}+q^{15}+\cdots\)
1920.2.a.t 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.c \(0\) \(1\) \(1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{7}+q^{9}-2q^{11}-6q^{13}+\cdots\)
1920.2.a.u 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.b \(0\) \(1\) \(1\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{7}+q^{9}+6q^{11}+2q^{13}+\cdots\)
1920.2.a.v 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.d \(0\) \(1\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{9}-2q^{11}+4q^{13}+\cdots\)
1920.2.a.w 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.e \(0\) \(1\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+2q^{7}+q^{9}+2q^{11}+2q^{13}+\cdots\)
1920.2.a.x 1920.a 1.a $1$ $15.331$ \(\Q\) None 1920.2.a.f \(0\) \(1\) \(1\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+4q^{7}+q^{9}-6q^{11}-4q^{13}+\cdots\)
1920.2.a.y 1920.a 1.a $2$ $15.331$ \(\Q(\sqrt{17}) \) None 1920.2.a.y \(0\) \(-2\) \(-2\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+(1+\beta )q^{7}+q^{9}-2q^{11}+\cdots\)
1920.2.a.z 1920.a 1.a $2$ $15.331$ \(\Q(\sqrt{17}) \) None 1920.2.a.y \(0\) \(-2\) \(2\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+(-1-\beta )q^{7}+q^{9}-2q^{11}+\cdots\)
1920.2.a.ba 1920.a 1.a $2$ $15.331$ \(\Q(\sqrt{17}) \) None 1920.2.a.y \(0\) \(2\) \(-2\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+(-1-\beta )q^{7}+q^{9}+2q^{11}+\cdots\)
1920.2.a.bb 1920.a 1.a $2$ $15.331$ \(\Q(\sqrt{17}) \) None 1920.2.a.y \(0\) \(2\) \(2\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+(1+\beta )q^{7}+q^{9}+2q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1920))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1920)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(384))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(480))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(640))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(960))\)\(^{\oplus 2}\)