Properties

Label 1920.1.db.a
Level $1920$
Weight $1$
Character orbit 1920.db
Analytic conductor $0.958$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,1,Mod(29,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(32))
 
chi = DirichletCharacter(H, H._module([0, 27, 16, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1920.db (of order \(32\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.958204824255\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(2\) over \(\Q(\zeta_{32})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} + \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{64}^{27} q^{2} - \zeta_{64}^{23} q^{3} - \zeta_{64}^{22} q^{4} + \zeta_{64}^{29} q^{5} - \zeta_{64}^{18} q^{6} - \zeta_{64}^{17} q^{8} - \zeta_{64}^{14} q^{9} + \zeta_{64}^{24} q^{10} - \zeta_{64}^{13} q^{12} + \cdots - \zeta_{64}^{31} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{54} - 32 q^{76}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{64}^{26}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
0.634393 0.773010i
−0.634393 + 0.773010i
−0.0980171 + 0.995185i
0.0980171 0.995185i
0.881921 0.471397i
−0.881921 + 0.471397i
−0.471397 + 0.881921i
0.471397 0.881921i
−0.995185 + 0.0980171i
0.995185 0.0980171i
0.773010 0.634393i
−0.773010 + 0.634393i
−0.956940 0.290285i
0.956940 + 0.290285i
−0.956940 + 0.290285i
0.956940 0.290285i
0.773010 + 0.634393i
−0.773010 0.634393i
−0.995185 0.0980171i
0.995185 + 0.0980171i
−0.290285 0.956940i −0.0980171 + 0.995185i −0.831470 + 0.555570i 0.881921 0.471397i 0.980785 0.195090i 0 0.773010 + 0.634393i −0.980785 0.195090i −0.707107 0.707107i
29.2 0.290285 + 0.956940i 0.0980171 0.995185i −0.831470 + 0.555570i −0.881921 + 0.471397i 0.980785 0.195090i 0 −0.773010 0.634393i −0.980785 0.195090i −0.707107 0.707107i
149.1 −0.471397 0.881921i −0.773010 0.634393i −0.555570 + 0.831470i −0.290285 0.956940i −0.195090 + 0.980785i 0 0.995185 + 0.0980171i 0.195090 + 0.980785i −0.707107 + 0.707107i
149.2 0.471397 + 0.881921i 0.773010 + 0.634393i −0.555570 + 0.831470i 0.290285 + 0.956940i −0.195090 + 0.980785i 0 −0.995185 0.0980171i 0.195090 + 0.980785i −0.707107 + 0.707107i
269.1 −0.773010 + 0.634393i −0.290285 0.956940i 0.195090 0.980785i −0.0980171 0.995185i 0.831470 + 0.555570i 0 0.471397 + 0.881921i −0.831470 + 0.555570i 0.707107 + 0.707107i
269.2 0.773010 0.634393i 0.290285 + 0.956940i 0.195090 0.980785i 0.0980171 + 0.995185i 0.831470 + 0.555570i 0 −0.471397 0.881921i −0.831470 + 0.555570i 0.707107 + 0.707107i
389.1 −0.634393 + 0.773010i 0.956940 + 0.290285i −0.195090 0.980785i −0.995185 0.0980171i −0.831470 + 0.555570i 0 0.881921 + 0.471397i 0.831470 + 0.555570i 0.707107 0.707107i
389.2 0.634393 0.773010i −0.956940 0.290285i −0.195090 0.980785i 0.995185 + 0.0980171i −0.831470 + 0.555570i 0 −0.881921 0.471397i 0.831470 + 0.555570i 0.707107 0.707107i
509.1 −0.881921 0.471397i −0.634393 0.773010i 0.555570 + 0.831470i 0.956940 + 0.290285i 0.195090 + 0.980785i 0 −0.0980171 0.995185i −0.195090 + 0.980785i −0.707107 0.707107i
509.2 0.881921 + 0.471397i 0.634393 + 0.773010i 0.555570 + 0.831470i −0.956940 0.290285i 0.195090 + 0.980785i 0 0.0980171 + 0.995185i −0.195090 + 0.980785i −0.707107 0.707107i
629.1 −0.956940 0.290285i 0.995185 0.0980171i 0.831470 + 0.555570i 0.471397 0.881921i −0.980785 0.195090i 0 −0.634393 0.773010i 0.980785 0.195090i −0.707107 + 0.707107i
629.2 0.956940 + 0.290285i −0.995185 + 0.0980171i 0.831470 + 0.555570i −0.471397 + 0.881921i −0.980785 0.195090i 0 0.634393 + 0.773010i 0.980785 0.195090i −0.707107 + 0.707107i
749.1 −0.0980171 + 0.995185i 0.881921 + 0.471397i −0.980785 0.195090i 0.634393 0.773010i −0.555570 + 0.831470i 0 0.290285 0.956940i 0.555570 + 0.831470i 0.707107 + 0.707107i
749.2 0.0980171 0.995185i −0.881921 0.471397i −0.980785 0.195090i −0.634393 + 0.773010i −0.555570 + 0.831470i 0 −0.290285 + 0.956940i 0.555570 + 0.831470i 0.707107 + 0.707107i
869.1 −0.0980171 0.995185i 0.881921 0.471397i −0.980785 + 0.195090i 0.634393 + 0.773010i −0.555570 0.831470i 0 0.290285 + 0.956940i 0.555570 0.831470i 0.707107 0.707107i
869.2 0.0980171 + 0.995185i −0.881921 + 0.471397i −0.980785 + 0.195090i −0.634393 0.773010i −0.555570 0.831470i 0 −0.290285 0.956940i 0.555570 0.831470i 0.707107 0.707107i
989.1 −0.956940 + 0.290285i 0.995185 + 0.0980171i 0.831470 0.555570i 0.471397 + 0.881921i −0.980785 + 0.195090i 0 −0.634393 + 0.773010i 0.980785 + 0.195090i −0.707107 0.707107i
989.2 0.956940 0.290285i −0.995185 0.0980171i 0.831470 0.555570i −0.471397 0.881921i −0.980785 + 0.195090i 0 0.634393 0.773010i 0.980785 + 0.195090i −0.707107 0.707107i
1109.1 −0.881921 + 0.471397i −0.634393 + 0.773010i 0.555570 0.831470i 0.956940 0.290285i 0.195090 0.980785i 0 −0.0980171 + 0.995185i −0.195090 0.980785i −0.707107 + 0.707107i
1109.2 0.881921 0.471397i 0.634393 0.773010i 0.555570 0.831470i −0.956940 + 0.290285i 0.195090 0.980785i 0 0.0980171 0.995185i −0.195090 0.980785i −0.707107 + 0.707107i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
128.k even 32 1 inner
384.x odd 32 1 inner
640.bo even 32 1 inner
1920.db odd 32 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.1.db.a 32
3.b odd 2 1 inner 1920.1.db.a 32
5.b even 2 1 inner 1920.1.db.a 32
15.d odd 2 1 CM 1920.1.db.a 32
128.k even 32 1 inner 1920.1.db.a 32
384.x odd 32 1 inner 1920.1.db.a 32
640.bo even 32 1 inner 1920.1.db.a 32
1920.db odd 32 1 inner 1920.1.db.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.1.db.a 32 1.a even 1 1 trivial
1920.1.db.a 32 3.b odd 2 1 inner
1920.1.db.a 32 5.b even 2 1 inner
1920.1.db.a 32 15.d odd 2 1 CM
1920.1.db.a 32 128.k even 32 1 inner
1920.1.db.a 32 384.x odd 32 1 inner
1920.1.db.a 32 640.bo even 32 1 inner
1920.1.db.a 32 1920.db odd 32 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1920, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{32} + 1 \) Copy content Toggle raw display
$3$ \( T^{32} + 1 \) Copy content Toggle raw display
$5$ \( T^{32} + 1 \) Copy content Toggle raw display
$7$ \( T^{32} \) Copy content Toggle raw display
$11$ \( T^{32} \) Copy content Toggle raw display
$13$ \( T^{32} \) Copy content Toggle raw display
$17$ \( T^{32} + 280 T^{24} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( (T^{16} + 16 T^{13} + \cdots + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{32} + 176 T^{20} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( T^{32} \) Copy content Toggle raw display
$31$ \( (T^{16} + 24 T^{12} + \cdots + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{32} \) Copy content Toggle raw display
$41$ \( T^{32} \) Copy content Toggle raw display
$43$ \( T^{32} \) Copy content Toggle raw display
$47$ \( T^{32} + 280 T^{24} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( T^{32} - 32 T^{28} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{32} \) Copy content Toggle raw display
$61$ \( (T^{16} + 4 T^{12} + \cdots + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{32} \) Copy content Toggle raw display
$71$ \( T^{32} \) Copy content Toggle raw display
$73$ \( T^{32} \) Copy content Toggle raw display
$79$ \( (T^{4} + 2 T^{2} - 4 T + 2)^{8} \) Copy content Toggle raw display
$83$ \( T^{32} + 112 T^{24} + \cdots + 16 \) Copy content Toggle raw display
$89$ \( T^{32} \) Copy content Toggle raw display
$97$ \( T^{32} \) Copy content Toggle raw display
show more
show less