Properties

Label 192.9.l.a.79.6
Level $192$
Weight $9$
Character 192.79
Analytic conductor $78.217$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,9,Mod(79,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.79"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 192.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.2166931317\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 79.6
Character \(\chi\) \(=\) 192.79
Dual form 192.9.l.a.175.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-33.0681 - 33.0681i) q^{3} +(306.323 + 306.323i) q^{5} -4330.12 q^{7} +2187.00i q^{9} +(-18335.5 + 18335.5i) q^{11} +(-24434.1 + 24434.1i) q^{13} -20259.0i q^{15} -35617.2 q^{17} +(-5513.54 - 5513.54i) q^{19} +(143189. + 143189. i) q^{21} +92940.4 q^{23} -202957. i q^{25} +(72320.0 - 72320.0i) q^{27} +(-311877. + 311877. i) q^{29} +122574. i q^{31} +1.21264e6 q^{33} +(-1.32641e6 - 1.32641e6i) q^{35} +(-1.50996e6 - 1.50996e6i) q^{37} +1.61598e6 q^{39} +2.41043e6i q^{41} +(952450. - 952450. i) q^{43} +(-669928. + 669928. i) q^{45} +4.39132e6i q^{47} +1.29851e7 q^{49} +(1.17779e6 + 1.17779e6i) q^{51} +(2.72881e6 + 2.72881e6i) q^{53} -1.12332e7 q^{55} +364645. i q^{57} +(-1.41908e7 + 1.41908e7i) q^{59} +(8.54559e6 - 8.54559e6i) q^{61} -9.46997e6i q^{63} -1.49695e7 q^{65} +(2.60963e7 + 2.60963e7i) q^{67} +(-3.07336e6 - 3.07336e6i) q^{69} -2.88819e7 q^{71} -3.78139e7i q^{73} +(-6.71142e6 + 6.71142e6i) q^{75} +(7.93950e7 - 7.93950e7i) q^{77} -7.03551e7i q^{79} -4.78297e6 q^{81} +(-4.08284e7 - 4.08284e7i) q^{83} +(-1.09104e7 - 1.09104e7i) q^{85} +2.06263e7 q^{87} +3.44569e6i q^{89} +(1.05803e8 - 1.05803e8i) q^{91} +(4.05328e6 - 4.05328e6i) q^{93} -3.37785e6i q^{95} -4.89049e7 q^{97} +(-4.00998e7 - 4.00998e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 39552 q^{11} + 167552 q^{19} - 1691136 q^{23} - 2132352 q^{29} + 2415744 q^{35} - 4720512 q^{37} + 7244672 q^{43} + 52706752 q^{49} - 13862016 q^{51} - 5358720 q^{53} + 46326784 q^{55} - 44938752 q^{59}+ \cdots - 86500224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −33.0681 33.0681i −0.408248 0.408248i
\(4\) 0 0
\(5\) 306.323 + 306.323i 0.490117 + 0.490117i 0.908343 0.418226i \(-0.137348\pi\)
−0.418226 + 0.908343i \(0.637348\pi\)
\(6\) 0 0
\(7\) −4330.12 −1.80346 −0.901732 0.432295i \(-0.857704\pi\)
−0.901732 + 0.432295i \(0.857704\pi\)
\(8\) 0 0
\(9\) 2187.00i 0.333333i
\(10\) 0 0
\(11\) −18335.5 + 18335.5i −1.25234 + 1.25234i −0.297673 + 0.954668i \(0.596210\pi\)
−0.954668 + 0.297673i \(0.903790\pi\)
\(12\) 0 0
\(13\) −24434.1 + 24434.1i −0.855507 + 0.855507i −0.990805 0.135298i \(-0.956801\pi\)
0.135298 + 0.990805i \(0.456801\pi\)
\(14\) 0 0
\(15\) 20259.0i 0.400179i
\(16\) 0 0
\(17\) −35617.2 −0.426446 −0.213223 0.977004i \(-0.568396\pi\)
−0.213223 + 0.977004i \(0.568396\pi\)
\(18\) 0 0
\(19\) −5513.54 5513.54i −0.0423074 0.0423074i 0.685637 0.727944i \(-0.259524\pi\)
−0.727944 + 0.685637i \(0.759524\pi\)
\(20\) 0 0
\(21\) 143189. + 143189.i 0.736261 + 0.736261i
\(22\) 0 0
\(23\) 92940.4 0.332118 0.166059 0.986116i \(-0.446896\pi\)
0.166059 + 0.986116i \(0.446896\pi\)
\(24\) 0 0
\(25\) 202957.i 0.519571i
\(26\) 0 0
\(27\) 72320.0 72320.0i 0.136083 0.136083i
\(28\) 0 0
\(29\) −311877. + 311877.i −0.440952 + 0.440952i −0.892332 0.451380i \(-0.850932\pi\)
0.451380 + 0.892332i \(0.350932\pi\)
\(30\) 0 0
\(31\) 122574.i 0.132724i 0.997796 + 0.0663622i \(0.0211393\pi\)
−0.997796 + 0.0663622i \(0.978861\pi\)
\(32\) 0 0
\(33\) 1.21264e6 1.02253
\(34\) 0 0
\(35\) −1.32641e6 1.32641e6i −0.883908 0.883908i
\(36\) 0 0
\(37\) −1.50996e6 1.50996e6i −0.805670 0.805670i 0.178305 0.983975i \(-0.442939\pi\)
−0.983975 + 0.178305i \(0.942939\pi\)
\(38\) 0 0
\(39\) 1.61598e6 0.698518
\(40\) 0 0
\(41\) 2.41043e6i 0.853021i 0.904483 + 0.426510i \(0.140257\pi\)
−0.904483 + 0.426510i \(0.859743\pi\)
\(42\) 0 0
\(43\) 952450. 952450.i 0.278592 0.278592i −0.553955 0.832547i \(-0.686882\pi\)
0.832547 + 0.553955i \(0.186882\pi\)
\(44\) 0 0
\(45\) −669928. + 669928.i −0.163372 + 0.163372i
\(46\) 0 0
\(47\) 4.39132e6i 0.899920i 0.893049 + 0.449960i \(0.148562\pi\)
−0.893049 + 0.449960i \(0.851438\pi\)
\(48\) 0 0
\(49\) 1.29851e7 2.25248
\(50\) 0 0
\(51\) 1.17779e6 + 1.17779e6i 0.174096 + 0.174096i
\(52\) 0 0
\(53\) 2.72881e6 + 2.72881e6i 0.345836 + 0.345836i 0.858556 0.512720i \(-0.171362\pi\)
−0.512720 + 0.858556i \(0.671362\pi\)
\(54\) 0 0
\(55\) −1.12332e7 −1.22759
\(56\) 0 0
\(57\) 364645.i 0.0345438i
\(58\) 0 0
\(59\) −1.41908e7 + 1.41908e7i −1.17112 + 1.17112i −0.189173 + 0.981944i \(0.560581\pi\)
−0.981944 + 0.189173i \(0.939419\pi\)
\(60\) 0 0
\(61\) 8.54559e6 8.54559e6i 0.617195 0.617195i −0.327616 0.944811i \(-0.606245\pi\)
0.944811 + 0.327616i \(0.106245\pi\)
\(62\) 0 0
\(63\) 9.46997e6i 0.601155i
\(64\) 0 0
\(65\) −1.49695e7 −0.838596
\(66\) 0 0
\(67\) 2.60963e7 + 2.60963e7i 1.29503 + 1.29503i 0.931634 + 0.363398i \(0.118383\pi\)
0.363398 + 0.931634i \(0.381617\pi\)
\(68\) 0 0
\(69\) −3.07336e6 3.07336e6i −0.135587 0.135587i
\(70\) 0 0
\(71\) −2.88819e7 −1.13656 −0.568280 0.822835i \(-0.692391\pi\)
−0.568280 + 0.822835i \(0.692391\pi\)
\(72\) 0 0
\(73\) 3.78139e7i 1.33156i −0.746149 0.665779i \(-0.768099\pi\)
0.746149 0.665779i \(-0.231901\pi\)
\(74\) 0 0
\(75\) −6.71142e6 + 6.71142e6i −0.212114 + 0.212114i
\(76\) 0 0
\(77\) 7.93950e7 7.93950e7i 2.25855 2.25855i
\(78\) 0 0
\(79\) 7.03551e7i 1.80629i −0.429337 0.903145i \(-0.641253\pi\)
0.429337 0.903145i \(-0.358747\pi\)
\(80\) 0 0
\(81\) −4.78297e6 −0.111111
\(82\) 0 0
\(83\) −4.08284e7 4.08284e7i −0.860301 0.860301i 0.131072 0.991373i \(-0.458158\pi\)
−0.991373 + 0.131072i \(0.958158\pi\)
\(84\) 0 0
\(85\) −1.09104e7 1.09104e7i −0.209008 0.209008i
\(86\) 0 0
\(87\) 2.06263e7 0.360035
\(88\) 0 0
\(89\) 3.44569e6i 0.0549182i 0.999623 + 0.0274591i \(0.00874160\pi\)
−0.999623 + 0.0274591i \(0.991258\pi\)
\(90\) 0 0
\(91\) 1.05803e8 1.05803e8i 1.54288 1.54288i
\(92\) 0 0
\(93\) 4.05328e6 4.05328e6i 0.0541845 0.0541845i
\(94\) 0 0
\(95\) 3.37785e6i 0.0414711i
\(96\) 0 0
\(97\) −4.89049e7 −0.552414 −0.276207 0.961098i \(-0.589078\pi\)
−0.276207 + 0.961098i \(0.589078\pi\)
\(98\) 0 0
\(99\) −4.00998e7 4.00998e7i −0.417447 0.417447i
\(100\) 0 0
\(101\) 1.66521e7 + 1.66521e7i 0.160023 + 0.160023i 0.782577 0.622554i \(-0.213905\pi\)
−0.622554 + 0.782577i \(0.713905\pi\)
\(102\) 0 0
\(103\) −5.39271e7 −0.479136 −0.239568 0.970880i \(-0.577006\pi\)
−0.239568 + 0.970880i \(0.577006\pi\)
\(104\) 0 0
\(105\) 8.77241e7i 0.721708i
\(106\) 0 0
\(107\) 1.38480e8 1.38480e8i 1.05646 1.05646i 0.0581527 0.998308i \(-0.481479\pi\)
0.998308 0.0581527i \(-0.0185210\pi\)
\(108\) 0 0
\(109\) −1.93669e8 + 1.93669e8i −1.37200 + 1.37200i −0.514523 + 0.857477i \(0.672031\pi\)
−0.857477 + 0.514523i \(0.827969\pi\)
\(110\) 0 0
\(111\) 9.98628e7i 0.657827i
\(112\) 0 0
\(113\) 1.66194e8 1.01930 0.509650 0.860382i \(-0.329775\pi\)
0.509650 + 0.860382i \(0.329775\pi\)
\(114\) 0 0
\(115\) 2.84698e7 + 2.84698e7i 0.162777 + 0.162777i
\(116\) 0 0
\(117\) −5.34374e7 5.34374e7i −0.285169 0.285169i
\(118\) 0 0
\(119\) 1.54227e8 0.769079
\(120\) 0 0
\(121\) 4.58024e8i 2.13671i
\(122\) 0 0
\(123\) 7.97085e7 7.97085e7i 0.348244 0.348244i
\(124\) 0 0
\(125\) 1.81828e8 1.81828e8i 0.744767 0.744767i
\(126\) 0 0
\(127\) 5.89844e7i 0.226737i 0.993553 + 0.113368i \(0.0361641\pi\)
−0.993553 + 0.113368i \(0.963836\pi\)
\(128\) 0 0
\(129\) −6.29914e7 −0.227469
\(130\) 0 0
\(131\) 1.98376e8 + 1.98376e8i 0.673604 + 0.673604i 0.958545 0.284941i \(-0.0919740\pi\)
−0.284941 + 0.958545i \(0.591974\pi\)
\(132\) 0 0
\(133\) 2.38743e7 + 2.38743e7i 0.0762998 + 0.0762998i
\(134\) 0 0
\(135\) 4.43065e7 0.133393
\(136\) 0 0
\(137\) 2.70452e8i 0.767728i −0.923390 0.383864i \(-0.874593\pi\)
0.923390 0.383864i \(-0.125407\pi\)
\(138\) 0 0
\(139\) 2.31422e8 2.31422e8i 0.619935 0.619935i −0.325580 0.945515i \(-0.605559\pi\)
0.945515 + 0.325580i \(0.105559\pi\)
\(140\) 0 0
\(141\) 1.45213e8 1.45213e8i 0.367391 0.367391i
\(142\) 0 0
\(143\) 8.96025e8i 2.14277i
\(144\) 0 0
\(145\) −1.91070e8 −0.432235
\(146\) 0 0
\(147\) −4.29393e8 4.29393e8i −0.919573 0.919573i
\(148\) 0 0
\(149\) 7.61640e7 + 7.61640e7i 0.154527 + 0.154527i 0.780137 0.625609i \(-0.215150\pi\)
−0.625609 + 0.780137i \(0.715150\pi\)
\(150\) 0 0
\(151\) 5.04866e8 0.971111 0.485555 0.874206i \(-0.338617\pi\)
0.485555 + 0.874206i \(0.338617\pi\)
\(152\) 0 0
\(153\) 7.78947e7i 0.142149i
\(154\) 0 0
\(155\) −3.75471e7 + 3.75471e7i −0.0650504 + 0.0650504i
\(156\) 0 0
\(157\) 1.53881e8 1.53881e8i 0.253271 0.253271i −0.569039 0.822310i \(-0.692685\pi\)
0.822310 + 0.569039i \(0.192685\pi\)
\(158\) 0 0
\(159\) 1.80473e8i 0.282374i
\(160\) 0 0
\(161\) −4.02443e8 −0.598964
\(162\) 0 0
\(163\) 5.89895e8 + 5.89895e8i 0.835650 + 0.835650i 0.988283 0.152633i \(-0.0487751\pi\)
−0.152633 + 0.988283i \(0.548775\pi\)
\(164\) 0 0
\(165\) 3.71460e8 + 3.71460e8i 0.501160 + 0.501160i
\(166\) 0 0
\(167\) −1.12098e9 −1.44123 −0.720615 0.693335i \(-0.756140\pi\)
−0.720615 + 0.693335i \(0.756140\pi\)
\(168\) 0 0
\(169\) 3.78323e8i 0.463784i
\(170\) 0 0
\(171\) 1.20581e7 1.20581e7i 0.0141025 0.0141025i
\(172\) 0 0
\(173\) −4.12801e8 + 4.12801e8i −0.460846 + 0.460846i −0.898933 0.438086i \(-0.855656\pi\)
0.438086 + 0.898933i \(0.355656\pi\)
\(174\) 0 0
\(175\) 8.78830e8i 0.937028i
\(176\) 0 0
\(177\) 9.38529e8 0.956213
\(178\) 0 0
\(179\) −3.62969e8 3.62969e8i −0.353556 0.353556i 0.507875 0.861431i \(-0.330431\pi\)
−0.861431 + 0.507875i \(0.830431\pi\)
\(180\) 0 0
\(181\) −4.66109e8 4.66109e8i −0.434284 0.434284i 0.455799 0.890083i \(-0.349354\pi\)
−0.890083 + 0.455799i \(0.849354\pi\)
\(182\) 0 0
\(183\) −5.65173e8 −0.503938
\(184\) 0 0
\(185\) 9.25069e8i 0.789745i
\(186\) 0 0
\(187\) 6.53059e8 6.53059e8i 0.534055 0.534055i
\(188\) 0 0
\(189\) −3.13154e8 + 3.13154e8i −0.245420 + 0.245420i
\(190\) 0 0
\(191\) 4.70600e8i 0.353605i 0.984246 + 0.176803i \(0.0565754\pi\)
−0.984246 + 0.176803i \(0.943425\pi\)
\(192\) 0 0
\(193\) −2.12140e8 −0.152895 −0.0764475 0.997074i \(-0.524358\pi\)
−0.0764475 + 0.997074i \(0.524358\pi\)
\(194\) 0 0
\(195\) 4.95012e8 + 4.95012e8i 0.342356 + 0.342356i
\(196\) 0 0
\(197\) 1.87958e9 + 1.87958e9i 1.24794 + 1.24794i 0.956626 + 0.291318i \(0.0940937\pi\)
0.291318 + 0.956626i \(0.405906\pi\)
\(198\) 0 0
\(199\) −1.46175e9 −0.932097 −0.466049 0.884759i \(-0.654323\pi\)
−0.466049 + 0.884759i \(0.654323\pi\)
\(200\) 0 0
\(201\) 1.72591e9i 1.05739i
\(202\) 0 0
\(203\) 1.35046e9 1.35046e9i 0.795240 0.795240i
\(204\) 0 0
\(205\) −7.38371e8 + 7.38371e8i −0.418080 + 0.418080i
\(206\) 0 0
\(207\) 2.03261e8i 0.110706i
\(208\) 0 0
\(209\) 2.02187e8 0.105966
\(210\) 0 0
\(211\) −2.06475e9 2.06475e9i −1.04169 1.04169i −0.999092 0.0425968i \(-0.986437\pi\)
−0.0425968 0.999092i \(-0.513563\pi\)
\(212\) 0 0
\(213\) 9.55070e8 + 9.55070e8i 0.463999 + 0.463999i
\(214\) 0 0
\(215\) 5.83515e8 0.273085
\(216\) 0 0
\(217\) 5.30759e8i 0.239364i
\(218\) 0 0
\(219\) −1.25043e9 + 1.25043e9i −0.543606 + 0.543606i
\(220\) 0 0
\(221\) 8.70274e8 8.70274e8i 0.364827 0.364827i
\(222\) 0 0
\(223\) 2.43335e9i 0.983978i 0.870601 + 0.491989i \(0.163730\pi\)
−0.870601 + 0.491989i \(0.836270\pi\)
\(224\) 0 0
\(225\) 4.43868e8 0.173190
\(226\) 0 0
\(227\) 1.73952e9 + 1.73952e9i 0.655129 + 0.655129i 0.954223 0.299095i \(-0.0966847\pi\)
−0.299095 + 0.954223i \(0.596685\pi\)
\(228\) 0 0
\(229\) 6.00973e8 + 6.00973e8i 0.218531 + 0.218531i 0.807879 0.589348i \(-0.200615\pi\)
−0.589348 + 0.807879i \(0.700615\pi\)
\(230\) 0 0
\(231\) −5.25088e9 −1.84410
\(232\) 0 0
\(233\) 2.19736e9i 0.745552i −0.927921 0.372776i \(-0.878406\pi\)
0.927921 0.372776i \(-0.121594\pi\)
\(234\) 0 0
\(235\) −1.34516e9 + 1.34516e9i −0.441066 + 0.441066i
\(236\) 0 0
\(237\) −2.32651e9 + 2.32651e9i −0.737414 + 0.737414i
\(238\) 0 0
\(239\) 5.38280e9i 1.64974i 0.565320 + 0.824872i \(0.308753\pi\)
−0.565320 + 0.824872i \(0.691247\pi\)
\(240\) 0 0
\(241\) −5.86545e9 −1.73873 −0.869367 0.494168i \(-0.835473\pi\)
−0.869367 + 0.494168i \(0.835473\pi\)
\(242\) 0 0
\(243\) 1.58164e8 + 1.58164e8i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 3.97764e9 + 3.97764e9i 1.10398 + 1.10398i
\(246\) 0 0
\(247\) 2.69437e8 0.0723885
\(248\) 0 0
\(249\) 2.70024e9i 0.702432i
\(250\) 0 0
\(251\) 4.49568e9 4.49568e9i 1.13266 1.13266i 0.142929 0.989733i \(-0.454348\pi\)
0.989733 0.142929i \(-0.0456521\pi\)
\(252\) 0 0
\(253\) −1.70411e9 + 1.70411e9i −0.415925 + 0.415925i
\(254\) 0 0
\(255\) 7.21570e8i 0.170654i
\(256\) 0 0
\(257\) 1.17052e9 0.268316 0.134158 0.990960i \(-0.457167\pi\)
0.134158 + 0.990960i \(0.457167\pi\)
\(258\) 0 0
\(259\) 6.53829e9 + 6.53829e9i 1.45300 + 1.45300i
\(260\) 0 0
\(261\) −6.82074e8 6.82074e8i −0.146984 0.146984i
\(262\) 0 0
\(263\) −8.17179e9 −1.70802 −0.854012 0.520253i \(-0.825838\pi\)
−0.854012 + 0.520253i \(0.825838\pi\)
\(264\) 0 0
\(265\) 1.67179e9i 0.339000i
\(266\) 0 0
\(267\) 1.13942e8 1.13942e8i 0.0224203 0.0224203i
\(268\) 0 0
\(269\) −1.37316e9 + 1.37316e9i −0.262248 + 0.262248i −0.825967 0.563719i \(-0.809370\pi\)
0.563719 + 0.825967i \(0.309370\pi\)
\(270\) 0 0
\(271\) 5.63957e9i 1.04561i 0.852453 + 0.522804i \(0.175114\pi\)
−0.852453 + 0.522804i \(0.824886\pi\)
\(272\) 0 0
\(273\) −6.99739e9 −1.25975
\(274\) 0 0
\(275\) 3.72133e9 + 3.72133e9i 0.650680 + 0.650680i
\(276\) 0 0
\(277\) 2.28396e9 + 2.28396e9i 0.387945 + 0.387945i 0.873954 0.486009i \(-0.161548\pi\)
−0.486009 + 0.873954i \(0.661548\pi\)
\(278\) 0 0
\(279\) −2.68069e8 −0.0442414
\(280\) 0 0
\(281\) 1.97291e9i 0.316434i 0.987404 + 0.158217i \(0.0505745\pi\)
−0.987404 + 0.158217i \(0.949425\pi\)
\(282\) 0 0
\(283\) 4.46097e9 4.46097e9i 0.695478 0.695478i −0.267954 0.963432i \(-0.586347\pi\)
0.963432 + 0.267954i \(0.0863474\pi\)
\(284\) 0 0
\(285\) −1.11699e8 + 1.11699e8i −0.0169305 + 0.0169305i
\(286\) 0 0
\(287\) 1.04375e10i 1.53839i
\(288\) 0 0
\(289\) −5.70718e9 −0.818144
\(290\) 0 0
\(291\) 1.61719e9 + 1.61719e9i 0.225522 + 0.225522i
\(292\) 0 0
\(293\) 6.65882e8 + 6.65882e8i 0.0903497 + 0.0903497i 0.750837 0.660487i \(-0.229650\pi\)
−0.660487 + 0.750837i \(0.729650\pi\)
\(294\) 0 0
\(295\) −8.69396e9 −1.14797
\(296\) 0 0
\(297\) 2.65205e9i 0.340844i
\(298\) 0 0
\(299\) −2.27092e9 + 2.27092e9i −0.284130 + 0.284130i
\(300\) 0 0
\(301\) −4.12422e9 + 4.12422e9i −0.502430 + 0.502430i
\(302\) 0 0
\(303\) 1.10130e9i 0.130658i
\(304\) 0 0
\(305\) 5.23542e9 0.604995
\(306\) 0 0
\(307\) −1.01000e9 1.01000e9i −0.113702 0.113702i 0.647967 0.761669i \(-0.275620\pi\)
−0.761669 + 0.647967i \(0.775620\pi\)
\(308\) 0 0
\(309\) 1.78327e9 + 1.78327e9i 0.195606 + 0.195606i
\(310\) 0 0
\(311\) 1.20144e10 1.28428 0.642139 0.766588i \(-0.278047\pi\)
0.642139 + 0.766588i \(0.278047\pi\)
\(312\) 0 0
\(313\) 9.06670e8i 0.0944652i −0.998884 0.0472326i \(-0.984960\pi\)
0.998884 0.0472326i \(-0.0150402\pi\)
\(314\) 0 0
\(315\) 2.90087e9 2.90087e9i 0.294636 0.294636i
\(316\) 0 0
\(317\) −1.09662e9 + 1.09662e9i −0.108598 + 0.108598i −0.759318 0.650720i \(-0.774467\pi\)
0.650720 + 0.759318i \(0.274467\pi\)
\(318\) 0 0
\(319\) 1.14368e10i 1.10444i
\(320\) 0 0
\(321\) −9.15857e9 −0.862596
\(322\) 0 0
\(323\) 1.96377e8 + 1.96377e8i 0.0180418 + 0.0180418i
\(324\) 0 0
\(325\) 4.95909e9 + 4.95909e9i 0.444497 + 0.444497i
\(326\) 0 0
\(327\) 1.28085e10 1.12023
\(328\) 0 0
\(329\) 1.90149e10i 1.62297i
\(330\) 0 0
\(331\) 1.58693e8 1.58693e8i 0.0132204 0.0132204i −0.700466 0.713686i \(-0.747024\pi\)
0.713686 + 0.700466i \(0.247024\pi\)
\(332\) 0 0
\(333\) 3.30227e9 3.30227e9i 0.268557 0.268557i
\(334\) 0 0
\(335\) 1.59878e10i 1.26943i
\(336\) 0 0
\(337\) 4.41784e9 0.342523 0.171262 0.985226i \(-0.445216\pi\)
0.171262 + 0.985226i \(0.445216\pi\)
\(338\) 0 0
\(339\) −5.49573e9 5.49573e9i −0.416127 0.416127i
\(340\) 0 0
\(341\) −2.24745e9 2.24745e9i −0.166216 0.166216i
\(342\) 0 0
\(343\) −3.12648e10 −2.25881
\(344\) 0 0
\(345\) 1.88288e9i 0.132907i
\(346\) 0 0
\(347\) 9.95116e9 9.95116e9i 0.686366 0.686366i −0.275061 0.961427i \(-0.588698\pi\)
0.961427 + 0.275061i \(0.0886979\pi\)
\(348\) 0 0
\(349\) −1.38855e10 + 1.38855e10i −0.935967 + 0.935967i −0.998070 0.0621027i \(-0.980219\pi\)
0.0621027 + 0.998070i \(0.480219\pi\)
\(350\) 0 0
\(351\) 3.53415e9i 0.232839i
\(352\) 0 0
\(353\) 1.88810e10 1.21598 0.607990 0.793944i \(-0.291976\pi\)
0.607990 + 0.793944i \(0.291976\pi\)
\(354\) 0 0
\(355\) −8.84719e9 8.84719e9i −0.557047 0.557047i
\(356\) 0 0
\(357\) −5.09998e9 5.09998e9i −0.313975 0.313975i
\(358\) 0 0
\(359\) 1.13365e10 0.682500 0.341250 0.939973i \(-0.389150\pi\)
0.341250 + 0.939973i \(0.389150\pi\)
\(360\) 0 0
\(361\) 1.69228e10i 0.996420i
\(362\) 0 0
\(363\) −1.51460e10 + 1.51460e10i −0.872310 + 0.872310i
\(364\) 0 0
\(365\) 1.15833e10 1.15833e10i 0.652619 0.652619i
\(366\) 0 0
\(367\) 2.50329e10i 1.37990i 0.723859 + 0.689948i \(0.242367\pi\)
−0.723859 + 0.689948i \(0.757633\pi\)
\(368\) 0 0
\(369\) −5.27162e9 −0.284340
\(370\) 0 0
\(371\) −1.18161e10 1.18161e10i −0.623702 0.623702i
\(372\) 0 0
\(373\) −9.40421e9 9.40421e9i −0.485833 0.485833i 0.421155 0.906989i \(-0.361625\pi\)
−0.906989 + 0.421155i \(0.861625\pi\)
\(374\) 0 0
\(375\) −1.20254e10 −0.608100
\(376\) 0 0
\(377\) 1.52409e10i 0.754474i
\(378\) 0 0
\(379\) 1.04093e10 1.04093e10i 0.504505 0.504505i −0.408330 0.912835i \(-0.633889\pi\)
0.912835 + 0.408330i \(0.133889\pi\)
\(380\) 0 0
\(381\) 1.95050e9 1.95050e9i 0.0925650 0.0925650i
\(382\) 0 0
\(383\) 1.73370e10i 0.805711i −0.915263 0.402856i \(-0.868018\pi\)
0.915263 0.402856i \(-0.131982\pi\)
\(384\) 0 0
\(385\) 4.86410e10 2.21391
\(386\) 0 0
\(387\) 2.08301e9 + 2.08301e9i 0.0928639 + 0.0928639i
\(388\) 0 0
\(389\) 1.06696e10 + 1.06696e10i 0.465961 + 0.465961i 0.900603 0.434642i \(-0.143125\pi\)
−0.434642 + 0.900603i \(0.643125\pi\)
\(390\) 0 0
\(391\) −3.31027e9 −0.141630
\(392\) 0 0
\(393\) 1.31199e10i 0.549995i
\(394\) 0 0
\(395\) 2.15514e10 2.15514e10i 0.885293 0.885293i
\(396\) 0 0
\(397\) 1.79515e10 1.79515e10i 0.722668 0.722668i −0.246480 0.969148i \(-0.579274\pi\)
0.969148 + 0.246480i \(0.0792740\pi\)
\(398\) 0 0
\(399\) 1.57895e9i 0.0622985i
\(400\) 0 0
\(401\) −1.23789e10 −0.478744 −0.239372 0.970928i \(-0.576942\pi\)
−0.239372 + 0.970928i \(0.576942\pi\)
\(402\) 0 0
\(403\) −2.99498e9 2.99498e9i −0.113547 0.113547i
\(404\) 0 0
\(405\) −1.46513e9 1.46513e9i −0.0544574 0.0544574i
\(406\) 0 0
\(407\) 5.53717e10 2.01795
\(408\) 0 0
\(409\) 1.46189e10i 0.522421i 0.965282 + 0.261211i \(0.0841217\pi\)
−0.965282 + 0.261211i \(0.915878\pi\)
\(410\) 0 0
\(411\) −8.94332e9 + 8.94332e9i −0.313424 + 0.313424i
\(412\) 0 0
\(413\) 6.14480e10 6.14480e10i 2.11207 2.11207i
\(414\) 0 0
\(415\) 2.50134e10i 0.843295i
\(416\) 0 0
\(417\) −1.53054e10 −0.506175
\(418\) 0 0
\(419\) 1.47232e10 + 1.47232e10i 0.477691 + 0.477691i 0.904393 0.426701i \(-0.140324\pi\)
−0.426701 + 0.904393i \(0.640324\pi\)
\(420\) 0 0
\(421\) 2.64201e10 + 2.64201e10i 0.841021 + 0.841021i 0.988992 0.147971i \(-0.0472741\pi\)
−0.147971 + 0.988992i \(0.547274\pi\)
\(422\) 0 0
\(423\) −9.60382e9 −0.299973
\(424\) 0 0
\(425\) 7.22877e9i 0.221569i
\(426\) 0 0
\(427\) −3.70034e10 + 3.70034e10i −1.11309 + 1.11309i
\(428\) 0 0
\(429\) −2.96299e10 + 2.96299e10i −0.874783 + 0.874783i
\(430\) 0 0
\(431\) 3.67427e10i 1.06478i −0.846498 0.532392i \(-0.821293\pi\)
0.846498 0.532392i \(-0.178707\pi\)
\(432\) 0 0
\(433\) −2.81639e10 −0.801200 −0.400600 0.916253i \(-0.631198\pi\)
−0.400600 + 0.916253i \(0.631198\pi\)
\(434\) 0 0
\(435\) 6.31832e9 + 6.31832e9i 0.176459 + 0.176459i
\(436\) 0 0
\(437\) −5.12430e8 5.12430e8i −0.0140511 0.0140511i
\(438\) 0 0
\(439\) −7.33053e9 −0.197368 −0.0986842 0.995119i \(-0.531463\pi\)
−0.0986842 + 0.995119i \(0.531463\pi\)
\(440\) 0 0
\(441\) 2.83985e10i 0.750828i
\(442\) 0 0
\(443\) −2.93084e9 + 2.93084e9i −0.0760988 + 0.0760988i −0.744132 0.668033i \(-0.767137\pi\)
0.668033 + 0.744132i \(0.267137\pi\)
\(444\) 0 0
\(445\) −1.05549e9 + 1.05549e9i −0.0269163 + 0.0269163i
\(446\) 0 0
\(447\) 5.03720e9i 0.126171i
\(448\) 0 0
\(449\) −3.95466e10 −0.973025 −0.486513 0.873674i \(-0.661731\pi\)
−0.486513 + 0.873674i \(0.661731\pi\)
\(450\) 0 0
\(451\) −4.41965e10 4.41965e10i −1.06827 1.06827i
\(452\) 0 0
\(453\) −1.66950e10 1.66950e10i −0.396454 0.396454i
\(454\) 0 0
\(455\) 6.48196e10 1.51238
\(456\) 0 0
\(457\) 4.96923e10i 1.13926i 0.821900 + 0.569632i \(0.192914\pi\)
−0.821900 + 0.569632i \(0.807086\pi\)
\(458\) 0 0
\(459\) −2.57583e9 + 2.57583e9i −0.0580319 + 0.0580319i
\(460\) 0 0
\(461\) −3.71863e10 + 3.71863e10i −0.823341 + 0.823341i −0.986586 0.163245i \(-0.947804\pi\)
0.163245 + 0.986586i \(0.447804\pi\)
\(462\) 0 0
\(463\) 2.29012e10i 0.498349i −0.968459 0.249175i \(-0.919841\pi\)
0.968459 0.249175i \(-0.0801593\pi\)
\(464\) 0 0
\(465\) 2.48323e9 0.0531134
\(466\) 0 0
\(467\) 4.90133e10 + 4.90133e10i 1.03050 + 1.03050i 0.999520 + 0.0309756i \(0.00986142\pi\)
0.0309756 + 0.999520i \(0.490139\pi\)
\(468\) 0 0
\(469\) −1.13000e11 1.13000e11i −2.33554 2.33554i
\(470\) 0 0
\(471\) −1.01771e10 −0.206795
\(472\) 0 0
\(473\) 3.49273e10i 0.697784i
\(474\) 0 0
\(475\) −1.11901e9 + 1.11901e9i −0.0219817 + 0.0219817i
\(476\) 0 0
\(477\) −5.96790e9 + 5.96790e9i −0.115279 + 0.115279i
\(478\) 0 0
\(479\) 7.22421e10i 1.37230i −0.727461 0.686149i \(-0.759300\pi\)
0.727461 0.686149i \(-0.240700\pi\)
\(480\) 0 0
\(481\) 7.37889e10 1.37851
\(482\) 0 0
\(483\) 1.33080e10 + 1.33080e10i 0.244526 + 0.244526i
\(484\) 0 0
\(485\) −1.49807e10 1.49807e10i −0.270748 0.270748i
\(486\) 0 0
\(487\) 8.60718e10 1.53019 0.765095 0.643918i \(-0.222692\pi\)
0.765095 + 0.643918i \(0.222692\pi\)
\(488\) 0 0
\(489\) 3.90135e10i 0.682306i
\(490\) 0 0
\(491\) 3.44025e10 3.44025e10i 0.591921 0.591921i −0.346229 0.938150i \(-0.612538\pi\)
0.938150 + 0.346229i \(0.112538\pi\)
\(492\) 0 0
\(493\) 1.11082e10 1.11082e10i 0.188042 0.188042i
\(494\) 0 0
\(495\) 2.45670e10i 0.409195i
\(496\) 0 0
\(497\) 1.25062e11 2.04975
\(498\) 0 0
\(499\) −7.69193e10 7.69193e10i −1.24060 1.24060i −0.959751 0.280854i \(-0.909382\pi\)
−0.280854 0.959751i \(-0.590618\pi\)
\(500\) 0 0
\(501\) 3.70688e10 + 3.70688e10i 0.588380 + 0.588380i
\(502\) 0 0
\(503\) −8.07309e10 −1.26115 −0.630577 0.776127i \(-0.717182\pi\)
−0.630577 + 0.776127i \(0.717182\pi\)
\(504\) 0 0
\(505\) 1.02018e10i 0.156860i
\(506\) 0 0
\(507\) −1.25104e10 + 1.25104e10i −0.189339 + 0.189339i
\(508\) 0 0
\(509\) 1.02860e10 1.02860e10i 0.153242 0.153242i −0.626323 0.779564i \(-0.715441\pi\)
0.779564 + 0.626323i \(0.215441\pi\)
\(510\) 0 0
\(511\) 1.63739e11i 2.40142i
\(512\) 0 0
\(513\) −7.97478e8 −0.0115146
\(514\) 0 0
\(515\) −1.65191e10 1.65191e10i −0.234832 0.234832i
\(516\) 0 0
\(517\) −8.05172e10 8.05172e10i −1.12701 1.12701i
\(518\) 0 0
\(519\) 2.73011e10 0.376280
\(520\) 0 0
\(521\) 3.34398e10i 0.453850i 0.973912 + 0.226925i \(0.0728672\pi\)
−0.973912 + 0.226925i \(0.927133\pi\)
\(522\) 0 0
\(523\) 6.15955e10 6.15955e10i 0.823270 0.823270i −0.163305 0.986576i \(-0.552216\pi\)
0.986576 + 0.163305i \(0.0522156\pi\)
\(524\) 0 0
\(525\) 2.90612e10 2.90612e10i 0.382540 0.382540i
\(526\) 0 0
\(527\) 4.36573e9i 0.0565997i
\(528\) 0 0
\(529\) −6.96731e10 −0.889697
\(530\) 0 0
\(531\) −3.10354e10 3.10354e10i −0.390372 0.390372i
\(532\) 0 0
\(533\) −5.88968e10 5.88968e10i −0.729765 0.729765i
\(534\) 0 0
\(535\) 8.48395e10 1.03558
\(536\) 0 0
\(537\) 2.40054e10i 0.288677i
\(538\) 0 0
\(539\) −2.38089e11 + 2.38089e11i −2.82088 + 2.82088i
\(540\) 0 0
\(541\) −2.84956e10 + 2.84956e10i −0.332651 + 0.332651i −0.853592 0.520941i \(-0.825581\pi\)
0.520941 + 0.853592i \(0.325581\pi\)
\(542\) 0 0
\(543\) 3.08267e10i 0.354591i
\(544\) 0 0
\(545\) −1.18650e11 −1.34488
\(546\) 0 0
\(547\) 9.74078e10 + 9.74078e10i 1.08804 + 1.08804i 0.995730 + 0.0923090i \(0.0294248\pi\)
0.0923090 + 0.995730i \(0.470575\pi\)
\(548\) 0 0
\(549\) 1.86892e10 + 1.86892e10i 0.205732 + 0.205732i
\(550\) 0 0
\(551\) 3.43909e9 0.0373110
\(552\) 0 0
\(553\) 3.04646e11i 3.25758i
\(554\) 0 0
\(555\) −3.05903e10 + 3.05903e10i −0.322412 + 0.322412i
\(556\) 0 0
\(557\) −2.76223e10 + 2.76223e10i −0.286972 + 0.286972i −0.835882 0.548910i \(-0.815043\pi\)
0.548910 + 0.835882i \(0.315043\pi\)
\(558\) 0 0
\(559\) 4.65446e10i 0.476674i
\(560\) 0 0
\(561\) −4.31909e10 −0.436054
\(562\) 0 0
\(563\) 4.36554e10 + 4.36554e10i 0.434515 + 0.434515i 0.890161 0.455646i \(-0.150592\pi\)
−0.455646 + 0.890161i \(0.650592\pi\)
\(564\) 0 0
\(565\) 5.09091e10 + 5.09091e10i 0.499576 + 0.499576i
\(566\) 0 0
\(567\) 2.07108e10 0.200385
\(568\) 0 0
\(569\) 8.25526e9i 0.0787556i −0.999224 0.0393778i \(-0.987462\pi\)
0.999224 0.0393778i \(-0.0125376\pi\)
\(570\) 0 0
\(571\) −6.81132e10 + 6.81132e10i −0.640748 + 0.640748i −0.950739 0.309992i \(-0.899674\pi\)
0.309992 + 0.950739i \(0.399674\pi\)
\(572\) 0 0
\(573\) 1.55619e10 1.55619e10i 0.144359 0.144359i
\(574\) 0 0
\(575\) 1.88629e10i 0.172559i
\(576\) 0 0
\(577\) 7.97472e10 0.719469 0.359734 0.933055i \(-0.382867\pi\)
0.359734 + 0.933055i \(0.382867\pi\)
\(578\) 0 0
\(579\) 7.01507e9 + 7.01507e9i 0.0624191 + 0.0624191i
\(580\) 0 0
\(581\) 1.76792e11 + 1.76792e11i 1.55152 + 1.55152i
\(582\) 0 0
\(583\) −1.00068e11 −0.866208
\(584\) 0 0
\(585\) 3.27382e10i 0.279532i
\(586\) 0 0
\(587\) −2.38620e10 + 2.38620e10i −0.200981 + 0.200981i −0.800420 0.599439i \(-0.795390\pi\)
0.599439 + 0.800420i \(0.295390\pi\)
\(588\) 0 0
\(589\) 6.75815e8 6.75815e8i 0.00561522 0.00561522i
\(590\) 0 0
\(591\) 1.24308e11i 1.01894i
\(592\) 0 0
\(593\) 3.00612e10 0.243101 0.121551 0.992585i \(-0.461213\pi\)
0.121551 + 0.992585i \(0.461213\pi\)
\(594\) 0 0
\(595\) 4.72431e10 + 4.72431e10i 0.376939 + 0.376939i
\(596\) 0 0
\(597\) 4.83374e10 + 4.83374e10i 0.380527 + 0.380527i
\(598\) 0 0
\(599\) −1.35624e10 −0.105349 −0.0526746 0.998612i \(-0.516775\pi\)
−0.0526746 + 0.998612i \(0.516775\pi\)
\(600\) 0 0
\(601\) 9.45767e9i 0.0724913i 0.999343 + 0.0362457i \(0.0115399\pi\)
−0.999343 + 0.0362457i \(0.988460\pi\)
\(602\) 0 0
\(603\) −5.70727e10 + 5.70727e10i −0.431677 + 0.431677i
\(604\) 0 0
\(605\) 1.40303e11 1.40303e11i 1.04724 1.04724i
\(606\) 0 0
\(607\) 7.49215e10i 0.551889i 0.961174 + 0.275944i \(0.0889905\pi\)
−0.961174 + 0.275944i \(0.911009\pi\)
\(608\) 0 0
\(609\) −8.93145e10 −0.649311
\(610\) 0 0
\(611\) −1.07298e11 1.07298e11i −0.769888 0.769888i
\(612\) 0 0
\(613\) −1.05145e11 1.05145e11i −0.744639 0.744639i 0.228828 0.973467i \(-0.426511\pi\)
−0.973467 + 0.228828i \(0.926511\pi\)
\(614\) 0 0
\(615\) 4.88331e10 0.341361
\(616\) 0 0
\(617\) 6.60503e10i 0.455758i 0.973689 + 0.227879i \(0.0731791\pi\)
−0.973689 + 0.227879i \(0.926821\pi\)
\(618\) 0 0
\(619\) 1.61893e11 1.61893e11i 1.10272 1.10272i 0.108643 0.994081i \(-0.465350\pi\)
0.994081 0.108643i \(-0.0346504\pi\)
\(620\) 0 0
\(621\) 6.72144e9 6.72144e9i 0.0451956 0.0451956i
\(622\) 0 0
\(623\) 1.49202e10i 0.0990430i
\(624\) 0 0
\(625\) 3.21159e10 0.210475
\(626\) 0 0
\(627\) −6.68595e9 6.68595e9i −0.0432606 0.0432606i
\(628\) 0 0
\(629\) 5.37804e10 + 5.37804e10i 0.343575 + 0.343575i
\(630\) 0 0
\(631\) −2.05441e11 −1.29590 −0.647948 0.761685i \(-0.724372\pi\)
−0.647948 + 0.761685i \(0.724372\pi\)
\(632\) 0 0
\(633\) 1.36555e11i 0.850536i
\(634\) 0 0
\(635\) −1.80683e10 + 1.80683e10i −0.111128 + 0.111128i
\(636\) 0 0
\(637\) −3.17280e11 + 3.17280e11i −1.92702 + 1.92702i
\(638\) 0 0
\(639\) 6.31647e10i 0.378853i
\(640\) 0 0
\(641\) 5.29531e10 0.313660 0.156830 0.987626i \(-0.449873\pi\)
0.156830 + 0.987626i \(0.449873\pi\)
\(642\) 0 0
\(643\) −3.27501e9 3.27501e9i −0.0191588 0.0191588i 0.697462 0.716621i \(-0.254312\pi\)
−0.716621 + 0.697462i \(0.754312\pi\)
\(644\) 0 0
\(645\) −1.92957e10 1.92957e10i −0.111486 0.111486i
\(646\) 0 0
\(647\) 9.77431e10 0.557788 0.278894 0.960322i \(-0.410032\pi\)
0.278894 + 0.960322i \(0.410032\pi\)
\(648\) 0 0
\(649\) 5.20393e11i 2.93327i
\(650\) 0 0
\(651\) −1.75512e10 + 1.75512e10i −0.0977198 + 0.0977198i
\(652\) 0 0
\(653\) 4.84458e10 4.84458e10i 0.266443 0.266443i −0.561222 0.827665i \(-0.689669\pi\)
0.827665 + 0.561222i \(0.189669\pi\)
\(654\) 0 0
\(655\) 1.21534e11i 0.660289i
\(656\) 0 0
\(657\) 8.26990e10 0.443852
\(658\) 0 0
\(659\) −1.64966e11 1.64966e11i −0.874689 0.874689i 0.118290 0.992979i \(-0.462259\pi\)
−0.992979 + 0.118290i \(0.962259\pi\)
\(660\) 0 0
\(661\) −1.97855e11 1.97855e11i −1.03643 1.03643i −0.999311 0.0371236i \(-0.988180\pi\)
−0.0371236 0.999311i \(-0.511820\pi\)
\(662\) 0 0
\(663\) −5.75567e10 −0.297880
\(664\) 0 0
\(665\) 1.46265e10i 0.0747916i
\(666\) 0 0
\(667\) −2.89859e10 + 2.89859e10i −0.146448 + 0.146448i
\(668\) 0 0
\(669\) 8.04663e10 8.04663e10i 0.401707 0.401707i
\(670\) 0 0
\(671\) 3.13376e11i 1.54588i
\(672\) 0 0
\(673\) 2.82133e11 1.37529 0.687643 0.726049i \(-0.258645\pi\)
0.687643 + 0.726049i \(0.258645\pi\)
\(674\) 0 0
\(675\) −1.46779e10 1.46779e10i −0.0707047 0.0707047i
\(676\) 0 0
\(677\) −1.34053e11 1.34053e11i −0.638150 0.638150i 0.311949 0.950099i \(-0.399018\pi\)
−0.950099 + 0.311949i \(0.899018\pi\)
\(678\) 0 0
\(679\) 2.11764e11 0.996260
\(680\) 0 0
\(681\) 1.15045e11i 0.534910i
\(682\) 0 0
\(683\) 2.73998e10 2.73998e10i 0.125911 0.125911i −0.641343 0.767254i \(-0.721622\pi\)
0.767254 + 0.641343i \(0.221622\pi\)
\(684\) 0 0
\(685\) 8.28455e10 8.28455e10i 0.376276 0.376276i
\(686\) 0 0
\(687\) 3.97461e10i 0.178430i
\(688\) 0 0
\(689\) −1.33352e11 −0.591729
\(690\) 0 0
\(691\) −6.68395e9 6.68395e9i −0.0293171 0.0293171i 0.692296 0.721613i \(-0.256599\pi\)
−0.721613 + 0.692296i \(0.756599\pi\)
\(692\) 0 0
\(693\) 1.73637e11 + 1.73637e11i 0.752851 + 0.752851i
\(694\) 0 0
\(695\) 1.41780e11 0.607681
\(696\) 0 0
\(697\) 8.58528e10i 0.363767i
\(698\) 0 0
\(699\) −7.26626e10 + 7.26626e10i −0.304370 + 0.304370i
\(700\) 0 0
\(701\) −2.08502e11 + 2.08502e11i −0.863451 + 0.863451i −0.991737 0.128286i \(-0.959052\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(702\) 0 0
\(703\) 1.66504e10i 0.0681716i
\(704\) 0 0
\(705\) 8.89640e10 0.360129
\(706\) 0 0
\(707\) −7.21054e10 7.21054e10i −0.288596 0.288596i
\(708\) 0 0
\(709\) 7.90632e10 + 7.90632e10i 0.312888 + 0.312888i 0.846028 0.533139i \(-0.178988\pi\)
−0.533139 + 0.846028i \(0.678988\pi\)
\(710\) 0 0
\(711\) 1.53867e11 0.602096
\(712\) 0 0
\(713\) 1.13920e10i 0.0440802i
\(714\) 0 0
\(715\) 2.74473e11 2.74473e11i 1.05021 1.05021i
\(716\) 0 0
\(717\) 1.77999e11 1.77999e11i 0.673505 0.673505i
\(718\) 0 0
\(719\) 1.25473e11i 0.469497i −0.972056 0.234749i \(-0.924573\pi\)
0.972056 0.234749i \(-0.0754267\pi\)
\(720\) 0 0
\(721\) 2.33511e11 0.864104
\(722\) 0 0
\(723\) 1.93959e11 + 1.93959e11i 0.709835 + 0.709835i
\(724\) 0 0
\(725\) 6.32977e10 + 6.32977e10i 0.229106 + 0.229106i
\(726\) 0 0
\(727\) −1.90558e11 −0.682167 −0.341083 0.940033i \(-0.610794\pi\)
−0.341083 + 0.940033i \(0.610794\pi\)
\(728\) 0 0
\(729\) 1.04604e10i 0.0370370i
\(730\) 0 0
\(731\) −3.39236e10 + 3.39236e10i −0.118804 + 0.118804i
\(732\) 0 0
\(733\) 8.87689e10 8.87689e10i 0.307500 0.307500i −0.536439 0.843939i \(-0.680231\pi\)
0.843939 + 0.536439i \(0.180231\pi\)
\(734\) 0 0
\(735\) 2.63066e11i 0.901396i
\(736\) 0 0
\(737\) −9.56980e11 −3.24364
\(738\) 0 0
\(739\) 1.39620e11 + 1.39620e11i 0.468135 + 0.468135i 0.901310 0.433175i \(-0.142607\pi\)
−0.433175 + 0.901310i \(0.642607\pi\)
\(740\) 0 0
\(741\) −8.90977e9 8.90977e9i −0.0295525 0.0295525i
\(742\) 0 0
\(743\) −3.26857e11 −1.07251 −0.536257 0.844055i \(-0.680162\pi\)
−0.536257 + 0.844055i \(0.680162\pi\)
\(744\) 0 0
\(745\) 4.66616e10i 0.151473i
\(746\) 0 0
\(747\) 8.92918e10 8.92918e10i 0.286767 0.286767i
\(748\) 0 0
\(749\) −5.99637e11 + 5.99637e11i −1.90529 + 1.90529i
\(750\) 0 0
\(751\) 1.43379e11i 0.450739i −0.974273 0.225369i \(-0.927641\pi\)
0.974273 0.225369i \(-0.0723589\pi\)
\(752\) 0 0
\(753\) −2.97327e11 −0.924815
\(754\) 0 0
\(755\) 1.54652e11 + 1.54652e11i 0.475958 + 0.475958i
\(756\) 0 0
\(757\) 1.38716e11 + 1.38716e11i 0.422419 + 0.422419i 0.886036 0.463617i \(-0.153449\pi\)
−0.463617 + 0.886036i \(0.653449\pi\)
\(758\) 0 0
\(759\) 1.12703e11 0.339602
\(760\) 0 0
\(761\) 5.66134e11i 1.68803i −0.536317 0.844017i \(-0.680185\pi\)
0.536317 0.844017i \(-0.319815\pi\)
\(762\) 0 0
\(763\) 8.38609e11 8.38609e11i 2.47435 2.47435i
\(764\) 0 0
\(765\) 2.38609e10 2.38609e10i 0.0696694 0.0696694i
\(766\) 0 0
\(767\) 6.93482e11i 2.00380i
\(768\) 0 0
\(769\) 4.31818e11 1.23480 0.617398 0.786651i \(-0.288187\pi\)
0.617398 + 0.786651i \(0.288187\pi\)
\(770\) 0 0
\(771\) −3.87068e10 3.87068e10i −0.109539 0.109539i
\(772\) 0 0
\(773\) −2.02081e10 2.02081e10i −0.0565987 0.0565987i 0.678241 0.734840i \(-0.262743\pi\)
−0.734840 + 0.678241i \(0.762743\pi\)
\(774\) 0 0
\(775\) 2.48773e10 0.0689597
\(776\) 0 0
\(777\) 4.32418e11i 1.18637i
\(778\) 0 0
\(779\) 1.32900e10 1.32900e10i 0.0360891 0.0360891i
\(780\) 0 0
\(781\) 5.29565e11 5.29565e11i 1.42336 1.42336i
\(782\) 0 0
\(783\) 4.51098e10i 0.120012i
\(784\) 0 0
\(785\) 9.42743e10 0.248265
\(786\) 0 0
\(787\) −3.68011e11 3.68011e11i −0.959317 0.959317i 0.0398868 0.999204i \(-0.487300\pi\)
−0.999204 + 0.0398868i \(0.987300\pi\)
\(788\) 0 0
\(789\) 2.70226e11 + 2.70226e11i 0.697298 + 0.697298i
\(790\) 0 0
\(791\) −7.19640e11 −1.83827
\(792\) 0 0
\(793\) 4.17608e11i 1.05603i
\(794\) 0 0
\(795\) 5.52831e10 5.52831e10i 0.138396 0.138396i
\(796\) 0 0
\(797\) 2.71828e11 2.71828e11i 0.673692 0.673692i −0.284873 0.958565i \(-0.591952\pi\)
0.958565 + 0.284873i \(0.0919515\pi\)
\(798\) 0 0
\(799\) 1.56406e11i 0.383767i
\(800\) 0 0
\(801\) −7.53572e9 −0.0183061
\(802\) 0 0
\(803\) 6.93337e11 + 6.93337e11i 1.66756 + 1.66756i
\(804\) 0 0
\(805\) −1.23277e11 1.23277e11i −0.293562 0.293562i
\(806\) 0 0
\(807\) 9.08157e10 0.214125
\(808\) 0 0
\(809\) 2.86516e10i 0.0668889i 0.999441 + 0.0334444i \(0.0106477\pi\)
−0.999441 + 0.0334444i \(0.989352\pi\)
\(810\) 0 0
\(811\) 1.44668e11 1.44668e11i 0.334417 0.334417i −0.519844 0.854261i \(-0.674010\pi\)
0.854261 + 0.519844i \(0.174010\pi\)
\(812\) 0 0
\(813\) 1.86490e11 1.86490e11i 0.426867 0.426867i
\(814\) 0 0
\(815\) 3.61397e11i 0.819133i
\(816\) 0 0
\(817\) −1.05027e10 −0.0235730
\(818\) 0 0
\(819\) 2.31390e11 + 2.31390e11i 0.514292 + 0.514292i
\(820\) 0 0
\(821\) 2.52880e10 + 2.52880e10i 0.0556597 + 0.0556597i 0.734389 0.678729i \(-0.237469\pi\)
−0.678729 + 0.734389i \(0.737469\pi\)
\(822\) 0 0
\(823\) −2.41332e11 −0.526035 −0.263018 0.964791i \(-0.584718\pi\)
−0.263018 + 0.964791i \(0.584718\pi\)
\(824\) 0 0
\(825\) 2.46115e11i 0.531278i
\(826\) 0 0
\(827\) 9.83527e10 9.83527e10i 0.210264 0.210264i −0.594116 0.804379i \(-0.702498\pi\)
0.804379 + 0.594116i \(0.202498\pi\)
\(828\) 0 0
\(829\) −1.23040e11 + 1.23040e11i −0.260512 + 0.260512i −0.825262 0.564750i \(-0.808973\pi\)
0.564750 + 0.825262i \(0.308973\pi\)
\(830\) 0 0
\(831\) 1.51053e11i 0.316755i
\(832\) 0 0
\(833\) −4.62493e11 −0.960562
\(834\) 0 0
\(835\) −3.43383e11 3.43383e11i −0.706371 0.706371i
\(836\) 0 0
\(837\) 8.86453e9 + 8.86453e9i 0.0180615 + 0.0180615i
\(838\) 0 0
\(839\) 1.70487e11 0.344068 0.172034 0.985091i \(-0.444966\pi\)
0.172034 + 0.985091i \(0.444966\pi\)
\(840\) 0 0
\(841\) 3.05712e11i 0.611124i
\(842\) 0 0
\(843\) 6.52406e10 6.52406e10i 0.129184 0.129184i
\(844\) 0 0
\(845\) 1.15889e11 1.15889e11i 0.227308 0.227308i
\(846\) 0 0
\(847\) 1.98330e12i 3.85349i
\(848\) 0 0
\(849\) −2.95032e11 −0.567856
\(850\) 0 0
\(851\) −1.40336e11 1.40336e11i −0.267578 0.267578i
\(852\) 0 0
\(853\) −2.44629e11 2.44629e11i −0.462074 0.462074i 0.437261 0.899335i \(-0.355949\pi\)
−0.899335 + 0.437261i \(0.855949\pi\)
\(854\) 0 0
\(855\) 7.38735e9 0.0138237
\(856\) 0 0
\(857\) 4.87245e11i 0.903283i −0.892199 0.451642i \(-0.850839\pi\)
0.892199 0.451642i \(-0.149161\pi\)
\(858\) 0 0
\(859\) 8.11679e10 8.11679e10i 0.149077 0.149077i −0.628628 0.777706i \(-0.716383\pi\)
0.777706 + 0.628628i \(0.216383\pi\)
\(860\) 0 0
\(861\) −3.45147e11 + 3.45147e11i −0.628046 + 0.628046i
\(862\) 0 0
\(863\) 1.75798e11i 0.316935i −0.987364 0.158467i \(-0.949345\pi\)
0.987364 0.158467i \(-0.0506553\pi\)
\(864\) 0 0
\(865\) −2.52901e11 −0.451737
\(866\) 0 0
\(867\) 1.88726e11 + 1.88726e11i 0.334006 + 0.334006i
\(868\) 0 0
\(869\) 1.29000e12 + 1.29000e12i 2.26209 + 2.26209i
\(870\) 0 0
\(871\) −1.27528e12 −2.21582
\(872\) 0 0
\(873\) 1.06955e11i 0.184138i
\(874\) 0 0
\(875\) −7.87336e11 + 7.87336e11i −1.34316 + 1.34316i
\(876\) 0 0
\(877\) −9.37586e10 + 9.37586e10i −0.158494 + 0.158494i −0.781899 0.623405i \(-0.785749\pi\)
0.623405 + 0.781899i \(0.285749\pi\)
\(878\) 0 0
\(879\) 4.40389e10i 0.0737702i
\(880\) 0 0
\(881\) 8.48336e11 1.40820 0.704100 0.710101i \(-0.251351\pi\)
0.704100 + 0.710101i \(0.251351\pi\)
\(882\) 0 0
\(883\) −2.34420e11 2.34420e11i −0.385613 0.385613i 0.487507 0.873119i \(-0.337906\pi\)
−0.873119 + 0.487507i \(0.837906\pi\)
\(884\) 0 0
\(885\) 2.87493e11 + 2.87493e11i 0.468656 + 0.468656i
\(886\) 0 0
\(887\) −7.65512e11 −1.23668 −0.618340 0.785911i \(-0.712195\pi\)
−0.618340 + 0.785911i \(0.712195\pi\)
\(888\) 0 0
\(889\) 2.55409e11i 0.408912i
\(890\) 0 0
\(891\) 8.76982e10 8.76982e10i 0.139149 0.139149i
\(892\) 0 0
\(893\) 2.42117e10 2.42117e10i 0.0380732 0.0380732i
\(894\) 0 0
\(895\) 2.22372e11i 0.346567i
\(896\) 0 0
\(897\) 1.50190e11 0.231991
\(898\) 0 0
\(899\) −3.82279e10 3.82279e10i −0.0585250 0.0585250i
\(900\) 0 0
\(901\) −9.71924e10 9.71924e10i −0.147480 0.147480i
\(902\) 0 0
\(903\) 2.72760e11 0.410233
\(904\) 0 0
\(905\) 2.85560e11i 0.425699i
\(906\) 0 0
\(907\) −4.15441e11 + 4.15441e11i −0.613875 + 0.613875i −0.943953 0.330079i \(-0.892925\pi\)
0.330079 + 0.943953i \(0.392925\pi\)
\(908\) 0 0
\(909\) −3.64181e10 + 3.64181e10i −0.0533410 + 0.0533410i
\(910\) 0 0
\(911\) 2.81870e11i 0.409237i −0.978842 0.204619i \(-0.934405\pi\)
0.978842 0.204619i \(-0.0655954\pi\)
\(912\) 0 0
\(913\) 1.49722e12 2.15478
\(914\) 0 0
\(915\) −1.73125e11 1.73125e11i −0.246988 0.246988i
\(916\) 0 0
\(917\) −8.58993e11 8.58993e11i −1.21482 1.21482i
\(918\) 0 0
\(919\) 1.14242e12 1.60164 0.800819 0.598907i \(-0.204398\pi\)
0.800819 + 0.598907i \(0.204398\pi\)
\(920\) 0 0
\(921\) 6.67975e10i 0.0928372i
\(922\) 0 0
\(923\) 7.05704e11 7.05704e11i 0.972335 0.972335i
\(924\) 0 0
\(925\) −3.06457e11 + 3.06457e11i −0.418603 + 0.418603i
\(926\) 0 0
\(927\) 1.17939e11i 0.159712i
\(928\) 0 0
\(929\) −1.20297e12 −1.61507 −0.807534 0.589821i \(-0.799198\pi\)
−0.807534 + 0.589821i \(0.799198\pi\)
\(930\) 0 0
\(931\) −7.15940e10 7.15940e10i −0.0952966 0.0952966i
\(932\) 0 0
\(933\) −3.97292e11 3.97292e11i −0.524304 0.524304i
\(934\) 0 0
\(935\) 4.00094e11 0.523499
\(936\) 0 0
\(937\) 3.18711e11i 0.413465i −0.978398 0.206732i \(-0.933717\pi\)
0.978398 0.206732i \(-0.0662829\pi\)
\(938\) 0 0
\(939\) −2.99819e10 + 2.99819e10i −0.0385653 + 0.0385653i
\(940\) 0 0
\(941\) 1.63380e11 1.63380e11i 0.208373 0.208373i −0.595203 0.803576i \(-0.702928\pi\)
0.803576 + 0.595203i \(0.202928\pi\)
\(942\) 0 0
\(943\) 2.24026e11i 0.283304i
\(944\) 0 0
\(945\) −1.91853e11 −0.240569
\(946\) 0 0
\(947\) 9.47600e10 + 9.47600e10i 0.117822 + 0.117822i 0.763559 0.645738i \(-0.223450\pi\)
−0.645738 + 0.763559i \(0.723450\pi\)
\(948\) 0 0
\(949\) 9.23950e11 + 9.23950e11i 1.13916 + 1.13916i
\(950\) 0 0
\(951\) 7.25266e10 0.0886696
\(952\) 0 0
\(953\) 6.71332e11i 0.813890i −0.913453 0.406945i \(-0.866594\pi\)
0.913453 0.406945i \(-0.133406\pi\)
\(954\) 0 0
\(955\) −1.44156e11 + 1.44156e11i −0.173308 + 0.173308i
\(956\) 0 0
\(957\) −3.78195e11 + 3.78195e11i −0.450887 + 0.450887i
\(958\) 0 0
\(959\) 1.17109e12i 1.38457i
\(960\) 0 0
\(961\) 8.37867e11 0.982384
\(962\) 0 0
\(963\) 3.02857e11 + 3.02857e11i 0.352153 + 0.352153i
\(964\) 0 0
\(965\) −6.49833e10 6.49833e10i −0.0749364 0.0749364i
\(966\) 0 0
\(967\) −9.54179e11 −1.09125 −0.545625 0.838030i \(-0.683708\pi\)
−0.545625 + 0.838030i \(0.683708\pi\)
\(968\) 0 0
\(969\) 1.29876e10i 0.0147311i
\(970\) 0 0
\(971\) −7.04263e11 + 7.04263e11i −0.792242 + 0.792242i −0.981858 0.189616i \(-0.939276\pi\)
0.189616 + 0.981858i \(0.439276\pi\)
\(972\) 0 0
\(973\) −1.00209e12 + 1.00209e12i −1.11803 + 1.11803i
\(974\) 0 0
\(975\) 3.27975e11i 0.362930i
\(976\) 0 0
\(977\) −1.19293e12 −1.30929 −0.654645 0.755937i \(-0.727182\pi\)
−0.654645 + 0.755937i \(0.727182\pi\)
\(978\) 0 0
\(979\) −6.31785e10 6.31785e10i −0.0687763 0.0687763i
\(980\) 0 0
\(981\) −4.23554e11 4.23554e11i −0.457333 0.457333i
\(982\) 0 0
\(983\) 4.11584e11 0.440803 0.220401 0.975409i \(-0.429263\pi\)
0.220401 + 0.975409i \(0.429263\pi\)
\(984\) 0 0
\(985\) 1.15151e12i 1.22328i
\(986\) 0 0
\(987\) −6.28788e11 + 6.28788e11i −0.662576 + 0.662576i
\(988\) 0 0
\(989\) 8.85210e10 8.85210e10i 0.0925255 0.0925255i
\(990\) 0 0
\(991\) 3.99488e11i 0.414199i −0.978320 0.207099i \(-0.933598\pi\)
0.978320 0.207099i \(-0.0664024\pi\)
\(992\) 0 0
\(993\) −1.04954e10 −0.0107944
\(994\) 0 0
\(995\) −4.47768e11 4.47768e11i −0.456836 0.456836i
\(996\) 0 0
\(997\) −1.30861e12 1.30861e12i −1.32443 1.32443i −0.910147 0.414285i \(-0.864032\pi\)
−0.414285 0.910147i \(-0.635968\pi\)
\(998\) 0 0
\(999\) −2.18400e11 −0.219276
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.9.l.a.79.6 64
4.3 odd 2 48.9.l.a.43.24 yes 64
16.3 odd 4 inner 192.9.l.a.175.6 64
16.13 even 4 48.9.l.a.19.24 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.9.l.a.19.24 64 16.13 even 4
48.9.l.a.43.24 yes 64 4.3 odd 2
192.9.l.a.79.6 64 1.1 even 1 trivial
192.9.l.a.175.6 64 16.3 odd 4 inner