Properties

Label 192.9.l.a.79.25
Level $192$
Weight $9$
Character 192.79
Analytic conductor $78.217$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,9,Mod(79,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.79"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 192.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.2166931317\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 79.25
Character \(\chi\) \(=\) 192.79
Dual form 192.9.l.a.175.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(33.0681 + 33.0681i) q^{3} +(214.689 + 214.689i) q^{5} +321.411 q^{7} +2187.00i q^{9} +(13451.1 - 13451.1i) q^{11} +(-3434.55 + 3434.55i) q^{13} +14198.7i q^{15} +65954.5 q^{17} +(-113520. - 113520. i) q^{19} +(10628.4 + 10628.4i) q^{21} +99132.9 q^{23} -298442. i q^{25} +(-72320.0 + 72320.0i) q^{27} +(74218.8 - 74218.8i) q^{29} -783672. i q^{31} +889604. q^{33} +(69003.3 + 69003.3i) q^{35} +(385145. + 385145. i) q^{37} -227148. q^{39} +2.10509e6i q^{41} +(2.77452e6 - 2.77452e6i) q^{43} +(-469525. + 469525. i) q^{45} -6.61433e6i q^{47} -5.66150e6 q^{49} +(2.18099e6 + 2.18099e6i) q^{51} +(873055. + 873055. i) q^{53} +5.77560e6 q^{55} -7.50775e6i q^{57} +(1.79884e6 - 1.79884e6i) q^{59} +(-1.03492e7 + 1.03492e7i) q^{61} +702925. i q^{63} -1.47472e6 q^{65} +(1.57263e7 + 1.57263e7i) q^{67} +(3.27814e6 + 3.27814e6i) q^{69} +4.51284e7 q^{71} -1.41319e7i q^{73} +(9.86893e6 - 9.86893e6i) q^{75} +(4.32332e6 - 4.32332e6i) q^{77} -5.93775e6i q^{79} -4.78297e6 q^{81} +(-4.07467e7 - 4.07467e7i) q^{83} +(1.41597e7 + 1.41597e7i) q^{85} +4.90855e6 q^{87} +3.55568e7i q^{89} +(-1.10390e6 + 1.10390e6i) q^{91} +(2.59146e7 - 2.59146e7i) q^{93} -4.87428e7i q^{95} -1.43728e7 q^{97} +(2.94175e7 + 2.94175e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 39552 q^{11} + 167552 q^{19} - 1691136 q^{23} - 2132352 q^{29} + 2415744 q^{35} - 4720512 q^{37} + 7244672 q^{43} + 52706752 q^{49} - 13862016 q^{51} - 5358720 q^{53} + 46326784 q^{55} - 44938752 q^{59}+ \cdots - 86500224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 33.0681 + 33.0681i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 214.689 + 214.689i 0.343502 + 0.343502i 0.857682 0.514180i \(-0.171904\pi\)
−0.514180 + 0.857682i \(0.671904\pi\)
\(6\) 0 0
\(7\) 321.411 0.133865 0.0669326 0.997757i \(-0.478679\pi\)
0.0669326 + 0.997757i \(0.478679\pi\)
\(8\) 0 0
\(9\) 2187.00i 0.333333i
\(10\) 0 0
\(11\) 13451.1 13451.1i 0.918727 0.918727i −0.0782097 0.996937i \(-0.524920\pi\)
0.996937 + 0.0782097i \(0.0249204\pi\)
\(12\) 0 0
\(13\) −3434.55 + 3434.55i −0.120253 + 0.120253i −0.764672 0.644419i \(-0.777099\pi\)
0.644419 + 0.764672i \(0.277099\pi\)
\(14\) 0 0
\(15\) 14198.7i 0.280468i
\(16\) 0 0
\(17\) 65954.5 0.789676 0.394838 0.918751i \(-0.370801\pi\)
0.394838 + 0.918751i \(0.370801\pi\)
\(18\) 0 0
\(19\) −113520. 113520.i −0.871076 0.871076i 0.121514 0.992590i \(-0.461225\pi\)
−0.992590 + 0.121514i \(0.961225\pi\)
\(20\) 0 0
\(21\) 10628.4 + 10628.4i 0.0546503 + 0.0546503i
\(22\) 0 0
\(23\) 99132.9 0.354247 0.177124 0.984189i \(-0.443321\pi\)
0.177124 + 0.984189i \(0.443321\pi\)
\(24\) 0 0
\(25\) 298442.i 0.764012i
\(26\) 0 0
\(27\) −72320.0 + 72320.0i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 74218.8 74218.8i 0.104935 0.104935i −0.652690 0.757625i \(-0.726360\pi\)
0.757625 + 0.652690i \(0.226360\pi\)
\(30\) 0 0
\(31\) 783672.i 0.848570i −0.905529 0.424285i \(-0.860525\pi\)
0.905529 0.424285i \(-0.139475\pi\)
\(32\) 0 0
\(33\) 889604. 0.750138
\(34\) 0 0
\(35\) 69003.3 + 69003.3i 0.0459830 + 0.0459830i
\(36\) 0 0
\(37\) 385145. + 385145.i 0.205502 + 0.205502i 0.802353 0.596850i \(-0.203581\pi\)
−0.596850 + 0.802353i \(0.703581\pi\)
\(38\) 0 0
\(39\) −227148. −0.0981863
\(40\) 0 0
\(41\) 2.10509e6i 0.744964i 0.928039 + 0.372482i \(0.121493\pi\)
−0.928039 + 0.372482i \(0.878507\pi\)
\(42\) 0 0
\(43\) 2.77452e6 2.77452e6i 0.811548 0.811548i −0.173318 0.984866i \(-0.555449\pi\)
0.984866 + 0.173318i \(0.0554489\pi\)
\(44\) 0 0
\(45\) −469525. + 469525.i −0.114501 + 0.114501i
\(46\) 0 0
\(47\) 6.61433e6i 1.35548i −0.735300 0.677742i \(-0.762959\pi\)
0.735300 0.677742i \(-0.237041\pi\)
\(48\) 0 0
\(49\) −5.66150e6 −0.982080
\(50\) 0 0
\(51\) 2.18099e6 + 2.18099e6i 0.322384 + 0.322384i
\(52\) 0 0
\(53\) 873055. + 873055.i 0.110647 + 0.110647i 0.760263 0.649616i \(-0.225070\pi\)
−0.649616 + 0.760263i \(0.725070\pi\)
\(54\) 0 0
\(55\) 5.77560e6 0.631170
\(56\) 0 0
\(57\) 7.50775e6i 0.711231i
\(58\) 0 0
\(59\) 1.79884e6 1.79884e6i 0.148451 0.148451i −0.628975 0.777426i \(-0.716525\pi\)
0.777426 + 0.628975i \(0.216525\pi\)
\(60\) 0 0
\(61\) −1.03492e7 + 1.03492e7i −0.747458 + 0.747458i −0.974001 0.226543i \(-0.927258\pi\)
0.226543 + 0.974001i \(0.427258\pi\)
\(62\) 0 0
\(63\) 702925.i 0.0446218i
\(64\) 0 0
\(65\) −1.47472e6 −0.0826144
\(66\) 0 0
\(67\) 1.57263e7 + 1.57263e7i 0.780418 + 0.780418i 0.979901 0.199483i \(-0.0639264\pi\)
−0.199483 + 0.979901i \(0.563926\pi\)
\(68\) 0 0
\(69\) 3.27814e6 + 3.27814e6i 0.144621 + 0.144621i
\(70\) 0 0
\(71\) 4.51284e7 1.77589 0.887945 0.459949i \(-0.152132\pi\)
0.887945 + 0.459949i \(0.152132\pi\)
\(72\) 0 0
\(73\) 1.41319e7i 0.497631i −0.968551 0.248816i \(-0.919959\pi\)
0.968551 0.248816i \(-0.0800413\pi\)
\(74\) 0 0
\(75\) 9.86893e6 9.86893e6i 0.311907 0.311907i
\(76\) 0 0
\(77\) 4.32332e6 4.32332e6i 0.122986 0.122986i
\(78\) 0 0
\(79\) 5.93775e6i 0.152445i −0.997091 0.0762225i \(-0.975714\pi\)
0.997091 0.0762225i \(-0.0242859\pi\)
\(80\) 0 0
\(81\) −4.78297e6 −0.111111
\(82\) 0 0
\(83\) −4.07467e7 4.07467e7i −0.858579 0.858579i 0.132592 0.991171i \(-0.457670\pi\)
−0.991171 + 0.132592i \(0.957670\pi\)
\(84\) 0 0
\(85\) 1.41597e7 + 1.41597e7i 0.271255 + 0.271255i
\(86\) 0 0
\(87\) 4.90855e6 0.0856794
\(88\) 0 0
\(89\) 3.55568e7i 0.566712i 0.959015 + 0.283356i \(0.0914478\pi\)
−0.959015 + 0.283356i \(0.908552\pi\)
\(90\) 0 0
\(91\) −1.10390e6 + 1.10390e6i −0.0160977 + 0.0160977i
\(92\) 0 0
\(93\) 2.59146e7 2.59146e7i 0.346427 0.346427i
\(94\) 0 0
\(95\) 4.87428e7i 0.598433i
\(96\) 0 0
\(97\) −1.43728e7 −0.162351 −0.0811755 0.996700i \(-0.525867\pi\)
−0.0811755 + 0.996700i \(0.525867\pi\)
\(98\) 0 0
\(99\) 2.94175e7 + 2.94175e7i 0.306242 + 0.306242i
\(100\) 0 0
\(101\) 1.27428e8 + 1.27428e8i 1.22456 + 1.22456i 0.965994 + 0.258565i \(0.0832495\pi\)
0.258565 + 0.965994i \(0.416750\pi\)
\(102\) 0 0
\(103\) 7.05349e7 0.626694 0.313347 0.949639i \(-0.398550\pi\)
0.313347 + 0.949639i \(0.398550\pi\)
\(104\) 0 0
\(105\) 4.56362e6i 0.0375450i
\(106\) 0 0
\(107\) 4.30920e7 4.30920e7i 0.328746 0.328746i −0.523363 0.852110i \(-0.675323\pi\)
0.852110 + 0.523363i \(0.175323\pi\)
\(108\) 0 0
\(109\) 1.74484e8 1.74484e8i 1.23609 1.23609i 0.274502 0.961586i \(-0.411487\pi\)
0.961586 0.274502i \(-0.0885131\pi\)
\(110\) 0 0
\(111\) 2.54720e7i 0.167792i
\(112\) 0 0
\(113\) 1.52983e8 0.938275 0.469138 0.883125i \(-0.344565\pi\)
0.469138 + 0.883125i \(0.344565\pi\)
\(114\) 0 0
\(115\) 2.12827e7 + 2.12827e7i 0.121685 + 0.121685i
\(116\) 0 0
\(117\) −7.51136e6 7.51136e6i −0.0400844 0.0400844i
\(118\) 0 0
\(119\) 2.11985e7 0.105710
\(120\) 0 0
\(121\) 1.47504e8i 0.688119i
\(122\) 0 0
\(123\) −6.96114e7 + 6.96114e7i −0.304130 + 0.304130i
\(124\) 0 0
\(125\) 1.47935e8 1.47935e8i 0.605942 0.605942i
\(126\) 0 0
\(127\) 2.43669e8i 0.936667i 0.883552 + 0.468334i \(0.155145\pi\)
−0.883552 + 0.468334i \(0.844855\pi\)
\(128\) 0 0
\(129\) 1.83496e8 0.662626
\(130\) 0 0
\(131\) 1.01426e7 + 1.01426e7i 0.0344401 + 0.0344401i 0.724117 0.689677i \(-0.242247\pi\)
−0.689677 + 0.724117i \(0.742247\pi\)
\(132\) 0 0
\(133\) −3.64864e7 3.64864e7i −0.116607 0.116607i
\(134\) 0 0
\(135\) −3.10526e7 −0.0934895
\(136\) 0 0
\(137\) 5.43447e8i 1.54268i −0.636425 0.771339i \(-0.719587\pi\)
0.636425 0.771339i \(-0.280413\pi\)
\(138\) 0 0
\(139\) 5.06935e8 5.06935e8i 1.35798 1.35798i 0.481572 0.876407i \(-0.340066\pi\)
0.876407 0.481572i \(-0.159934\pi\)
\(140\) 0 0
\(141\) 2.18723e8 2.18723e8i 0.553374 0.553374i
\(142\) 0 0
\(143\) 9.23968e7i 0.220960i
\(144\) 0 0
\(145\) 3.18679e7 0.0720911
\(146\) 0 0
\(147\) −1.87215e8 1.87215e8i −0.400933 0.400933i
\(148\) 0 0
\(149\) 1.51435e8 + 1.51435e8i 0.307241 + 0.307241i 0.843839 0.536597i \(-0.180290\pi\)
−0.536597 + 0.843839i \(0.680290\pi\)
\(150\) 0 0
\(151\) 7.95362e8 1.52988 0.764939 0.644103i \(-0.222769\pi\)
0.764939 + 0.644103i \(0.222769\pi\)
\(152\) 0 0
\(153\) 1.44243e8i 0.263225i
\(154\) 0 0
\(155\) 1.68246e8 1.68246e8i 0.291486 0.291486i
\(156\) 0 0
\(157\) 6.55541e7 6.55541e7i 0.107895 0.107895i −0.651098 0.758993i \(-0.725691\pi\)
0.758993 + 0.651098i \(0.225691\pi\)
\(158\) 0 0
\(159\) 5.77405e7i 0.0903425i
\(160\) 0 0
\(161\) 3.18623e7 0.0474214
\(162\) 0 0
\(163\) 4.97850e8 + 4.97850e8i 0.705258 + 0.705258i 0.965534 0.260277i \(-0.0838137\pi\)
−0.260277 + 0.965534i \(0.583814\pi\)
\(164\) 0 0
\(165\) 1.90988e8 + 1.90988e8i 0.257674 + 0.257674i
\(166\) 0 0
\(167\) −6.10230e8 −0.784563 −0.392282 0.919845i \(-0.628314\pi\)
−0.392282 + 0.919845i \(0.628314\pi\)
\(168\) 0 0
\(169\) 7.92138e8i 0.971078i
\(170\) 0 0
\(171\) 2.48267e8 2.48267e8i 0.290359 0.290359i
\(172\) 0 0
\(173\) 3.08198e8 3.08198e8i 0.344068 0.344068i −0.513826 0.857894i \(-0.671772\pi\)
0.857894 + 0.513826i \(0.171772\pi\)
\(174\) 0 0
\(175\) 9.59225e7i 0.102275i
\(176\) 0 0
\(177\) 1.18968e8 0.121210
\(178\) 0 0
\(179\) −7.53399e8 7.53399e8i −0.733859 0.733859i 0.237523 0.971382i \(-0.423665\pi\)
−0.971382 + 0.237523i \(0.923665\pi\)
\(180\) 0 0
\(181\) 1.14962e8 + 1.14962e8i 0.107112 + 0.107112i 0.758632 0.651520i \(-0.225868\pi\)
−0.651520 + 0.758632i \(0.725868\pi\)
\(182\) 0 0
\(183\) −6.84456e8 −0.610297
\(184\) 0 0
\(185\) 1.65373e8i 0.141181i
\(186\) 0 0
\(187\) 8.87160e8 8.87160e8i 0.725497 0.725497i
\(188\) 0 0
\(189\) −2.32444e7 + 2.32444e7i −0.0182168 + 0.0182168i
\(190\) 0 0
\(191\) 1.97297e9i 1.48247i 0.671245 + 0.741236i \(0.265760\pi\)
−0.671245 + 0.741236i \(0.734240\pi\)
\(192\) 0 0
\(193\) −2.10182e9 −1.51484 −0.757419 0.652929i \(-0.773540\pi\)
−0.757419 + 0.652929i \(0.773540\pi\)
\(194\) 0 0
\(195\) −4.87662e7 4.87662e7i −0.0337272 0.0337272i
\(196\) 0 0
\(197\) 9.25864e7 + 9.25864e7i 0.0614727 + 0.0614727i 0.737175 0.675702i \(-0.236159\pi\)
−0.675702 + 0.737175i \(0.736159\pi\)
\(198\) 0 0
\(199\) −3.75161e8 −0.239225 −0.119612 0.992821i \(-0.538165\pi\)
−0.119612 + 0.992821i \(0.538165\pi\)
\(200\) 0 0
\(201\) 1.04008e9i 0.637208i
\(202\) 0 0
\(203\) 2.38547e7 2.38547e7i 0.0140472 0.0140472i
\(204\) 0 0
\(205\) −4.51940e8 + 4.51940e8i −0.255897 + 0.255897i
\(206\) 0 0
\(207\) 2.16804e8i 0.118082i
\(208\) 0 0
\(209\) −3.05392e9 −1.60056
\(210\) 0 0
\(211\) −8.36177e8 8.36177e8i −0.421860 0.421860i 0.463984 0.885844i \(-0.346420\pi\)
−0.885844 + 0.463984i \(0.846420\pi\)
\(212\) 0 0
\(213\) 1.49231e9 + 1.49231e9i 0.725004 + 0.725004i
\(214\) 0 0
\(215\) 1.19132e9 0.557537
\(216\) 0 0
\(217\) 2.51881e8i 0.113594i
\(218\) 0 0
\(219\) 4.67314e8 4.67314e8i 0.203157 0.203157i
\(220\) 0 0
\(221\) −2.26524e8 + 2.26524e8i −0.0949610 + 0.0949610i
\(222\) 0 0
\(223\) 3.15369e9i 1.27526i 0.770342 + 0.637631i \(0.220086\pi\)
−0.770342 + 0.637631i \(0.779914\pi\)
\(224\) 0 0
\(225\) 6.52693e8 0.254671
\(226\) 0 0
\(227\) −2.85405e9 2.85405e9i −1.07487 1.07487i −0.996960 0.0779139i \(-0.975174\pi\)
−0.0779139 0.996960i \(-0.524826\pi\)
\(228\) 0 0
\(229\) 4.08940e8 + 4.08940e8i 0.148702 + 0.148702i 0.777538 0.628836i \(-0.216468\pi\)
−0.628836 + 0.777538i \(0.716468\pi\)
\(230\) 0 0
\(231\) 2.85928e8 0.100417
\(232\) 0 0
\(233\) 3.36265e8i 0.114093i 0.998372 + 0.0570463i \(0.0181683\pi\)
−0.998372 + 0.0570463i \(0.981832\pi\)
\(234\) 0 0
\(235\) 1.42002e9 1.42002e9i 0.465612 0.465612i
\(236\) 0 0
\(237\) 1.96350e8 1.96350e8i 0.0622354 0.0622354i
\(238\) 0 0
\(239\) 4.68464e8i 0.143577i 0.997420 + 0.0717885i \(0.0228707\pi\)
−0.997420 + 0.0717885i \(0.977129\pi\)
\(240\) 0 0
\(241\) −6.11577e9 −1.81294 −0.906469 0.422273i \(-0.861232\pi\)
−0.906469 + 0.422273i \(0.861232\pi\)
\(242\) 0 0
\(243\) −1.58164e8 1.58164e8i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) −1.21546e9 1.21546e9i −0.337347 0.337347i
\(246\) 0 0
\(247\) 7.79777e8 0.209499
\(248\) 0 0
\(249\) 2.69483e9i 0.701027i
\(250\) 0 0
\(251\) −8.62591e8 + 8.62591e8i −0.217325 + 0.217325i −0.807370 0.590045i \(-0.799110\pi\)
0.590045 + 0.807370i \(0.299110\pi\)
\(252\) 0 0
\(253\) 1.33344e9 1.33344e9i 0.325456 0.325456i
\(254\) 0 0
\(255\) 9.36469e8i 0.221479i
\(256\) 0 0
\(257\) −6.89191e9 −1.57982 −0.789909 0.613223i \(-0.789873\pi\)
−0.789909 + 0.613223i \(0.789873\pi\)
\(258\) 0 0
\(259\) 1.23790e8 + 1.23790e8i 0.0275096 + 0.0275096i
\(260\) 0 0
\(261\) 1.62316e8 + 1.62316e8i 0.0349785 + 0.0349785i
\(262\) 0 0
\(263\) −8.36743e9 −1.74892 −0.874459 0.485100i \(-0.838783\pi\)
−0.874459 + 0.485100i \(0.838783\pi\)
\(264\) 0 0
\(265\) 3.74870e8i 0.0760147i
\(266\) 0 0
\(267\) −1.17580e9 + 1.17580e9i −0.231359 + 0.231359i
\(268\) 0 0
\(269\) 4.28997e9 4.28997e9i 0.819304 0.819304i −0.166703 0.986007i \(-0.553312\pi\)
0.986007 + 0.166703i \(0.0533122\pi\)
\(270\) 0 0
\(271\) 6.13114e9i 1.13675i 0.822770 + 0.568374i \(0.192427\pi\)
−0.822770 + 0.568374i \(0.807573\pi\)
\(272\) 0 0
\(273\) −7.30078e7 −0.0131437
\(274\) 0 0
\(275\) −4.01437e9 4.01437e9i −0.701919 0.701919i
\(276\) 0 0
\(277\) 4.63135e9 + 4.63135e9i 0.786662 + 0.786662i 0.980945 0.194283i \(-0.0622381\pi\)
−0.194283 + 0.980945i \(0.562238\pi\)
\(278\) 0 0
\(279\) 1.71389e9 0.282857
\(280\) 0 0
\(281\) 2.92015e9i 0.468361i −0.972193 0.234180i \(-0.924759\pi\)
0.972193 0.234180i \(-0.0752406\pi\)
\(282\) 0 0
\(283\) −4.73143e9 + 4.73143e9i −0.737644 + 0.737644i −0.972122 0.234477i \(-0.924662\pi\)
0.234477 + 0.972122i \(0.424662\pi\)
\(284\) 0 0
\(285\) 1.61183e9 1.61183e9i 0.244309 0.244309i
\(286\) 0 0
\(287\) 6.76598e8i 0.0997249i
\(288\) 0 0
\(289\) −2.62576e9 −0.376412
\(290\) 0 0
\(291\) −4.75282e8 4.75282e8i −0.0662795 0.0662795i
\(292\) 0 0
\(293\) 4.99670e9 + 4.99670e9i 0.677973 + 0.677973i 0.959541 0.281568i \(-0.0908546\pi\)
−0.281568 + 0.959541i \(0.590855\pi\)
\(294\) 0 0
\(295\) 7.72381e8 0.101987
\(296\) 0 0
\(297\) 1.94556e9i 0.250046i
\(298\) 0 0
\(299\) −3.40477e8 + 3.40477e8i −0.0425993 + 0.0425993i
\(300\) 0 0
\(301\) 8.91760e8 8.91760e8i 0.108638 0.108638i
\(302\) 0 0
\(303\) 8.42761e9i 0.999848i
\(304\) 0 0
\(305\) −4.44371e9 −0.513507
\(306\) 0 0
\(307\) −2.24003e9 2.24003e9i −0.252174 0.252174i 0.569687 0.821861i \(-0.307064\pi\)
−0.821861 + 0.569687i \(0.807064\pi\)
\(308\) 0 0
\(309\) 2.33246e9 + 2.33246e9i 0.255847 + 0.255847i
\(310\) 0 0
\(311\) −1.74578e10 −1.86616 −0.933080 0.359669i \(-0.882890\pi\)
−0.933080 + 0.359669i \(0.882890\pi\)
\(312\) 0 0
\(313\) 5.39649e8i 0.0562256i −0.999605 0.0281128i \(-0.991050\pi\)
0.999605 0.0281128i \(-0.00894976\pi\)
\(314\) 0 0
\(315\) −1.50910e8 + 1.50910e8i −0.0153277 + 0.0153277i
\(316\) 0 0
\(317\) −1.14777e10 + 1.14777e10i −1.13663 + 1.13663i −0.147581 + 0.989050i \(0.547149\pi\)
−0.989050 + 0.147581i \(0.952851\pi\)
\(318\) 0 0
\(319\) 1.99665e9i 0.192814i
\(320\) 0 0
\(321\) 2.84994e9 0.268420
\(322\) 0 0
\(323\) −7.48713e9 7.48713e9i −0.687868 0.687868i
\(324\) 0 0
\(325\) 1.02502e9 + 1.02502e9i 0.0918749 + 0.0918749i
\(326\) 0 0
\(327\) 1.15397e10 1.00926
\(328\) 0 0
\(329\) 2.12591e9i 0.181452i
\(330\) 0 0
\(331\) 4.68871e9 4.68871e9i 0.390608 0.390608i −0.484296 0.874904i \(-0.660924\pi\)
0.874904 + 0.484296i \(0.160924\pi\)
\(332\) 0 0
\(333\) −8.42312e8 + 8.42312e8i −0.0685008 + 0.0685008i
\(334\) 0 0
\(335\) 6.75252e9i 0.536150i
\(336\) 0 0
\(337\) 1.49622e10 1.16005 0.580025 0.814599i \(-0.303043\pi\)
0.580025 + 0.814599i \(0.303043\pi\)
\(338\) 0 0
\(339\) 5.05887e9 + 5.05887e9i 0.383049 + 0.383049i
\(340\) 0 0
\(341\) −1.05412e10 1.05412e10i −0.779604 0.779604i
\(342\) 0 0
\(343\) −3.67253e9 −0.265332
\(344\) 0 0
\(345\) 1.40756e9i 0.0993551i
\(346\) 0 0
\(347\) 1.34112e10 1.34112e10i 0.925016 0.925016i −0.0723626 0.997378i \(-0.523054\pi\)
0.997378 + 0.0723626i \(0.0230539\pi\)
\(348\) 0 0
\(349\) 1.93059e10 1.93059e10i 1.30134 1.30134i 0.373843 0.927492i \(-0.378040\pi\)
0.927492 0.373843i \(-0.121960\pi\)
\(350\) 0 0
\(351\) 4.96773e8i 0.0327288i
\(352\) 0 0
\(353\) −2.03892e10 −1.31311 −0.656555 0.754278i \(-0.727987\pi\)
−0.656555 + 0.754278i \(0.727987\pi\)
\(354\) 0 0
\(355\) 9.68856e9 + 9.68856e9i 0.610022 + 0.610022i
\(356\) 0 0
\(357\) 7.00994e8 + 7.00994e8i 0.0431560 + 0.0431560i
\(358\) 0 0
\(359\) 2.14611e10 1.29203 0.646016 0.763324i \(-0.276434\pi\)
0.646016 + 0.763324i \(0.276434\pi\)
\(360\) 0 0
\(361\) 8.78979e9i 0.517547i
\(362\) 0 0
\(363\) 4.87769e9 4.87769e9i 0.280924 0.280924i
\(364\) 0 0
\(365\) 3.03395e9 3.03395e9i 0.170937 0.170937i
\(366\) 0 0
\(367\) 5.54772e9i 0.305809i 0.988241 + 0.152905i \(0.0488627\pi\)
−0.988241 + 0.152905i \(0.951137\pi\)
\(368\) 0 0
\(369\) −4.60383e9 −0.248321
\(370\) 0 0
\(371\) 2.80609e8 + 2.80609e8i 0.0148117 + 0.0148117i
\(372\) 0 0
\(373\) 2.11197e10 + 2.11197e10i 1.09107 + 1.09107i 0.995414 + 0.0956566i \(0.0304951\pi\)
0.0956566 + 0.995414i \(0.469505\pi\)
\(374\) 0 0
\(375\) 9.78387e9 0.494750
\(376\) 0 0
\(377\) 5.09816e8i 0.0252376i
\(378\) 0 0
\(379\) 1.43672e10 1.43672e10i 0.696329 0.696329i −0.267288 0.963617i \(-0.586127\pi\)
0.963617 + 0.267288i \(0.0861273\pi\)
\(380\) 0 0
\(381\) −8.05767e9 + 8.05767e9i −0.382393 + 0.382393i
\(382\) 0 0
\(383\) 2.68615e10i 1.24835i −0.781285 0.624174i \(-0.785435\pi\)
0.781285 0.624174i \(-0.214565\pi\)
\(384\) 0 0
\(385\) 1.85634e9 0.0844917
\(386\) 0 0
\(387\) 6.06788e9 + 6.06788e9i 0.270516 + 0.270516i
\(388\) 0 0
\(389\) −2.88548e10 2.88548e10i −1.26014 1.26014i −0.951023 0.309121i \(-0.899965\pi\)
−0.309121 0.951023i \(-0.600035\pi\)
\(390\) 0 0
\(391\) 6.53826e9 0.279740
\(392\) 0 0
\(393\) 6.70794e8i 0.0281202i
\(394\) 0 0
\(395\) 1.27477e9 1.27477e9i 0.0523652 0.0523652i
\(396\) 0 0
\(397\) 9.47205e9 9.47205e9i 0.381313 0.381313i −0.490262 0.871575i \(-0.663099\pi\)
0.871575 + 0.490262i \(0.163099\pi\)
\(398\) 0 0
\(399\) 2.41307e9i 0.0952091i
\(400\) 0 0
\(401\) 1.16717e10 0.451397 0.225698 0.974197i \(-0.427534\pi\)
0.225698 + 0.974197i \(0.427534\pi\)
\(402\) 0 0
\(403\) 2.69156e9 + 2.69156e9i 0.102043 + 0.102043i
\(404\) 0 0
\(405\) −1.02685e9 1.02685e9i −0.0381669 0.0381669i
\(406\) 0 0
\(407\) 1.03612e10 0.377601
\(408\) 0 0
\(409\) 2.04558e10i 0.731008i 0.930810 + 0.365504i \(0.119103\pi\)
−0.930810 + 0.365504i \(0.880897\pi\)
\(410\) 0 0
\(411\) 1.79708e10 1.79708e10i 0.629796 0.629796i
\(412\) 0 0
\(413\) 5.78165e8 5.78165e8i 0.0198725 0.0198725i
\(414\) 0 0
\(415\) 1.74957e10i 0.589847i
\(416\) 0 0
\(417\) 3.35268e10 1.10878
\(418\) 0 0
\(419\) −1.07657e10 1.07657e10i −0.349291 0.349291i 0.510554 0.859845i \(-0.329440\pi\)
−0.859845 + 0.510554i \(0.829440\pi\)
\(420\) 0 0
\(421\) 1.52423e9 + 1.52423e9i 0.0485203 + 0.0485203i 0.730951 0.682430i \(-0.239077\pi\)
−0.682430 + 0.730951i \(0.739077\pi\)
\(422\) 0 0
\(423\) 1.44655e10 0.451828
\(424\) 0 0
\(425\) 1.96836e10i 0.603322i
\(426\) 0 0
\(427\) −3.32634e9 + 3.32634e9i −0.100059 + 0.100059i
\(428\) 0 0
\(429\) −3.05539e9 + 3.05539e9i −0.0902064 + 0.0902064i
\(430\) 0 0
\(431\) 1.69058e10i 0.489923i 0.969533 + 0.244962i \(0.0787753\pi\)
−0.969533 + 0.244962i \(0.921225\pi\)
\(432\) 0 0
\(433\) 6.20156e10 1.76421 0.882103 0.471057i \(-0.156128\pi\)
0.882103 + 0.471057i \(0.156128\pi\)
\(434\) 0 0
\(435\) 1.05381e9 + 1.05381e9i 0.0294311 + 0.0294311i
\(436\) 0 0
\(437\) −1.12535e10 1.12535e10i −0.308576 0.308576i
\(438\) 0 0
\(439\) −1.12319e10 −0.302408 −0.151204 0.988503i \(-0.548315\pi\)
−0.151204 + 0.988503i \(0.548315\pi\)
\(440\) 0 0
\(441\) 1.23817e10i 0.327360i
\(442\) 0 0
\(443\) −3.31396e10 + 3.31396e10i −0.860464 + 0.860464i −0.991392 0.130928i \(-0.958204\pi\)
0.130928 + 0.991392i \(0.458204\pi\)
\(444\) 0 0
\(445\) −7.63365e9 + 7.63365e9i −0.194667 + 0.194667i
\(446\) 0 0
\(447\) 1.00153e10i 0.250862i
\(448\) 0 0
\(449\) 1.60349e10 0.394531 0.197266 0.980350i \(-0.436794\pi\)
0.197266 + 0.980350i \(0.436794\pi\)
\(450\) 0 0
\(451\) 2.83158e10 + 2.83158e10i 0.684419 + 0.684419i
\(452\) 0 0
\(453\) 2.63011e10 + 2.63011e10i 0.624570 + 0.624570i
\(454\) 0 0
\(455\) −4.73990e8 −0.0110592
\(456\) 0 0
\(457\) 1.43942e9i 0.0330008i 0.999864 + 0.0165004i \(0.00525247\pi\)
−0.999864 + 0.0165004i \(0.994748\pi\)
\(458\) 0 0
\(459\) −4.76983e9 + 4.76983e9i −0.107461 + 0.107461i
\(460\) 0 0
\(461\) −9.71534e8 + 9.71534e8i −0.0215107 + 0.0215107i −0.717780 0.696270i \(-0.754842\pi\)
0.696270 + 0.717780i \(0.254842\pi\)
\(462\) 0 0
\(463\) 8.99701e10i 1.95783i −0.204278 0.978913i \(-0.565485\pi\)
0.204278 0.978913i \(-0.434515\pi\)
\(464\) 0 0
\(465\) 1.11271e10 0.237997
\(466\) 0 0
\(467\) −5.62958e9 5.62958e9i −0.118361 0.118361i 0.645445 0.763806i \(-0.276672\pi\)
−0.763806 + 0.645445i \(0.776672\pi\)
\(468\) 0 0
\(469\) 5.05460e9 + 5.05460e9i 0.104471 + 0.104471i
\(470\) 0 0
\(471\) 4.33550e9 0.0880959
\(472\) 0 0
\(473\) 7.46406e10i 1.49118i
\(474\) 0 0
\(475\) −3.38790e10 + 3.38790e10i −0.665513 + 0.665513i
\(476\) 0 0
\(477\) −1.90937e9 + 1.90937e9i −0.0368822 + 0.0368822i
\(478\) 0 0
\(479\) 2.84189e10i 0.539841i −0.962883 0.269921i \(-0.913003\pi\)
0.962883 0.269921i \(-0.0869974\pi\)
\(480\) 0 0
\(481\) −2.64560e9 −0.0494246
\(482\) 0 0
\(483\) 1.05363e9 + 1.05363e9i 0.0193597 + 0.0193597i
\(484\) 0 0
\(485\) −3.08568e9 3.08568e9i −0.0557679 0.0557679i
\(486\) 0 0
\(487\) −4.99046e10 −0.887206 −0.443603 0.896223i \(-0.646300\pi\)
−0.443603 + 0.896223i \(0.646300\pi\)
\(488\) 0 0
\(489\) 3.29259e10i 0.575840i
\(490\) 0 0
\(491\) −2.50716e10 + 2.50716e10i −0.431376 + 0.431376i −0.889096 0.457720i \(-0.848666\pi\)
0.457720 + 0.889096i \(0.348666\pi\)
\(492\) 0 0
\(493\) 4.89507e9 4.89507e9i 0.0828649 0.0828649i
\(494\) 0 0
\(495\) 1.26312e10i 0.210390i
\(496\) 0 0
\(497\) 1.45047e10 0.237730
\(498\) 0 0
\(499\) 6.45686e10 + 6.45686e10i 1.04140 + 1.04140i 0.999105 + 0.0422994i \(0.0134683\pi\)
0.0422994 + 0.999105i \(0.486532\pi\)
\(500\) 0 0
\(501\) −2.01792e10 2.01792e10i −0.320297 0.320297i
\(502\) 0 0
\(503\) −3.98044e10 −0.621813 −0.310906 0.950441i \(-0.600633\pi\)
−0.310906 + 0.950441i \(0.600633\pi\)
\(504\) 0 0
\(505\) 5.47148e10i 0.841277i
\(506\) 0 0
\(507\) −2.61945e10 + 2.61945e10i −0.396441 + 0.396441i
\(508\) 0 0
\(509\) −8.83621e10 + 8.83621e10i −1.31642 + 1.31642i −0.399832 + 0.916588i \(0.630932\pi\)
−0.916588 + 0.399832i \(0.869068\pi\)
\(510\) 0 0
\(511\) 4.54213e9i 0.0666156i
\(512\) 0 0
\(513\) 1.64195e10 0.237077
\(514\) 0 0
\(515\) 1.51431e10 + 1.51431e10i 0.215271 + 0.215271i
\(516\) 0 0
\(517\) −8.89699e10 8.89699e10i −1.24532 1.24532i
\(518\) 0 0
\(519\) 2.03830e10 0.280931
\(520\) 0 0
\(521\) 3.23543e9i 0.0439118i −0.999759 0.0219559i \(-0.993011\pi\)
0.999759 0.0219559i \(-0.00698935\pi\)
\(522\) 0 0
\(523\) −5.28959e10 + 5.28959e10i −0.706994 + 0.706994i −0.965902 0.258908i \(-0.916637\pi\)
0.258908 + 0.965902i \(0.416637\pi\)
\(524\) 0 0
\(525\) 3.17198e9 3.17198e9i 0.0417535 0.0417535i
\(526\) 0 0
\(527\) 5.16867e10i 0.670095i
\(528\) 0 0
\(529\) −6.84837e10 −0.874509
\(530\) 0 0
\(531\) 3.93406e9 + 3.93406e9i 0.0494838 + 0.0494838i
\(532\) 0 0
\(533\) −7.23004e9 7.23004e9i −0.0895843 0.0895843i
\(534\) 0 0
\(535\) 1.85027e10 0.225850
\(536\) 0 0
\(537\) 4.98270e10i 0.599194i
\(538\) 0 0
\(539\) −7.61533e10 + 7.61533e10i −0.902264 + 0.902264i
\(540\) 0 0
\(541\) 7.06245e10 7.06245e10i 0.824454 0.824454i −0.162289 0.986743i \(-0.551888\pi\)
0.986743 + 0.162289i \(0.0518878\pi\)
\(542\) 0 0
\(543\) 7.60314e9i 0.0874568i
\(544\) 0 0
\(545\) 7.49196e10 0.849199
\(546\) 0 0
\(547\) 6.56817e10 + 6.56817e10i 0.733660 + 0.733660i 0.971343 0.237683i \(-0.0763879\pi\)
−0.237683 + 0.971343i \(0.576388\pi\)
\(548\) 0 0
\(549\) −2.26337e10 2.26337e10i −0.249153 0.249153i
\(550\) 0 0
\(551\) −1.68506e10 −0.182813
\(552\) 0 0
\(553\) 1.90845e9i 0.0204071i
\(554\) 0 0
\(555\) −5.46856e9 + 5.46856e9i −0.0576369 + 0.0576369i
\(556\) 0 0
\(557\) −1.17862e11 + 1.17862e11i −1.22449 + 1.22449i −0.258468 + 0.966020i \(0.583218\pi\)
−0.966020 + 0.258468i \(0.916782\pi\)
\(558\) 0 0
\(559\) 1.90585e10i 0.195182i
\(560\) 0 0
\(561\) 5.86734e10 0.592366
\(562\) 0 0
\(563\) −1.16659e11 1.16659e11i −1.16114 1.16114i −0.984226 0.176917i \(-0.943388\pi\)
−0.176917 0.984226i \(-0.556612\pi\)
\(564\) 0 0
\(565\) 3.28438e10 + 3.28438e10i 0.322300 + 0.322300i
\(566\) 0 0
\(567\) −1.53730e9 −0.0148739
\(568\) 0 0
\(569\) 1.87613e9i 0.0178984i −0.999960 0.00894921i \(-0.997151\pi\)
0.999960 0.00894921i \(-0.00284866\pi\)
\(570\) 0 0
\(571\) −4.05487e10 + 4.05487e10i −0.381445 + 0.381445i −0.871623 0.490177i \(-0.836932\pi\)
0.490177 + 0.871623i \(0.336932\pi\)
\(572\) 0 0
\(573\) −6.52423e10 + 6.52423e10i −0.605216 + 0.605216i
\(574\) 0 0
\(575\) 2.95854e10i 0.270649i
\(576\) 0 0
\(577\) −1.27347e11 −1.14891 −0.574456 0.818536i \(-0.694786\pi\)
−0.574456 + 0.818536i \(0.694786\pi\)
\(578\) 0 0
\(579\) −6.95032e10 6.95032e10i −0.618430 0.618430i
\(580\) 0 0
\(581\) −1.30964e10 1.30964e10i −0.114934 0.114934i
\(582\) 0 0
\(583\) 2.34871e10 0.203308
\(584\) 0 0
\(585\) 3.22521e9i 0.0275381i
\(586\) 0 0
\(587\) 9.06324e10 9.06324e10i 0.763363 0.763363i −0.213566 0.976929i \(-0.568508\pi\)
0.976929 + 0.213566i \(0.0685077\pi\)
\(588\) 0 0
\(589\) −8.89621e10 + 8.89621e10i −0.739169 + 0.739169i
\(590\) 0 0
\(591\) 6.12331e9i 0.0501922i
\(592\) 0 0
\(593\) −4.31542e10 −0.348983 −0.174491 0.984659i \(-0.555828\pi\)
−0.174491 + 0.984659i \(0.555828\pi\)
\(594\) 0 0
\(595\) 4.55108e9 + 4.55108e9i 0.0363117 + 0.0363117i
\(596\) 0 0
\(597\) −1.24059e10 1.24059e10i −0.0976630 0.0976630i
\(598\) 0 0
\(599\) −1.08451e10 −0.0842415 −0.0421207 0.999113i \(-0.513411\pi\)
−0.0421207 + 0.999113i \(0.513411\pi\)
\(600\) 0 0
\(601\) 1.29082e11i 0.989387i 0.869068 + 0.494693i \(0.164720\pi\)
−0.869068 + 0.494693i \(0.835280\pi\)
\(602\) 0 0
\(603\) −3.43934e10 + 3.43934e10i −0.260139 + 0.260139i
\(604\) 0 0
\(605\) 3.16676e10 3.16676e10i 0.236371 0.236371i
\(606\) 0 0
\(607\) 2.41012e11i 1.77535i −0.460468 0.887676i \(-0.652319\pi\)
0.460468 0.887676i \(-0.347681\pi\)
\(608\) 0 0
\(609\) 1.57766e9 0.0114695
\(610\) 0 0
\(611\) 2.27172e10 + 2.27172e10i 0.163001 + 0.163001i
\(612\) 0 0
\(613\) −6.99206e10 6.99206e10i −0.495180 0.495180i 0.414754 0.909934i \(-0.363868\pi\)
−0.909934 + 0.414754i \(0.863868\pi\)
\(614\) 0 0
\(615\) −2.98896e10 −0.208939
\(616\) 0 0
\(617\) 2.02589e11i 1.39790i 0.715171 + 0.698949i \(0.246349\pi\)
−0.715171 + 0.698949i \(0.753651\pi\)
\(618\) 0 0
\(619\) 1.56596e11 1.56596e11i 1.06664 1.06664i 0.0690266 0.997615i \(-0.478011\pi\)
0.997615 0.0690266i \(-0.0219893\pi\)
\(620\) 0 0
\(621\) −7.16928e9 + 7.16928e9i −0.0482069 + 0.0482069i
\(622\) 0 0
\(623\) 1.14283e10i 0.0758631i
\(624\) 0 0
\(625\) −5.30590e10 −0.347727
\(626\) 0 0
\(627\) −1.00987e11 1.00987e11i −0.653427 0.653427i
\(628\) 0 0
\(629\) 2.54020e10 + 2.54020e10i 0.162280 + 0.162280i
\(630\) 0 0
\(631\) −1.60818e11 −1.01442 −0.507210 0.861823i \(-0.669323\pi\)
−0.507210 + 0.861823i \(0.669323\pi\)
\(632\) 0 0
\(633\) 5.53016e10i 0.344447i
\(634\) 0 0
\(635\) −5.23130e10 + 5.23130e10i −0.321747 + 0.321747i
\(636\) 0 0
\(637\) 1.94447e10 1.94447e10i 0.118098 0.118098i
\(638\) 0 0
\(639\) 9.86957e10i 0.591964i
\(640\) 0 0
\(641\) 2.42585e11 1.43692 0.718459 0.695569i \(-0.244848\pi\)
0.718459 + 0.695569i \(0.244848\pi\)
\(642\) 0 0
\(643\) 2.09870e11 + 2.09870e11i 1.22774 + 1.22774i 0.964817 + 0.262923i \(0.0846866\pi\)
0.262923 + 0.964817i \(0.415313\pi\)
\(644\) 0 0
\(645\) 3.93946e10 + 3.93946e10i 0.227614 + 0.227614i
\(646\) 0 0
\(647\) 5.01468e10 0.286171 0.143086 0.989710i \(-0.454298\pi\)
0.143086 + 0.989710i \(0.454298\pi\)
\(648\) 0 0
\(649\) 4.83926e10i 0.272772i
\(650\) 0 0
\(651\) 8.32921e9 8.32921e9i 0.0463746 0.0463746i
\(652\) 0 0
\(653\) 9.32411e10 9.32411e10i 0.512808 0.512808i −0.402578 0.915386i \(-0.631886\pi\)
0.915386 + 0.402578i \(0.131886\pi\)
\(654\) 0 0
\(655\) 4.35501e9i 0.0236605i
\(656\) 0 0
\(657\) 3.09064e10 0.165877
\(658\) 0 0
\(659\) 3.78176e9 + 3.78176e9i 0.0200517 + 0.0200517i 0.717062 0.697010i \(-0.245487\pi\)
−0.697010 + 0.717062i \(0.745487\pi\)
\(660\) 0 0
\(661\) −1.89156e11 1.89156e11i −0.990864 0.990864i 0.00909472 0.999959i \(-0.497105\pi\)
−0.999959 + 0.00909472i \(0.997105\pi\)
\(662\) 0 0
\(663\) −1.49814e10 −0.0775353
\(664\) 0 0
\(665\) 1.56664e10i 0.0801094i
\(666\) 0 0
\(667\) 7.35752e9 7.35752e9i 0.0371730 0.0371730i
\(668\) 0 0
\(669\) −1.04287e11 + 1.04287e11i −0.520624 + 0.520624i
\(670\) 0 0
\(671\) 2.78416e11i 1.37342i
\(672\) 0 0
\(673\) −3.72954e11 −1.81801 −0.909003 0.416789i \(-0.863155\pi\)
−0.909003 + 0.416789i \(0.863155\pi\)
\(674\) 0 0
\(675\) 2.15833e10 + 2.15833e10i 0.103969 + 0.103969i
\(676\) 0 0
\(677\) 6.10238e10 + 6.10238e10i 0.290499 + 0.290499i 0.837277 0.546778i \(-0.184146\pi\)
−0.546778 + 0.837277i \(0.684146\pi\)
\(678\) 0 0
\(679\) −4.61957e9 −0.0217332
\(680\) 0 0
\(681\) 1.88756e11i 0.877631i
\(682\) 0 0
\(683\) 1.46023e10 1.46023e10i 0.0671023 0.0671023i −0.672759 0.739862i \(-0.734891\pi\)
0.739862 + 0.672759i \(0.234891\pi\)
\(684\) 0 0
\(685\) 1.16672e11 1.16672e11i 0.529913 0.529913i
\(686\) 0 0
\(687\) 2.70457e10i 0.121415i
\(688\) 0 0
\(689\) −5.99710e9 −0.0266112
\(690\) 0 0
\(691\) 1.40475e9 + 1.40475e9i 0.00616152 + 0.00616152i 0.710181 0.704019i \(-0.248613\pi\)
−0.704019 + 0.710181i \(0.748613\pi\)
\(692\) 0 0
\(693\) 9.45510e9 + 9.45510e9i 0.0409952 + 0.0409952i
\(694\) 0 0
\(695\) 2.17667e11 0.932937
\(696\) 0 0
\(697\) 1.38840e11i 0.588280i
\(698\) 0 0
\(699\) −1.11196e10 + 1.11196e10i −0.0465781 + 0.0465781i
\(700\) 0 0
\(701\) 4.98964e10 4.98964e10i 0.206632 0.206632i −0.596202 0.802834i \(-0.703324\pi\)
0.802834 + 0.596202i \(0.203324\pi\)
\(702\) 0 0
\(703\) 8.74429e10i 0.358017i
\(704\) 0 0
\(705\) 9.39149e10 0.380170
\(706\) 0 0
\(707\) 4.09567e10 + 4.09567e10i 0.163926 + 0.163926i
\(708\) 0 0
\(709\) 1.81955e11 + 1.81955e11i 0.720076 + 0.720076i 0.968620 0.248545i \(-0.0799523\pi\)
−0.248545 + 0.968620i \(0.579952\pi\)
\(710\) 0 0
\(711\) 1.29858e10 0.0508150
\(712\) 0 0
\(713\) 7.76877e10i 0.300603i
\(714\) 0 0
\(715\) −1.98366e10 + 1.98366e10i −0.0759001 + 0.0759001i
\(716\) 0 0
\(717\) −1.54912e10 + 1.54912e10i −0.0586151 + 0.0586151i
\(718\) 0 0
\(719\) 4.21431e11i 1.57692i 0.615084 + 0.788462i \(0.289122\pi\)
−0.615084 + 0.788462i \(0.710878\pi\)
\(720\) 0 0
\(721\) 2.26707e10 0.0838926
\(722\) 0 0
\(723\) −2.02237e11 2.02237e11i −0.740129 0.740129i
\(724\) 0 0
\(725\) −2.21500e10 2.21500e10i −0.0801719 0.0801719i
\(726\) 0 0
\(727\) −3.61832e11 −1.29530 −0.647649 0.761939i \(-0.724248\pi\)
−0.647649 + 0.761939i \(0.724248\pi\)
\(728\) 0 0
\(729\) 1.04604e10i 0.0370370i
\(730\) 0 0
\(731\) 1.82992e11 1.82992e11i 0.640860 0.640860i
\(732\) 0 0
\(733\) 2.27256e11 2.27256e11i 0.787227 0.787227i −0.193812 0.981039i \(-0.562085\pi\)
0.981039 + 0.193812i \(0.0620851\pi\)
\(734\) 0 0
\(735\) 8.03860e10i 0.275442i
\(736\) 0 0
\(737\) 4.23071e11 1.43398
\(738\) 0 0
\(739\) −8.64797e10 8.64797e10i −0.289959 0.289959i 0.547105 0.837064i \(-0.315730\pi\)
−0.837064 + 0.547105i \(0.815730\pi\)
\(740\) 0 0
\(741\) 2.57857e10 + 2.57857e10i 0.0855277 + 0.0855277i
\(742\) 0 0
\(743\) 4.53548e11 1.48822 0.744112 0.668055i \(-0.232873\pi\)
0.744112 + 0.668055i \(0.232873\pi\)
\(744\) 0 0
\(745\) 6.50226e10i 0.211076i
\(746\) 0 0
\(747\) 8.91130e10 8.91130e10i 0.286193 0.286193i
\(748\) 0 0
\(749\) 1.38502e10 1.38502e10i 0.0440077 0.0440077i
\(750\) 0 0
\(751\) 1.33549e11i 0.419836i 0.977719 + 0.209918i \(0.0673198\pi\)
−0.977719 + 0.209918i \(0.932680\pi\)
\(752\) 0 0
\(753\) −5.70485e10 −0.177445
\(754\) 0 0
\(755\) 1.70755e11 + 1.70755e11i 0.525517 + 0.525517i
\(756\) 0 0
\(757\) 4.18661e11 + 4.18661e11i 1.27491 + 1.27491i 0.943481 + 0.331427i \(0.107530\pi\)
0.331427 + 0.943481i \(0.392470\pi\)
\(758\) 0 0
\(759\) 8.81890e10 0.265734
\(760\) 0 0
\(761\) 3.87386e11i 1.15506i −0.816368 0.577532i \(-0.804016\pi\)
0.816368 0.577532i \(-0.195984\pi\)
\(762\) 0 0
\(763\) 5.60810e10 5.60810e10i 0.165469 0.165469i
\(764\) 0 0
\(765\) −3.09673e10 + 3.09673e10i −0.0904185 + 0.0904185i
\(766\) 0 0
\(767\) 1.23564e10i 0.0357035i
\(768\) 0 0
\(769\) −1.11931e11 −0.320070 −0.160035 0.987111i \(-0.551161\pi\)
−0.160035 + 0.987111i \(0.551161\pi\)
\(770\) 0 0
\(771\) −2.27903e11 2.27903e11i −0.644958 0.644958i
\(772\) 0 0
\(773\) 3.26989e11 + 3.26989e11i 0.915829 + 0.915829i 0.996723 0.0808934i \(-0.0257773\pi\)
−0.0808934 + 0.996723i \(0.525777\pi\)
\(774\) 0 0
\(775\) −2.33881e11 −0.648318
\(776\) 0 0
\(777\) 8.18698e9i 0.0224615i
\(778\) 0 0
\(779\) 2.38969e11 2.38969e11i 0.648921 0.648921i
\(780\) 0 0
\(781\) 6.07025e11 6.07025e11i 1.63156 1.63156i
\(782\) 0 0
\(783\) 1.07350e10i 0.0285598i
\(784\) 0 0
\(785\) 2.81475e10 0.0741244
\(786\) 0 0
\(787\) 3.95177e10 + 3.95177e10i 0.103013 + 0.103013i 0.756735 0.653722i \(-0.226793\pi\)
−0.653722 + 0.756735i \(0.726793\pi\)
\(788\) 0 0
\(789\) −2.76695e11 2.76695e11i −0.713993 0.713993i
\(790\) 0 0
\(791\) 4.91704e10 0.125602
\(792\) 0 0
\(793\) 7.10896e10i 0.179768i
\(794\) 0 0
\(795\) −1.23963e10 + 1.23963e10i −0.0310329 + 0.0310329i
\(796\) 0 0
\(797\) 2.90803e11 2.90803e11i 0.720718 0.720718i −0.248034 0.968751i \(-0.579784\pi\)
0.968751 + 0.248034i \(0.0797844\pi\)
\(798\) 0 0
\(799\) 4.36245e11i 1.07039i
\(800\) 0 0
\(801\) −7.77627e10 −0.188904
\(802\) 0 0
\(803\) −1.90089e11 1.90089e11i −0.457187 0.457187i
\(804\) 0 0
\(805\) 6.84049e9 + 6.84049e9i 0.0162894 + 0.0162894i
\(806\) 0 0
\(807\) 2.83722e11 0.668959
\(808\) 0 0
\(809\) 3.45805e11i 0.807304i −0.914913 0.403652i \(-0.867741\pi\)
0.914913 0.403652i \(-0.132259\pi\)
\(810\) 0 0
\(811\) −2.27058e11 + 2.27058e11i −0.524871 + 0.524871i −0.919039 0.394167i \(-0.871033\pi\)
0.394167 + 0.919039i \(0.371033\pi\)
\(812\) 0 0
\(813\) −2.02745e11 + 2.02745e11i −0.464076 + 0.464076i
\(814\) 0 0
\(815\) 2.13766e11i 0.484515i
\(816\) 0 0
\(817\) −6.29924e11 −1.41384
\(818\) 0 0
\(819\) −2.41423e9 2.41423e9i −0.00536591 0.00536591i
\(820\) 0 0
\(821\) 6.01905e11 + 6.01905e11i 1.32481 + 1.32481i 0.909827 + 0.414988i \(0.136214\pi\)
0.414988 + 0.909827i \(0.363786\pi\)
\(822\) 0 0
\(823\) −2.08094e10 −0.0453586 −0.0226793 0.999743i \(-0.507220\pi\)
−0.0226793 + 0.999743i \(0.507220\pi\)
\(824\) 0 0
\(825\) 2.65495e11i 0.573114i
\(826\) 0 0
\(827\) 2.85750e11 2.85750e11i 0.610892 0.610892i −0.332287 0.943178i \(-0.607820\pi\)
0.943178 + 0.332287i \(0.107820\pi\)
\(828\) 0 0
\(829\) 6.34081e11 6.34081e11i 1.34254 1.34254i 0.449014 0.893525i \(-0.351776\pi\)
0.893525 0.449014i \(-0.148224\pi\)
\(830\) 0 0
\(831\) 3.06300e11i 0.642307i
\(832\) 0 0
\(833\) −3.73401e11 −0.775525
\(834\) 0 0
\(835\) −1.31010e11 1.31010e11i −0.269499 0.269499i
\(836\) 0 0
\(837\) 5.66751e10 + 5.66751e10i 0.115476 + 0.115476i
\(838\) 0 0
\(839\) 3.96094e11 0.799375 0.399688 0.916651i \(-0.369119\pi\)
0.399688 + 0.916651i \(0.369119\pi\)
\(840\) 0 0
\(841\) 4.89230e11i 0.977977i
\(842\) 0 0
\(843\) 9.65640e10 9.65640e10i 0.191207 0.191207i
\(844\) 0 0
\(845\) −1.70063e11 + 1.70063e11i −0.333568 + 0.333568i
\(846\) 0 0
\(847\) 4.74095e10i 0.0921153i
\(848\) 0 0
\(849\) −3.12919e11 −0.602284
\(850\) 0 0
\(851\) 3.81805e10 + 3.81805e10i 0.0727987 + 0.0727987i
\(852\) 0 0
\(853\) −2.36449e11 2.36449e11i −0.446624 0.446624i 0.447607 0.894231i \(-0.352276\pi\)
−0.894231 + 0.447607i \(0.852276\pi\)
\(854\) 0 0
\(855\) 1.06600e11 0.199478
\(856\) 0 0
\(857\) 5.75350e11i 1.06662i 0.845921 + 0.533309i \(0.179052\pi\)
−0.845921 + 0.533309i \(0.820948\pi\)
\(858\) 0 0
\(859\) 4.54656e11 4.54656e11i 0.835046 0.835046i −0.153156 0.988202i \(-0.548944\pi\)
0.988202 + 0.153156i \(0.0489438\pi\)
\(860\) 0 0
\(861\) −2.23738e10 + 2.23738e10i −0.0407125 + 0.0407125i
\(862\) 0 0
\(863\) 5.63595e11i 1.01607i 0.861336 + 0.508035i \(0.169628\pi\)
−0.861336 + 0.508035i \(0.830372\pi\)
\(864\) 0 0
\(865\) 1.32333e11 0.236377
\(866\) 0 0
\(867\) −8.68288e10 8.68288e10i −0.153669 0.153669i
\(868\) 0 0
\(869\) −7.98691e10 7.98691e10i −0.140055 0.140055i
\(870\) 0 0
\(871\) −1.08025e11 −0.187695
\(872\) 0 0
\(873\) 3.14333e10i 0.0541170i
\(874\) 0 0
\(875\) 4.75479e10 4.75479e10i 0.0811146 0.0811146i
\(876\) 0 0
\(877\) −4.72278e11 + 4.72278e11i −0.798361 + 0.798361i −0.982837 0.184476i \(-0.940941\pi\)
0.184476 + 0.982837i \(0.440941\pi\)
\(878\) 0 0
\(879\) 3.30463e11i 0.553563i
\(880\) 0 0
\(881\) −1.91927e11 −0.318590 −0.159295 0.987231i \(-0.550922\pi\)
−0.159295 + 0.987231i \(0.550922\pi\)
\(882\) 0 0
\(883\) −5.35958e10 5.35958e10i −0.0881634 0.0881634i 0.661650 0.749813i \(-0.269857\pi\)
−0.749813 + 0.661650i \(0.769857\pi\)
\(884\) 0 0
\(885\) 2.55412e10 + 2.55412e10i 0.0416359 + 0.0416359i
\(886\) 0 0
\(887\) 5.32731e11 0.860623 0.430312 0.902680i \(-0.358404\pi\)
0.430312 + 0.902680i \(0.358404\pi\)
\(888\) 0 0
\(889\) 7.83178e10i 0.125387i
\(890\) 0 0
\(891\) −6.43361e10 + 6.43361e10i −0.102081 + 0.102081i
\(892\) 0 0
\(893\) −7.50855e11 + 7.50855e11i −1.18073 + 1.18073i
\(894\) 0 0
\(895\) 3.23493e11i 0.504165i
\(896\) 0 0
\(897\) −2.25178e10 −0.0347822
\(898\) 0 0
\(899\) −5.81632e10 5.81632e10i −0.0890450 0.0890450i
\(900\) 0 0
\(901\) 5.75819e10 + 5.75819e10i 0.0873750 + 0.0873750i
\(902\) 0 0
\(903\) 5.89776e10 0.0887026
\(904\) 0 0
\(905\) 4.93621e10i 0.0735866i
\(906\) 0 0
\(907\) −1.14644e11 + 1.14644e11i −0.169403 + 0.169403i −0.786717 0.617314i \(-0.788221\pi\)
0.617314 + 0.786717i \(0.288221\pi\)
\(908\) 0 0
\(909\) −2.78685e11 + 2.78685e11i −0.408186 + 0.408186i
\(910\) 0 0
\(911\) 6.94812e10i 0.100877i 0.998727 + 0.0504387i \(0.0160620\pi\)
−0.998727 + 0.0504387i \(0.983938\pi\)
\(912\) 0 0
\(913\) −1.09617e12 −1.57760
\(914\) 0 0
\(915\) −1.46945e11 1.46945e11i −0.209638 0.209638i
\(916\) 0 0
\(917\) 3.25994e9 + 3.25994e9i 0.00461034 + 0.00461034i
\(918\) 0 0
\(919\) −9.17244e11 −1.28595 −0.642973 0.765889i \(-0.722299\pi\)
−0.642973 + 0.765889i \(0.722299\pi\)
\(920\) 0 0
\(921\) 1.48147e11i 0.205899i
\(922\) 0 0
\(923\) −1.54996e11 + 1.54996e11i −0.213556 + 0.213556i
\(924\) 0 0
\(925\) 1.14943e11 1.14943e11i 0.157006 0.157006i
\(926\) 0 0
\(927\) 1.54260e11i 0.208898i
\(928\) 0 0
\(929\) −2.02150e11 −0.271400 −0.135700 0.990750i \(-0.543328\pi\)
−0.135700 + 0.990750i \(0.543328\pi\)
\(930\) 0 0
\(931\) 6.42690e11 + 6.42690e11i 0.855466 + 0.855466i
\(932\) 0 0
\(933\) −5.77298e11 5.77298e11i −0.761857 0.761857i
\(934\) 0 0
\(935\) 3.80927e11 0.498420
\(936\) 0 0
\(937\) 4.55072e11i 0.590367i 0.955441 + 0.295184i \(0.0953808\pi\)
−0.955441 + 0.295184i \(0.904619\pi\)
\(938\) 0 0
\(939\) 1.78452e10 1.78452e10i 0.0229540 0.0229540i
\(940\) 0 0
\(941\) −2.30280e11 + 2.30280e11i −0.293696 + 0.293696i −0.838539 0.544842i \(-0.816590\pi\)
0.544842 + 0.838539i \(0.316590\pi\)
\(942\) 0 0
\(943\) 2.08684e11i 0.263901i
\(944\) 0 0
\(945\) −9.98063e9 −0.0125150
\(946\) 0 0
\(947\) −9.29338e11 9.29338e11i −1.15551 1.15551i −0.985430 0.170080i \(-0.945597\pi\)
−0.170080 0.985430i \(-0.554403\pi\)
\(948\) 0 0
\(949\) 4.85366e10 + 4.85366e10i 0.0598417 + 0.0598417i
\(950\) 0 0
\(951\) −7.59095e11 −0.928055
\(952\) 0 0
\(953\) 2.94264e11i 0.356751i 0.983962 + 0.178376i \(0.0570842\pi\)
−0.983962 + 0.178376i \(0.942916\pi\)
\(954\) 0 0
\(955\) −4.23574e11 + 4.23574e11i −0.509232 + 0.509232i
\(956\) 0 0
\(957\) 6.60253e10 6.60253e10i 0.0787160 0.0787160i
\(958\) 0 0
\(959\) 1.74670e11i 0.206511i
\(960\) 0 0
\(961\) 2.38749e11 0.279929
\(962\) 0 0
\(963\) 9.42421e10 + 9.42421e10i 0.109582 + 0.109582i
\(964\) 0 0
\(965\) −4.51238e11 4.51238e11i −0.520350 0.520350i
\(966\) 0 0
\(967\) −1.17556e12 −1.34443 −0.672216 0.740355i \(-0.734657\pi\)
−0.672216 + 0.740355i \(0.734657\pi\)
\(968\) 0 0
\(969\) 4.95170e11i 0.561642i
\(970\) 0 0
\(971\) −2.62616e11 + 2.62616e11i −0.295423 + 0.295423i −0.839218 0.543795i \(-0.816987\pi\)
0.543795 + 0.839218i \(0.316987\pi\)
\(972\) 0 0
\(973\) 1.62934e11 1.62934e11i 0.181786 0.181786i
\(974\) 0 0
\(975\) 6.77906e10i 0.0750155i
\(976\) 0 0
\(977\) 6.52580e11 0.716235 0.358117 0.933677i \(-0.383419\pi\)
0.358117 + 0.933677i \(0.383419\pi\)
\(978\) 0 0
\(979\) 4.78277e11 + 4.78277e11i 0.520654 + 0.520654i
\(980\) 0 0
\(981\) 3.81597e11 + 3.81597e11i 0.412030 + 0.412030i
\(982\) 0 0
\(983\) −1.10301e12 −1.18132 −0.590659 0.806922i \(-0.701132\pi\)
−0.590659 + 0.806922i \(0.701132\pi\)
\(984\) 0 0
\(985\) 3.97545e10i 0.0422320i
\(986\) 0 0
\(987\) 7.03000e10 7.03000e10i 0.0740776 0.0740776i
\(988\) 0 0
\(989\) 2.75046e11 2.75046e11i 0.287488 0.287488i
\(990\) 0 0
\(991\) 3.11647e11i 0.323124i 0.986863 + 0.161562i \(0.0516531\pi\)
−0.986863 + 0.161562i \(0.948347\pi\)
\(992\) 0 0
\(993\) 3.10094e11 0.318930
\(994\) 0 0
\(995\) −8.05430e10 8.05430e10i −0.0821742 0.0821742i
\(996\) 0 0
\(997\) 1.44432e11 + 1.44432e11i 0.146178 + 0.146178i 0.776408 0.630230i \(-0.217039\pi\)
−0.630230 + 0.776408i \(0.717039\pi\)
\(998\) 0 0
\(999\) −5.57073e10 −0.0559307
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.9.l.a.79.25 64
4.3 odd 2 48.9.l.a.43.21 yes 64
16.3 odd 4 inner 192.9.l.a.175.25 64
16.13 even 4 48.9.l.a.19.21 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.9.l.a.19.21 64 16.13 even 4
48.9.l.a.43.21 yes 64 4.3 odd 2
192.9.l.a.79.25 64 1.1 even 1 trivial
192.9.l.a.175.25 64 16.3 odd 4 inner