Properties

Label 192.9.l.a.79.12
Level $192$
Weight $9$
Character 192.79
Analytic conductor $78.217$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,9,Mod(79,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.79"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 192.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.2166931317\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 79.12
Character \(\chi\) \(=\) 192.79
Dual form 192.9.l.a.175.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-33.0681 - 33.0681i) q^{3} +(508.668 + 508.668i) q^{5} +3253.34 q^{7} +2187.00i q^{9} +(-6777.24 + 6777.24i) q^{11} +(-26051.9 + 26051.9i) q^{13} -33641.4i q^{15} -155108. q^{17} +(98189.8 + 98189.8i) q^{19} +(-107582. - 107582. i) q^{21} -440378. q^{23} +126860. i q^{25} +(72320.0 - 72320.0i) q^{27} +(480071. - 480071. i) q^{29} +627305. i q^{31} +448221. q^{33} +(1.65487e6 + 1.65487e6i) q^{35} +(-1.48337e6 - 1.48337e6i) q^{37} +1.72298e6 q^{39} +42321.1i q^{41} +(1.53336e6 - 1.53336e6i) q^{43} +(-1.11246e6 + 1.11246e6i) q^{45} -8.84396e6i q^{47} +4.81940e6 q^{49} +(5.12911e6 + 5.12911e6i) q^{51} +(-6.41564e6 - 6.41564e6i) q^{53} -6.89473e6 q^{55} -6.49390e6i q^{57} +(9.15868e6 - 9.15868e6i) q^{59} +(-1.53578e7 + 1.53578e7i) q^{61} +7.11505e6i q^{63} -2.65035e7 q^{65} +(-9.64762e6 - 9.64762e6i) q^{67} +(1.45625e7 + 1.45625e7i) q^{69} +9.00590e6 q^{71} +1.17210e7i q^{73} +(4.19503e6 - 4.19503e6i) q^{75} +(-2.20486e7 + 2.20486e7i) q^{77} +3.38546e6i q^{79} -4.78297e6 q^{81} +(-1.31997e7 - 1.31997e7i) q^{83} +(-7.88982e7 - 7.88982e7i) q^{85} -3.17501e7 q^{87} +6.91877e7i q^{89} +(-8.47556e7 + 8.47556e7i) q^{91} +(2.07438e7 - 2.07438e7i) q^{93} +9.98919e7i q^{95} -1.04598e8 q^{97} +(-1.48218e7 - 1.48218e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 39552 q^{11} + 167552 q^{19} - 1691136 q^{23} - 2132352 q^{29} + 2415744 q^{35} - 4720512 q^{37} + 7244672 q^{43} + 52706752 q^{49} - 13862016 q^{51} - 5358720 q^{53} + 46326784 q^{55} - 44938752 q^{59}+ \cdots - 86500224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −33.0681 33.0681i −0.408248 0.408248i
\(4\) 0 0
\(5\) 508.668 + 508.668i 0.813868 + 0.813868i 0.985211 0.171343i \(-0.0548107\pi\)
−0.171343 + 0.985211i \(0.554811\pi\)
\(6\) 0 0
\(7\) 3253.34 1.35499 0.677496 0.735526i \(-0.263065\pi\)
0.677496 + 0.735526i \(0.263065\pi\)
\(8\) 0 0
\(9\) 2187.00i 0.333333i
\(10\) 0 0
\(11\) −6777.24 + 6777.24i −0.462895 + 0.462895i −0.899603 0.436708i \(-0.856144\pi\)
0.436708 + 0.899603i \(0.356144\pi\)
\(12\) 0 0
\(13\) −26051.9 + 26051.9i −0.912150 + 0.912150i −0.996441 0.0842912i \(-0.973137\pi\)
0.0842912 + 0.996441i \(0.473137\pi\)
\(14\) 0 0
\(15\) 33641.4i 0.664521i
\(16\) 0 0
\(17\) −155108. −1.85711 −0.928554 0.371197i \(-0.878947\pi\)
−0.928554 + 0.371197i \(0.878947\pi\)
\(18\) 0 0
\(19\) 98189.8 + 98189.8i 0.753445 + 0.753445i 0.975121 0.221675i \(-0.0711525\pi\)
−0.221675 + 0.975121i \(0.571152\pi\)
\(20\) 0 0
\(21\) −107582. 107582.i −0.553173 0.553173i
\(22\) 0 0
\(23\) −440378. −1.57367 −0.786835 0.617163i \(-0.788282\pi\)
−0.786835 + 0.617163i \(0.788282\pi\)
\(24\) 0 0
\(25\) 126860.i 0.324763i
\(26\) 0 0
\(27\) 72320.0 72320.0i 0.136083 0.136083i
\(28\) 0 0
\(29\) 480071. 480071.i 0.678756 0.678756i −0.280963 0.959719i \(-0.590654\pi\)
0.959719 + 0.280963i \(0.0906537\pi\)
\(30\) 0 0
\(31\) 627305.i 0.679253i 0.940560 + 0.339627i \(0.110301\pi\)
−0.940560 + 0.339627i \(0.889699\pi\)
\(32\) 0 0
\(33\) 448221. 0.377952
\(34\) 0 0
\(35\) 1.65487e6 + 1.65487e6i 1.10279 + 1.10279i
\(36\) 0 0
\(37\) −1.48337e6 1.48337e6i −0.791484 0.791484i 0.190251 0.981735i \(-0.439070\pi\)
−0.981735 + 0.190251i \(0.939070\pi\)
\(38\) 0 0
\(39\) 1.72298e6 0.744767
\(40\) 0 0
\(41\) 42321.1i 0.0149769i 0.999972 + 0.00748845i \(0.00238367\pi\)
−0.999972 + 0.00748845i \(0.997616\pi\)
\(42\) 0 0
\(43\) 1.53336e6 1.53336e6i 0.448508 0.448508i −0.446350 0.894858i \(-0.647276\pi\)
0.894858 + 0.446350i \(0.147276\pi\)
\(44\) 0 0
\(45\) −1.11246e6 + 1.11246e6i −0.271289 + 0.271289i
\(46\) 0 0
\(47\) 8.84396e6i 1.81241i −0.422844 0.906203i \(-0.638968\pi\)
0.422844 0.906203i \(-0.361032\pi\)
\(48\) 0 0
\(49\) 4.81940e6 0.836004
\(50\) 0 0
\(51\) 5.12911e6 + 5.12911e6i 0.758161 + 0.758161i
\(52\) 0 0
\(53\) −6.41564e6 6.41564e6i −0.813086 0.813086i 0.172010 0.985095i \(-0.444974\pi\)
−0.985095 + 0.172010i \(0.944974\pi\)
\(54\) 0 0
\(55\) −6.89473e6 −0.753470
\(56\) 0 0
\(57\) 6.49390e6i 0.615186i
\(58\) 0 0
\(59\) 9.15868e6 9.15868e6i 0.755831 0.755831i −0.219730 0.975561i \(-0.570518\pi\)
0.975561 + 0.219730i \(0.0705176\pi\)
\(60\) 0 0
\(61\) −1.53578e7 + 1.53578e7i −1.10920 + 1.10920i −0.115946 + 0.993256i \(0.536990\pi\)
−0.993256 + 0.115946i \(0.963010\pi\)
\(62\) 0 0
\(63\) 7.11505e6i 0.451664i
\(64\) 0 0
\(65\) −2.65035e7 −1.48474
\(66\) 0 0
\(67\) −9.64762e6 9.64762e6i −0.478764 0.478764i 0.425972 0.904736i \(-0.359932\pi\)
−0.904736 + 0.425972i \(0.859932\pi\)
\(68\) 0 0
\(69\) 1.45625e7 + 1.45625e7i 0.642448 + 0.642448i
\(70\) 0 0
\(71\) 9.00590e6 0.354400 0.177200 0.984175i \(-0.443296\pi\)
0.177200 + 0.984175i \(0.443296\pi\)
\(72\) 0 0
\(73\) 1.17210e7i 0.412736i 0.978474 + 0.206368i \(0.0661644\pi\)
−0.978474 + 0.206368i \(0.933836\pi\)
\(74\) 0 0
\(75\) 4.19503e6 4.19503e6i 0.132584 0.132584i
\(76\) 0 0
\(77\) −2.20486e7 + 2.20486e7i −0.627219 + 0.627219i
\(78\) 0 0
\(79\) 3.38546e6i 0.0869179i 0.999055 + 0.0434590i \(0.0138378\pi\)
−0.999055 + 0.0434590i \(0.986162\pi\)
\(80\) 0 0
\(81\) −4.78297e6 −0.111111
\(82\) 0 0
\(83\) −1.31997e7 1.31997e7i −0.278132 0.278132i 0.554231 0.832363i \(-0.313013\pi\)
−0.832363 + 0.554231i \(0.813013\pi\)
\(84\) 0 0
\(85\) −7.88982e7 7.88982e7i −1.51144 1.51144i
\(86\) 0 0
\(87\) −3.17501e7 −0.554202
\(88\) 0 0
\(89\) 6.91877e7i 1.10273i 0.834264 + 0.551365i \(0.185893\pi\)
−0.834264 + 0.551365i \(0.814107\pi\)
\(90\) 0 0
\(91\) −8.47556e7 + 8.47556e7i −1.23596 + 1.23596i
\(92\) 0 0
\(93\) 2.07438e7 2.07438e7i 0.277304 0.277304i
\(94\) 0 0
\(95\) 9.98919e7i 1.22641i
\(96\) 0 0
\(97\) −1.04598e8 −1.18151 −0.590755 0.806851i \(-0.701170\pi\)
−0.590755 + 0.806851i \(0.701170\pi\)
\(98\) 0 0
\(99\) −1.48218e7 1.48218e7i −0.154298 0.154298i
\(100\) 0 0
\(101\) −754525. 754525.i −0.00725084 0.00725084i 0.703472 0.710723i \(-0.251632\pi\)
−0.710723 + 0.703472i \(0.751632\pi\)
\(102\) 0 0
\(103\) −5.75624e7 −0.511435 −0.255717 0.966752i \(-0.582312\pi\)
−0.255717 + 0.966752i \(0.582312\pi\)
\(104\) 0 0
\(105\) 1.09447e8i 0.900420i
\(106\) 0 0
\(107\) 1.43345e8 1.43345e8i 1.09357 1.09357i 0.0984243 0.995145i \(-0.468620\pi\)
0.995145 0.0984243i \(-0.0313802\pi\)
\(108\) 0 0
\(109\) 9.63597e7 9.63597e7i 0.682637 0.682637i −0.277957 0.960594i \(-0.589657\pi\)
0.960594 + 0.277957i \(0.0896572\pi\)
\(110\) 0 0
\(111\) 9.81044e7i 0.646244i
\(112\) 0 0
\(113\) −1.40687e8 −0.862861 −0.431431 0.902146i \(-0.641991\pi\)
−0.431431 + 0.902146i \(0.641991\pi\)
\(114\) 0 0
\(115\) −2.24006e8 2.24006e8i −1.28076 1.28076i
\(116\) 0 0
\(117\) −5.69755e7 5.69755e7i −0.304050 0.304050i
\(118\) 0 0
\(119\) −5.04617e8 −2.51637
\(120\) 0 0
\(121\) 1.22497e8i 0.571457i
\(122\) 0 0
\(123\) 1.39948e6 1.39948e6i 0.00611429 0.00611429i
\(124\) 0 0
\(125\) 1.34169e8 1.34169e8i 0.549554 0.549554i
\(126\) 0 0
\(127\) 1.18604e8i 0.455916i −0.973671 0.227958i \(-0.926795\pi\)
0.973671 0.227958i \(-0.0732048\pi\)
\(128\) 0 0
\(129\) −1.01411e8 −0.366206
\(130\) 0 0
\(131\) 7.63451e7 + 7.63451e7i 0.259236 + 0.259236i 0.824743 0.565507i \(-0.191320\pi\)
−0.565507 + 0.824743i \(0.691320\pi\)
\(132\) 0 0
\(133\) 3.19444e8 + 3.19444e8i 1.02091 + 1.02091i
\(134\) 0 0
\(135\) 7.35736e7 0.221507
\(136\) 0 0
\(137\) 2.67355e7i 0.0758938i −0.999280 0.0379469i \(-0.987918\pi\)
0.999280 0.0379469i \(-0.0120818\pi\)
\(138\) 0 0
\(139\) −1.90673e8 + 1.90673e8i −0.510776 + 0.510776i −0.914764 0.403988i \(-0.867624\pi\)
0.403988 + 0.914764i \(0.367624\pi\)
\(140\) 0 0
\(141\) −2.92453e8 + 2.92453e8i −0.739911 + 0.739911i
\(142\) 0 0
\(143\) 3.53120e8i 0.844459i
\(144\) 0 0
\(145\) 4.88393e8 1.10484
\(146\) 0 0
\(147\) −1.59368e8 1.59368e8i −0.341297 0.341297i
\(148\) 0 0
\(149\) −2.87068e8 2.87068e8i −0.582424 0.582424i 0.353145 0.935569i \(-0.385112\pi\)
−0.935569 + 0.353145i \(0.885112\pi\)
\(150\) 0 0
\(151\) −2.73453e7 −0.0525986 −0.0262993 0.999654i \(-0.508372\pi\)
−0.0262993 + 0.999654i \(0.508372\pi\)
\(152\) 0 0
\(153\) 3.39220e8i 0.619036i
\(154\) 0 0
\(155\) −3.19090e8 + 3.19090e8i −0.552823 + 0.552823i
\(156\) 0 0
\(157\) −3.95872e8 + 3.95872e8i −0.651562 + 0.651562i −0.953369 0.301807i \(-0.902410\pi\)
0.301807 + 0.953369i \(0.402410\pi\)
\(158\) 0 0
\(159\) 4.24306e8i 0.663882i
\(160\) 0 0
\(161\) −1.43270e9 −2.13231
\(162\) 0 0
\(163\) −7.13925e8 7.13925e8i −1.01135 1.01135i −0.999935 0.0114165i \(-0.996366\pi\)
−0.0114165 0.999935i \(-0.503634\pi\)
\(164\) 0 0
\(165\) 2.27996e8 + 2.27996e8i 0.307603 + 0.307603i
\(166\) 0 0
\(167\) −6.13122e8 −0.788281 −0.394140 0.919050i \(-0.628958\pi\)
−0.394140 + 0.919050i \(0.628958\pi\)
\(168\) 0 0
\(169\) 5.41674e8i 0.664035i
\(170\) 0 0
\(171\) −2.14741e8 + 2.14741e8i −0.251148 + 0.251148i
\(172\) 0 0
\(173\) −9.63205e7 + 9.63205e7i −0.107531 + 0.107531i −0.758825 0.651294i \(-0.774226\pi\)
0.651294 + 0.758825i \(0.274226\pi\)
\(174\) 0 0
\(175\) 4.12719e8i 0.440051i
\(176\) 0 0
\(177\) −6.05720e8 −0.617133
\(178\) 0 0
\(179\) 1.44620e7 + 1.44620e7i 0.0140870 + 0.0140870i 0.714115 0.700028i \(-0.246829\pi\)
−0.700028 + 0.714115i \(0.746829\pi\)
\(180\) 0 0
\(181\) 1.15314e9 + 1.15314e9i 1.07440 + 1.07440i 0.997000 + 0.0774047i \(0.0246634\pi\)
0.0774047 + 0.997000i \(0.475337\pi\)
\(182\) 0 0
\(183\) 1.01571e9 0.905659
\(184\) 0 0
\(185\) 1.50908e9i 1.28833i
\(186\) 0 0
\(187\) 1.05120e9 1.05120e9i 0.859645 0.859645i
\(188\) 0 0
\(189\) 2.35281e8 2.35281e8i 0.184391 0.184391i
\(190\) 0 0
\(191\) 1.91013e9i 1.43526i 0.696426 + 0.717629i \(0.254772\pi\)
−0.696426 + 0.717629i \(0.745228\pi\)
\(192\) 0 0
\(193\) −9.12672e8 −0.657788 −0.328894 0.944367i \(-0.606676\pi\)
−0.328894 + 0.944367i \(0.606676\pi\)
\(194\) 0 0
\(195\) 8.76422e8 + 8.76422e8i 0.606142 + 0.606142i
\(196\) 0 0
\(197\) −6.71398e8 6.71398e8i −0.445775 0.445775i 0.448172 0.893947i \(-0.352075\pi\)
−0.893947 + 0.448172i \(0.852075\pi\)
\(198\) 0 0
\(199\) −2.52411e7 −0.0160952 −0.00804758 0.999968i \(-0.502562\pi\)
−0.00804758 + 0.999968i \(0.502562\pi\)
\(200\) 0 0
\(201\) 6.38057e8i 0.390909i
\(202\) 0 0
\(203\) 1.56183e9 1.56183e9i 0.919709 0.919709i
\(204\) 0 0
\(205\) −2.15274e7 + 2.15274e7i −0.0121892 + 0.0121892i
\(206\) 0 0
\(207\) 9.63106e8i 0.524557i
\(208\) 0 0
\(209\) −1.33091e9 −0.697532
\(210\) 0 0
\(211\) 6.60490e8 + 6.60490e8i 0.333224 + 0.333224i 0.853810 0.520585i \(-0.174286\pi\)
−0.520585 + 0.853810i \(0.674286\pi\)
\(212\) 0 0
\(213\) −2.97808e8 2.97808e8i −0.144683 0.144683i
\(214\) 0 0
\(215\) 1.55994e9 0.730053
\(216\) 0 0
\(217\) 2.04083e9i 0.920383i
\(218\) 0 0
\(219\) 3.87590e8 3.87590e8i 0.168499 0.168499i
\(220\) 0 0
\(221\) 4.04085e9 4.04085e9i 1.69396 1.69396i
\(222\) 0 0
\(223\) 2.95254e9i 1.19392i 0.802269 + 0.596962i \(0.203626\pi\)
−0.802269 + 0.596962i \(0.796374\pi\)
\(224\) 0 0
\(225\) −2.77444e8 −0.108254
\(226\) 0 0
\(227\) −1.18789e9 1.18789e9i −0.447378 0.447378i 0.447104 0.894482i \(-0.352455\pi\)
−0.894482 + 0.447104i \(0.852455\pi\)
\(228\) 0 0
\(229\) 3.55495e9 + 3.55495e9i 1.29268 + 1.29268i 0.933122 + 0.359559i \(0.117073\pi\)
0.359559 + 0.933122i \(0.382927\pi\)
\(230\) 0 0
\(231\) 1.45821e9 0.512122
\(232\) 0 0
\(233\) 2.60000e9i 0.882165i 0.897467 + 0.441082i \(0.145405\pi\)
−0.897467 + 0.441082i \(0.854595\pi\)
\(234\) 0 0
\(235\) 4.49864e9 4.49864e9i 1.47506 1.47506i
\(236\) 0 0
\(237\) 1.11951e8 1.11951e8i 0.0354841 0.0354841i
\(238\) 0 0
\(239\) 1.22584e9i 0.375701i 0.982198 + 0.187850i \(0.0601520\pi\)
−0.982198 + 0.187850i \(0.939848\pi\)
\(240\) 0 0
\(241\) −5.38574e9 −1.59653 −0.798265 0.602307i \(-0.794248\pi\)
−0.798265 + 0.602307i \(0.794248\pi\)
\(242\) 0 0
\(243\) 1.58164e8 + 1.58164e8i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 2.45147e9 + 2.45147e9i 0.680397 + 0.680397i
\(246\) 0 0
\(247\) −5.11606e9 −1.37451
\(248\) 0 0
\(249\) 8.72978e8i 0.227094i
\(250\) 0 0
\(251\) 2.62200e8 2.62200e8i 0.0660599 0.0660599i −0.673305 0.739365i \(-0.735126\pi\)
0.739365 + 0.673305i \(0.235126\pi\)
\(252\) 0 0
\(253\) 2.98454e9 2.98454e9i 0.728444 0.728444i
\(254\) 0 0
\(255\) 5.21803e9i 1.23409i
\(256\) 0 0
\(257\) 2.42435e9 0.555728 0.277864 0.960620i \(-0.410373\pi\)
0.277864 + 0.960620i \(0.410373\pi\)
\(258\) 0 0
\(259\) −4.82590e9 4.82590e9i −1.07245 1.07245i
\(260\) 0 0
\(261\) 1.04992e9 + 1.04992e9i 0.226252 + 0.226252i
\(262\) 0 0
\(263\) 3.25783e9 0.680934 0.340467 0.940256i \(-0.389415\pi\)
0.340467 + 0.940256i \(0.389415\pi\)
\(264\) 0 0
\(265\) 6.52685e9i 1.32349i
\(266\) 0 0
\(267\) 2.28791e9 2.28791e9i 0.450188 0.450188i
\(268\) 0 0
\(269\) −1.83290e9 + 1.83290e9i −0.350050 + 0.350050i −0.860128 0.510078i \(-0.829617\pi\)
0.510078 + 0.860128i \(0.329617\pi\)
\(270\) 0 0
\(271\) 4.10341e9i 0.760796i 0.924823 + 0.380398i \(0.124213\pi\)
−0.924823 + 0.380398i \(0.875787\pi\)
\(272\) 0 0
\(273\) 5.60542e9 1.00915
\(274\) 0 0
\(275\) −8.59763e8 8.59763e8i −0.150331 0.150331i
\(276\) 0 0
\(277\) 4.59144e9 + 4.59144e9i 0.779884 + 0.779884i 0.979811 0.199927i \(-0.0640705\pi\)
−0.199927 + 0.979811i \(0.564070\pi\)
\(278\) 0 0
\(279\) −1.37192e9 −0.226418
\(280\) 0 0
\(281\) 6.54546e9i 1.04982i −0.851157 0.524910i \(-0.824099\pi\)
0.851157 0.524910i \(-0.175901\pi\)
\(282\) 0 0
\(283\) −1.57393e9 + 1.57393e9i −0.245381 + 0.245381i −0.819072 0.573691i \(-0.805511\pi\)
0.573691 + 0.819072i \(0.305511\pi\)
\(284\) 0 0
\(285\) 3.30324e9 3.30324e9i 0.500680 0.500680i
\(286\) 0 0
\(287\) 1.37685e8i 0.0202936i
\(288\) 0 0
\(289\) 1.70826e10 2.44885
\(290\) 0 0
\(291\) 3.45887e9 + 3.45887e9i 0.482350 + 0.482350i
\(292\) 0 0
\(293\) 1.77618e9 + 1.77618e9i 0.240999 + 0.240999i 0.817263 0.576264i \(-0.195490\pi\)
−0.576264 + 0.817263i \(0.695490\pi\)
\(294\) 0 0
\(295\) 9.31744e9 1.23029
\(296\) 0 0
\(297\) 9.80260e8i 0.125984i
\(298\) 0 0
\(299\) 1.14727e10 1.14727e10i 1.43542 1.43542i
\(300\) 0 0
\(301\) 4.98854e9 4.98854e9i 0.607725 0.607725i
\(302\) 0 0
\(303\) 4.99015e7i 0.00592029i
\(304\) 0 0
\(305\) −1.56241e10 −1.80549
\(306\) 0 0
\(307\) 1.15353e10 + 1.15353e10i 1.29860 + 1.29860i 0.929319 + 0.369278i \(0.120395\pi\)
0.369278 + 0.929319i \(0.379605\pi\)
\(308\) 0 0
\(309\) 1.90348e9 + 1.90348e9i 0.208792 + 0.208792i
\(310\) 0 0
\(311\) −1.19033e10 −1.27241 −0.636204 0.771521i \(-0.719496\pi\)
−0.636204 + 0.771521i \(0.719496\pi\)
\(312\) 0 0
\(313\) 1.72755e10i 1.79992i 0.435968 + 0.899962i \(0.356406\pi\)
−0.435968 + 0.899962i \(0.643594\pi\)
\(314\) 0 0
\(315\) −3.61919e9 + 3.61919e9i −0.367595 + 0.367595i
\(316\) 0 0
\(317\) −4.29968e9 + 4.29968e9i −0.425794 + 0.425794i −0.887193 0.461399i \(-0.847348\pi\)
0.461399 + 0.887193i \(0.347348\pi\)
\(318\) 0 0
\(319\) 6.50712e9i 0.628385i
\(320\) 0 0
\(321\) −9.48027e9 −0.892895
\(322\) 0 0
\(323\) −1.52300e10 1.52300e10i −1.39923 1.39923i
\(324\) 0 0
\(325\) −3.30496e9 3.30496e9i −0.296232 0.296232i
\(326\) 0 0
\(327\) −6.37287e9 −0.557370
\(328\) 0 0
\(329\) 2.87724e10i 2.45580i
\(330\) 0 0
\(331\) −4.94130e9 + 4.94130e9i −0.411651 + 0.411651i −0.882313 0.470663i \(-0.844015\pi\)
0.470663 + 0.882313i \(0.344015\pi\)
\(332\) 0 0
\(333\) 3.24413e9 3.24413e9i 0.263828 0.263828i
\(334\) 0 0
\(335\) 9.81487e9i 0.779301i
\(336\) 0 0
\(337\) −9.65157e9 −0.748305 −0.374152 0.927367i \(-0.622066\pi\)
−0.374152 + 0.927367i \(0.622066\pi\)
\(338\) 0 0
\(339\) 4.65226e9 + 4.65226e9i 0.352262 + 0.352262i
\(340\) 0 0
\(341\) −4.25140e9 4.25140e9i −0.314423 0.314423i
\(342\) 0 0
\(343\) −3.07571e9 −0.222213
\(344\) 0 0
\(345\) 1.48149e10i 1.04574i
\(346\) 0 0
\(347\) −1.26738e10 + 1.26738e10i −0.874154 + 0.874154i −0.992922 0.118768i \(-0.962106\pi\)
0.118768 + 0.992922i \(0.462106\pi\)
\(348\) 0 0
\(349\) −5.75442e9 + 5.75442e9i −0.387882 + 0.387882i −0.873931 0.486049i \(-0.838438\pi\)
0.486049 + 0.873931i \(0.338438\pi\)
\(350\) 0 0
\(351\) 3.76815e9i 0.248256i
\(352\) 0 0
\(353\) −9.23615e9 −0.594829 −0.297415 0.954748i \(-0.596124\pi\)
−0.297415 + 0.954748i \(0.596124\pi\)
\(354\) 0 0
\(355\) 4.58101e9 + 4.58101e9i 0.288435 + 0.288435i
\(356\) 0 0
\(357\) 1.66867e10 + 1.66867e10i 1.02730 + 1.02730i
\(358\) 0 0
\(359\) −1.95347e10 −1.17606 −0.588029 0.808840i \(-0.700096\pi\)
−0.588029 + 0.808840i \(0.700096\pi\)
\(360\) 0 0
\(361\) 2.29889e9i 0.135360i
\(362\) 0 0
\(363\) 4.05074e9 4.05074e9i 0.233296 0.233296i
\(364\) 0 0
\(365\) −5.96208e9 + 5.96208e9i −0.335913 + 0.335913i
\(366\) 0 0
\(367\) 2.69559e10i 1.48590i 0.669346 + 0.742951i \(0.266574\pi\)
−0.669346 + 0.742951i \(0.733426\pi\)
\(368\) 0 0
\(369\) −9.25563e7 −0.00499230
\(370\) 0 0
\(371\) −2.08722e10 2.08722e10i −1.10172 1.10172i
\(372\) 0 0
\(373\) −2.16781e10 2.16781e10i −1.11992 1.11992i −0.991753 0.128166i \(-0.959091\pi\)
−0.128166 0.991753i \(-0.540909\pi\)
\(374\) 0 0
\(375\) −8.87340e9 −0.448709
\(376\) 0 0
\(377\) 2.50135e10i 1.23825i
\(378\) 0 0
\(379\) 2.36973e10 2.36973e10i 1.14853 1.14853i 0.161686 0.986842i \(-0.448307\pi\)
0.986842 0.161686i \(-0.0516933\pi\)
\(380\) 0 0
\(381\) −3.92201e9 + 3.92201e9i −0.186127 + 0.186127i
\(382\) 0 0
\(383\) 2.26683e10i 1.05348i −0.850028 0.526738i \(-0.823415\pi\)
0.850028 0.526738i \(-0.176585\pi\)
\(384\) 0 0
\(385\) −2.24309e10 −1.02095
\(386\) 0 0
\(387\) 3.35346e9 + 3.35346e9i 0.149503 + 0.149503i
\(388\) 0 0
\(389\) −1.99758e9 1.99758e9i −0.0872379 0.0872379i 0.662141 0.749379i \(-0.269648\pi\)
−0.749379 + 0.662141i \(0.769648\pi\)
\(390\) 0 0
\(391\) 6.83059e10 2.92248
\(392\) 0 0
\(393\) 5.04918e9i 0.211666i
\(394\) 0 0
\(395\) −1.72207e9 + 1.72207e9i −0.0707397 + 0.0707397i
\(396\) 0 0
\(397\) −1.46535e10 + 1.46535e10i −0.589900 + 0.589900i −0.937604 0.347704i \(-0.886961\pi\)
0.347704 + 0.937604i \(0.386961\pi\)
\(398\) 0 0
\(399\) 2.11268e10i 0.833572i
\(400\) 0 0
\(401\) −3.06109e10 −1.18385 −0.591927 0.805991i \(-0.701633\pi\)
−0.591927 + 0.805991i \(0.701633\pi\)
\(402\) 0 0
\(403\) −1.63425e10 1.63425e10i −0.619581 0.619581i
\(404\) 0 0
\(405\) −2.43294e9 2.43294e9i −0.0904298 0.0904298i
\(406\) 0 0
\(407\) 2.01063e10 0.732748
\(408\) 0 0
\(409\) 4.58595e10i 1.63884i −0.573194 0.819420i \(-0.694296\pi\)
0.573194 0.819420i \(-0.305704\pi\)
\(410\) 0 0
\(411\) −8.84093e8 + 8.84093e8i −0.0309835 + 0.0309835i
\(412\) 0 0
\(413\) 2.97963e10 2.97963e10i 1.02415 1.02415i
\(414\) 0 0
\(415\) 1.34285e10i 0.452726i
\(416\) 0 0
\(417\) 1.26104e10 0.417047
\(418\) 0 0
\(419\) 8.22572e9 + 8.22572e9i 0.266881 + 0.266881i 0.827842 0.560961i \(-0.189568\pi\)
−0.560961 + 0.827842i \(0.689568\pi\)
\(420\) 0 0
\(421\) 1.63287e10 + 1.63287e10i 0.519784 + 0.519784i 0.917506 0.397722i \(-0.130199\pi\)
−0.397722 + 0.917506i \(0.630199\pi\)
\(422\) 0 0
\(423\) 1.93417e10 0.604135
\(424\) 0 0
\(425\) 1.96770e10i 0.603119i
\(426\) 0 0
\(427\) −4.99642e10 + 4.99642e10i −1.50296 + 1.50296i
\(428\) 0 0
\(429\) −1.16770e10 + 1.16770e10i −0.344749 + 0.344749i
\(430\) 0 0
\(431\) 1.42893e9i 0.0414098i 0.999786 + 0.0207049i \(0.00659105\pi\)
−0.999786 + 0.0207049i \(0.993409\pi\)
\(432\) 0 0
\(433\) 2.04819e10 0.582664 0.291332 0.956622i \(-0.405902\pi\)
0.291332 + 0.956622i \(0.405902\pi\)
\(434\) 0 0
\(435\) −1.61502e10 1.61502e10i −0.451047 0.451047i
\(436\) 0 0
\(437\) −4.32406e10 4.32406e10i −1.18567 1.18567i
\(438\) 0 0
\(439\) −5.67014e10 −1.52664 −0.763318 0.646023i \(-0.776431\pi\)
−0.763318 + 0.646023i \(0.776431\pi\)
\(440\) 0 0
\(441\) 1.05400e10i 0.278668i
\(442\) 0 0
\(443\) −3.09800e10 + 3.09800e10i −0.804389 + 0.804389i −0.983778 0.179389i \(-0.942588\pi\)
0.179389 + 0.983778i \(0.442588\pi\)
\(444\) 0 0
\(445\) −3.51936e10 + 3.51936e10i −0.897477 + 0.897477i
\(446\) 0 0
\(447\) 1.89856e10i 0.475547i
\(448\) 0 0
\(449\) 3.06686e10 0.754587 0.377293 0.926094i \(-0.376855\pi\)
0.377293 + 0.926094i \(0.376855\pi\)
\(450\) 0 0
\(451\) −2.86821e8 2.86821e8i −0.00693273 0.00693273i
\(452\) 0 0
\(453\) 9.04256e8 + 9.04256e8i 0.0214733 + 0.0214733i
\(454\) 0 0
\(455\) −8.62249e10 −2.01181
\(456\) 0 0
\(457\) 9.64047e9i 0.221021i 0.993875 + 0.110510i \(0.0352486\pi\)
−0.993875 + 0.110510i \(0.964751\pi\)
\(458\) 0 0
\(459\) −1.12174e10 + 1.12174e10i −0.252720 + 0.252720i
\(460\) 0 0
\(461\) 3.69566e9 3.69566e9i 0.0818255 0.0818255i −0.665009 0.746835i \(-0.731572\pi\)
0.746835 + 0.665009i \(0.231572\pi\)
\(462\) 0 0
\(463\) 5.80756e9i 0.126377i −0.998002 0.0631887i \(-0.979873\pi\)
0.998002 0.0631887i \(-0.0201270\pi\)
\(464\) 0 0
\(465\) 2.11034e10 0.451378
\(466\) 0 0
\(467\) 4.63321e10 + 4.63321e10i 0.974125 + 0.974125i 0.999674 0.0255490i \(-0.00813337\pi\)
−0.0255490 + 0.999674i \(0.508133\pi\)
\(468\) 0 0
\(469\) −3.13870e10 3.13870e10i −0.648721 0.648721i
\(470\) 0 0
\(471\) 2.61815e10 0.531999
\(472\) 0 0
\(473\) 2.07839e10i 0.415224i
\(474\) 0 0
\(475\) −1.24564e10 + 1.24564e10i −0.244691 + 0.244691i
\(476\) 0 0
\(477\) 1.40310e10 1.40310e10i 0.271029 0.271029i
\(478\) 0 0
\(479\) 9.25763e10i 1.75856i −0.476302 0.879282i \(-0.658023\pi\)
0.476302 0.879282i \(-0.341977\pi\)
\(480\) 0 0
\(481\) 7.72892e10 1.44390
\(482\) 0 0
\(483\) 4.73766e10 + 4.73766e10i 0.870513 + 0.870513i
\(484\) 0 0
\(485\) −5.32058e10 5.32058e10i −0.961594 0.961594i
\(486\) 0 0
\(487\) −4.07553e10 −0.724550 −0.362275 0.932071i \(-0.618000\pi\)
−0.362275 + 0.932071i \(0.618000\pi\)
\(488\) 0 0
\(489\) 4.72163e10i 0.825765i
\(490\) 0 0
\(491\) 2.12853e10 2.12853e10i 0.366229 0.366229i −0.499871 0.866100i \(-0.666619\pi\)
0.866100 + 0.499871i \(0.166619\pi\)
\(492\) 0 0
\(493\) −7.44626e10 + 7.44626e10i −1.26052 + 1.26052i
\(494\) 0 0
\(495\) 1.50788e10i 0.251157i
\(496\) 0 0
\(497\) 2.92992e10 0.480209
\(498\) 0 0
\(499\) 6.20782e8 + 6.20782e8i 0.0100124 + 0.0100124i 0.712095 0.702083i \(-0.247746\pi\)
−0.702083 + 0.712095i \(0.747746\pi\)
\(500\) 0 0
\(501\) 2.02748e10 + 2.02748e10i 0.321814 + 0.321814i
\(502\) 0 0
\(503\) −5.71269e10 −0.892419 −0.446210 0.894928i \(-0.647226\pi\)
−0.446210 + 0.894928i \(0.647226\pi\)
\(504\) 0 0
\(505\) 7.67605e8i 0.0118025i
\(506\) 0 0
\(507\) −1.79121e10 + 1.79121e10i −0.271091 + 0.271091i
\(508\) 0 0
\(509\) 7.08210e9 7.08210e9i 0.105509 0.105509i −0.652381 0.757891i \(-0.726230\pi\)
0.757891 + 0.652381i \(0.226230\pi\)
\(510\) 0 0
\(511\) 3.81323e10i 0.559254i
\(512\) 0 0
\(513\) 1.42022e10 0.205062
\(514\) 0 0
\(515\) −2.92801e10 2.92801e10i −0.416240 0.416240i
\(516\) 0 0
\(517\) 5.99377e10 + 5.99377e10i 0.838953 + 0.838953i
\(518\) 0 0
\(519\) 6.37027e9 0.0877988
\(520\) 0 0
\(521\) 7.39836e10i 1.00412i 0.864833 + 0.502059i \(0.167424\pi\)
−0.864833 + 0.502059i \(0.832576\pi\)
\(522\) 0 0
\(523\) 4.85141e10 4.85141e10i 0.648427 0.648427i −0.304186 0.952613i \(-0.598384\pi\)
0.952613 + 0.304186i \(0.0983844\pi\)
\(524\) 0 0
\(525\) 1.36479e10 1.36479e10i 0.179650 0.179650i
\(526\) 0 0
\(527\) 9.72997e10i 1.26145i
\(528\) 0 0
\(529\) 1.15621e11 1.47644
\(530\) 0 0
\(531\) 2.00300e10 + 2.00300e10i 0.251944 + 0.251944i
\(532\) 0 0
\(533\) −1.10255e9 1.10255e9i −0.0136612 0.0136612i
\(534\) 0 0
\(535\) 1.45829e11 1.78004
\(536\) 0 0
\(537\) 9.56464e8i 0.0115019i
\(538\) 0 0
\(539\) −3.26622e10 + 3.26622e10i −0.386982 + 0.386982i
\(540\) 0 0
\(541\) 7.14242e10 7.14242e10i 0.833789 0.833789i −0.154244 0.988033i \(-0.549294\pi\)
0.988033 + 0.154244i \(0.0492941\pi\)
\(542\) 0 0
\(543\) 7.62643e10i 0.877248i
\(544\) 0 0
\(545\) 9.80301e10 1.11115
\(546\) 0 0
\(547\) 4.85657e10 + 4.85657e10i 0.542476 + 0.542476i 0.924254 0.381778i \(-0.124688\pi\)
−0.381778 + 0.924254i \(0.624688\pi\)
\(548\) 0 0
\(549\) −3.35876e10 3.35876e10i −0.369734 0.369734i
\(550\) 0 0
\(551\) 9.42761e10 1.02281
\(552\) 0 0
\(553\) 1.10140e10i 0.117773i
\(554\) 0 0
\(555\) −4.99025e10 + 4.99025e10i −0.525957 + 0.525957i
\(556\) 0 0
\(557\) 2.15340e10 2.15340e10i 0.223720 0.223720i −0.586343 0.810063i \(-0.699433\pi\)
0.810063 + 0.586343i \(0.199433\pi\)
\(558\) 0 0
\(559\) 7.98940e10i 0.818214i
\(560\) 0 0
\(561\) −6.95225e10 −0.701898
\(562\) 0 0
\(563\) 6.79499e10 + 6.79499e10i 0.676325 + 0.676325i 0.959167 0.282842i \(-0.0912772\pi\)
−0.282842 + 0.959167i \(0.591277\pi\)
\(564\) 0 0
\(565\) −7.15631e10 7.15631e10i −0.702255 0.702255i
\(566\) 0 0
\(567\) −1.55606e10 −0.150555
\(568\) 0 0
\(569\) 5.33123e10i 0.508603i 0.967125 + 0.254301i \(0.0818455\pi\)
−0.967125 + 0.254301i \(0.918155\pi\)
\(570\) 0 0
\(571\) 4.45623e10 4.45623e10i 0.419202 0.419202i −0.465727 0.884929i \(-0.654207\pi\)
0.884929 + 0.465727i \(0.154207\pi\)
\(572\) 0 0
\(573\) 6.31644e10 6.31644e10i 0.585941 0.585941i
\(574\) 0 0
\(575\) 5.58665e10i 0.511069i
\(576\) 0 0
\(577\) 1.92831e11 1.73969 0.869847 0.493322i \(-0.164218\pi\)
0.869847 + 0.493322i \(0.164218\pi\)
\(578\) 0 0
\(579\) 3.01804e10 + 3.01804e10i 0.268541 + 0.268541i
\(580\) 0 0
\(581\) −4.29430e10 4.29430e10i −0.376867 0.376867i
\(582\) 0 0
\(583\) 8.69606e10 0.752746
\(584\) 0 0
\(585\) 5.79632e10i 0.494913i
\(586\) 0 0
\(587\) 1.57969e10 1.57969e10i 0.133051 0.133051i −0.637445 0.770496i \(-0.720009\pi\)
0.770496 + 0.637445i \(0.220009\pi\)
\(588\) 0 0
\(589\) −6.15949e10 + 6.15949e10i −0.511780 + 0.511780i
\(590\) 0 0
\(591\) 4.44038e10i 0.363973i
\(592\) 0 0
\(593\) −1.82931e11 −1.47934 −0.739669 0.672970i \(-0.765018\pi\)
−0.739669 + 0.672970i \(0.765018\pi\)
\(594\) 0 0
\(595\) −2.56682e11 2.56682e11i −2.04799 2.04799i
\(596\) 0 0
\(597\) 8.34674e8 + 8.34674e8i 0.00657082 + 0.00657082i
\(598\) 0 0
\(599\) 1.91701e11 1.48908 0.744538 0.667580i \(-0.232670\pi\)
0.744538 + 0.667580i \(0.232670\pi\)
\(600\) 0 0
\(601\) 9.59781e10i 0.735655i −0.929894 0.367828i \(-0.880102\pi\)
0.929894 0.367828i \(-0.119898\pi\)
\(602\) 0 0
\(603\) 2.10994e10 2.10994e10i 0.159588 0.159588i
\(604\) 0 0
\(605\) −6.23102e10 + 6.23102e10i −0.465091 + 0.465091i
\(606\) 0 0
\(607\) 8.08524e10i 0.595577i −0.954632 0.297789i \(-0.903751\pi\)
0.954632 0.297789i \(-0.0962491\pi\)
\(608\) 0 0
\(609\) −1.03294e11 −0.750939
\(610\) 0 0
\(611\) 2.30402e11 + 2.30402e11i 1.65319 + 1.65319i
\(612\) 0 0
\(613\) 8.34407e10 + 8.34407e10i 0.590930 + 0.590930i 0.937883 0.346953i \(-0.112784\pi\)
−0.346953 + 0.937883i \(0.612784\pi\)
\(614\) 0 0
\(615\) 1.42374e9 0.00995246
\(616\) 0 0
\(617\) 2.09834e11i 1.44789i −0.689859 0.723943i \(-0.742328\pi\)
0.689859 0.723943i \(-0.257672\pi\)
\(618\) 0 0
\(619\) −2.75000e10 + 2.75000e10i −0.187314 + 0.187314i −0.794534 0.607220i \(-0.792285\pi\)
0.607220 + 0.794534i \(0.292285\pi\)
\(620\) 0 0
\(621\) −3.18481e10 + 3.18481e10i −0.214149 + 0.214149i
\(622\) 0 0
\(623\) 2.25091e11i 1.49419i
\(624\) 0 0
\(625\) 1.86049e11 1.21929
\(626\) 0 0
\(627\) 4.40107e10 + 4.40107e10i 0.284766 + 0.284766i
\(628\) 0 0
\(629\) 2.30082e11 + 2.30082e11i 1.46987 + 1.46987i
\(630\) 0 0
\(631\) 1.92278e11 1.21286 0.606432 0.795135i \(-0.292600\pi\)
0.606432 + 0.795135i \(0.292600\pi\)
\(632\) 0 0
\(633\) 4.36823e10i 0.272076i
\(634\) 0 0
\(635\) 6.03300e10 6.03300e10i 0.371055 0.371055i
\(636\) 0 0
\(637\) −1.25555e11 + 1.25555e11i −0.762561 + 0.762561i
\(638\) 0 0
\(639\) 1.96959e10i 0.118133i
\(640\) 0 0
\(641\) −2.38418e11 −1.41223 −0.706117 0.708095i \(-0.749555\pi\)
−0.706117 + 0.708095i \(0.749555\pi\)
\(642\) 0 0
\(643\) 4.68691e10 + 4.68691e10i 0.274184 + 0.274184i 0.830782 0.556598i \(-0.187894\pi\)
−0.556598 + 0.830782i \(0.687894\pi\)
\(644\) 0 0
\(645\) −5.15843e10 5.15843e10i −0.298043 0.298043i
\(646\) 0 0
\(647\) 9.62172e10 0.549080 0.274540 0.961576i \(-0.411474\pi\)
0.274540 + 0.961576i \(0.411474\pi\)
\(648\) 0 0
\(649\) 1.24141e11i 0.699740i
\(650\) 0 0
\(651\) 6.74865e10 6.74865e10i 0.375745 0.375745i
\(652\) 0 0
\(653\) 1.55526e11 1.55526e11i 0.855360 0.855360i −0.135427 0.990787i \(-0.543241\pi\)
0.990787 + 0.135427i \(0.0432407\pi\)
\(654\) 0 0
\(655\) 7.76685e10i 0.421968i
\(656\) 0 0
\(657\) −2.56338e10 −0.137579
\(658\) 0 0
\(659\) −7.24722e10 7.24722e10i −0.384264 0.384264i 0.488372 0.872636i \(-0.337591\pi\)
−0.872636 + 0.488372i \(0.837591\pi\)
\(660\) 0 0
\(661\) −1.45594e11 1.45594e11i −0.762673 0.762673i 0.214132 0.976805i \(-0.431308\pi\)
−0.976805 + 0.214132i \(0.931308\pi\)
\(662\) 0 0
\(663\) −2.67246e11 −1.38311
\(664\) 0 0
\(665\) 3.24982e11i 1.66178i
\(666\) 0 0
\(667\) −2.11413e11 + 2.11413e11i −1.06814 + 1.06814i
\(668\) 0 0
\(669\) 9.76350e10 9.76350e10i 0.487418 0.487418i
\(670\) 0 0
\(671\) 2.08167e11i 1.02689i
\(672\) 0 0
\(673\) −5.95017e10 −0.290048 −0.145024 0.989428i \(-0.546326\pi\)
−0.145024 + 0.989428i \(0.546326\pi\)
\(674\) 0 0
\(675\) 9.17454e9 + 9.17454e9i 0.0441946 + 0.0441946i
\(676\) 0 0
\(677\) 6.38020e10 + 6.38020e10i 0.303724 + 0.303724i 0.842469 0.538745i \(-0.181101\pi\)
−0.538745 + 0.842469i \(0.681101\pi\)
\(678\) 0 0
\(679\) −3.40293e11 −1.60094
\(680\) 0 0
\(681\) 7.85629e10i 0.365283i
\(682\) 0 0
\(683\) −9.14398e10 + 9.14398e10i −0.420196 + 0.420196i −0.885271 0.465075i \(-0.846027\pi\)
0.465075 + 0.885271i \(0.346027\pi\)
\(684\) 0 0
\(685\) 1.35995e10 1.35995e10i 0.0617675 0.0617675i
\(686\) 0 0
\(687\) 2.35111e11i 1.05547i
\(688\) 0 0
\(689\) 3.34279e11 1.48331
\(690\) 0 0
\(691\) −2.29971e11 2.29971e11i −1.00870 1.00870i −0.999962 0.00873733i \(-0.997219\pi\)
−0.00873733 0.999962i \(-0.502781\pi\)
\(692\) 0 0
\(693\) −4.82204e10 4.82204e10i −0.209073 0.209073i
\(694\) 0 0
\(695\) −1.93979e11 −0.831408
\(696\) 0 0
\(697\) 6.56433e9i 0.0278137i
\(698\) 0 0
\(699\) 8.59771e10 8.59771e10i 0.360142 0.360142i
\(700\) 0 0
\(701\) −2.53372e11 + 2.53372e11i −1.04927 + 1.04927i −0.0505476 + 0.998722i \(0.516097\pi\)
−0.998722 + 0.0505476i \(0.983903\pi\)
\(702\) 0 0
\(703\) 2.91303e11i 1.19268i
\(704\) 0 0
\(705\) −2.97523e11 −1.20438
\(706\) 0 0
\(707\) −2.45473e9 2.45473e9i −0.00982483 0.00982483i
\(708\) 0 0
\(709\) −1.66916e11 1.66916e11i −0.660561 0.660561i 0.294951 0.955512i \(-0.404697\pi\)
−0.955512 + 0.294951i \(0.904697\pi\)
\(710\) 0 0
\(711\) −7.40400e9 −0.0289726
\(712\) 0 0
\(713\) 2.76251e11i 1.06892i
\(714\) 0 0
\(715\) 1.79621e11 1.79621e11i 0.687278 0.687278i
\(716\) 0 0
\(717\) 4.05362e10 4.05362e10i 0.153379 0.153379i
\(718\) 0 0
\(719\) 4.08434e11i 1.52829i 0.645042 + 0.764147i \(0.276840\pi\)
−0.645042 + 0.764147i \(0.723160\pi\)
\(720\) 0 0
\(721\) −1.87270e11 −0.692990
\(722\) 0 0
\(723\) 1.78096e11 + 1.78096e11i 0.651780 + 0.651780i
\(724\) 0 0
\(725\) 6.09020e10 + 6.09020e10i 0.220434 + 0.220434i
\(726\) 0 0
\(727\) −1.75647e11 −0.628785 −0.314392 0.949293i \(-0.601801\pi\)
−0.314392 + 0.949293i \(0.601801\pi\)
\(728\) 0 0
\(729\) 1.04604e10i 0.0370370i
\(730\) 0 0
\(731\) −2.37836e11 + 2.37836e11i −0.832929 + 0.832929i
\(732\) 0 0
\(733\) −2.15517e11 + 2.15517e11i −0.746563 + 0.746563i −0.973832 0.227269i \(-0.927020\pi\)
0.227269 + 0.973832i \(0.427020\pi\)
\(734\) 0 0
\(735\) 1.62131e11i 0.555542i
\(736\) 0 0
\(737\) 1.30769e11 0.443234
\(738\) 0 0
\(739\) −2.36391e11 2.36391e11i −0.792598 0.792598i 0.189318 0.981916i \(-0.439372\pi\)
−0.981916 + 0.189318i \(0.939372\pi\)
\(740\) 0 0
\(741\) 1.69179e11 + 1.69179e11i 0.561141 + 0.561141i
\(742\) 0 0
\(743\) −8.00989e10 −0.262828 −0.131414 0.991328i \(-0.541952\pi\)
−0.131414 + 0.991328i \(0.541952\pi\)
\(744\) 0 0
\(745\) 2.92044e11i 0.948033i
\(746\) 0 0
\(747\) 2.88677e10 2.88677e10i 0.0927108 0.0927108i
\(748\) 0 0
\(749\) 4.66348e11 4.66348e11i 1.48178 1.48178i
\(750\) 0 0
\(751\) 4.40769e11i 1.38564i 0.721110 + 0.692821i \(0.243632\pi\)
−0.721110 + 0.692821i \(0.756368\pi\)
\(752\) 0 0
\(753\) −1.73409e10 −0.0539377
\(754\) 0 0
\(755\) −1.39096e10 1.39096e10i −0.0428083 0.0428083i
\(756\) 0 0
\(757\) 3.82170e11 + 3.82170e11i 1.16379 + 1.16379i 0.983640 + 0.180147i \(0.0576575\pi\)
0.180147 + 0.983640i \(0.442343\pi\)
\(758\) 0 0
\(759\) −1.97387e11 −0.594772
\(760\) 0 0
\(761\) 4.89963e10i 0.146092i −0.997329 0.0730458i \(-0.976728\pi\)
0.997329 0.0730458i \(-0.0232719\pi\)
\(762\) 0 0
\(763\) 3.13491e11 3.13491e11i 0.924967 0.924967i
\(764\) 0 0
\(765\) 1.72550e11 1.72550e11i 0.503814 0.503814i
\(766\) 0 0
\(767\) 4.77202e11i 1.37886i
\(768\) 0 0
\(769\) −4.61794e11 −1.32051 −0.660257 0.751040i \(-0.729553\pi\)
−0.660257 + 0.751040i \(0.729553\pi\)
\(770\) 0 0
\(771\) −8.01686e10 8.01686e10i −0.226875 0.226875i
\(772\) 0 0
\(773\) 1.57922e11 + 1.57922e11i 0.442307 + 0.442307i 0.892787 0.450480i \(-0.148747\pi\)
−0.450480 + 0.892787i \(0.648747\pi\)
\(774\) 0 0
\(775\) −7.95801e10 −0.220596
\(776\) 0 0
\(777\) 3.19167e11i 0.875656i
\(778\) 0 0
\(779\) −4.15550e9 + 4.15550e9i −0.0112843 + 0.0112843i
\(780\) 0 0
\(781\) −6.10352e10 + 6.10352e10i −0.164050 + 0.164050i
\(782\) 0 0
\(783\) 6.94375e10i 0.184734i
\(784\) 0 0
\(785\) −4.02734e11 −1.06057
\(786\) 0 0
\(787\) −3.89880e11 3.89880e11i −1.01632 1.01632i −0.999865 0.0164595i \(-0.994761\pi\)
−0.0164595 0.999865i \(-0.505239\pi\)
\(788\) 0 0
\(789\) −1.07730e11 1.07730e11i −0.277990 0.277990i
\(790\) 0 0
\(791\) −4.57703e11 −1.16917
\(792\) 0 0
\(793\) 8.00201e11i 2.02352i
\(794\) 0 0
\(795\) −2.15831e11 + 2.15831e11i −0.540312 + 0.540312i
\(796\) 0 0
\(797\) −1.28611e11 + 1.28611e11i −0.318745 + 0.318745i −0.848285 0.529540i \(-0.822365\pi\)
0.529540 + 0.848285i \(0.322365\pi\)
\(798\) 0 0
\(799\) 1.37176e12i 3.36583i
\(800\) 0 0
\(801\) −1.51314e11 −0.367577
\(802\) 0 0
\(803\) −7.94359e10 7.94359e10i −0.191053 0.191053i
\(804\) 0 0
\(805\) −7.28766e11 7.28766e11i −1.73542 1.73542i
\(806\) 0 0
\(807\) 1.21221e11 0.285815
\(808\) 0 0
\(809\) 3.20778e11i 0.748877i 0.927252 + 0.374439i \(0.122165\pi\)
−0.927252 + 0.374439i \(0.877835\pi\)
\(810\) 0 0
\(811\) 1.06682e11 1.06682e11i 0.246608 0.246608i −0.572969 0.819577i \(-0.694208\pi\)
0.819577 + 0.572969i \(0.194208\pi\)
\(812\) 0 0
\(813\) 1.35692e11 1.35692e11i 0.310594 0.310594i
\(814\) 0 0
\(815\) 7.26301e11i 1.64621i
\(816\) 0 0
\(817\) 3.01121e11 0.675853
\(818\) 0 0
\(819\) −1.85361e11 1.85361e11i −0.411985 0.411985i
\(820\) 0 0
\(821\) 4.40491e11 + 4.40491e11i 0.969537 + 0.969537i 0.999550 0.0300127i \(-0.00955477\pi\)
−0.0300127 + 0.999550i \(0.509555\pi\)
\(822\) 0 0
\(823\) 3.96401e11 0.864042 0.432021 0.901864i \(-0.357801\pi\)
0.432021 + 0.901864i \(0.357801\pi\)
\(824\) 0 0
\(825\) 5.68615e10i 0.122745i
\(826\) 0 0
\(827\) 4.18792e11 4.18792e11i 0.895316 0.895316i −0.0997016 0.995017i \(-0.531789\pi\)
0.995017 + 0.0997016i \(0.0317888\pi\)
\(828\) 0 0
\(829\) −3.69338e11 + 3.69338e11i −0.781999 + 0.781999i −0.980168 0.198169i \(-0.936501\pi\)
0.198169 + 0.980168i \(0.436501\pi\)
\(830\) 0 0
\(831\) 3.03661e11i 0.636773i
\(832\) 0 0
\(833\) −7.47525e11 −1.55255
\(834\) 0 0
\(835\) −3.11875e11 3.11875e11i −0.641557 0.641557i
\(836\) 0 0
\(837\) 4.53666e10 + 4.53666e10i 0.0924347 + 0.0924347i
\(838\) 0 0
\(839\) 5.35390e11 1.08049 0.540247 0.841506i \(-0.318331\pi\)
0.540247 + 0.841506i \(0.318331\pi\)
\(840\) 0 0
\(841\) 3.93097e10i 0.0785807i
\(842\) 0 0
\(843\) −2.16446e11 + 2.16446e11i −0.428588 + 0.428588i
\(844\) 0 0
\(845\) 2.75532e11 2.75532e11i 0.540437 0.540437i
\(846\) 0 0
\(847\) 3.98524e11i 0.774320i
\(848\) 0 0
\(849\) 1.04094e11 0.200353
\(850\) 0 0
\(851\) 6.53242e11 + 6.53242e11i 1.24554 + 1.24554i
\(852\) 0 0
\(853\) −1.25669e11 1.25669e11i −0.237373 0.237373i 0.578388 0.815762i \(-0.303682\pi\)
−0.815762 + 0.578388i \(0.803682\pi\)
\(854\) 0 0
\(855\) −2.18464e11 −0.408803
\(856\) 0 0
\(857\) 9.60332e11i 1.78032i 0.455648 + 0.890160i \(0.349407\pi\)
−0.455648 + 0.890160i \(0.650593\pi\)
\(858\) 0 0
\(859\) 3.78436e11 3.78436e11i 0.695056 0.695056i −0.268284 0.963340i \(-0.586457\pi\)
0.963340 + 0.268284i \(0.0864565\pi\)
\(860\) 0 0
\(861\) 4.55298e9 4.55298e9i 0.00828482 0.00828482i
\(862\) 0 0
\(863\) 2.22812e11i 0.401693i 0.979623 + 0.200847i \(0.0643693\pi\)
−0.979623 + 0.200847i \(0.935631\pi\)
\(864\) 0 0
\(865\) −9.79902e10 −0.175032
\(866\) 0 0
\(867\) −5.64889e11 5.64889e11i −0.999739 0.999739i
\(868\) 0 0
\(869\) −2.29441e10 2.29441e10i −0.0402339 0.0402339i
\(870\) 0 0
\(871\) 5.02678e11 0.873408
\(872\) 0 0
\(873\) 2.28756e11i 0.393837i
\(874\) 0 0
\(875\) 4.36495e11 4.36495e11i 0.744642 0.744642i
\(876\) 0 0
\(877\) 2.02917e10 2.02917e10i 0.0343021 0.0343021i −0.689748 0.724050i \(-0.742279\pi\)
0.724050 + 0.689748i \(0.242279\pi\)
\(878\) 0 0
\(879\) 1.17470e11i 0.196775i
\(880\) 0 0
\(881\) −5.75202e11 −0.954809 −0.477405 0.878684i \(-0.658422\pi\)
−0.477405 + 0.878684i \(0.658422\pi\)
\(882\) 0 0
\(883\) 9.76084e10 + 9.76084e10i 0.160563 + 0.160563i 0.782816 0.622253i \(-0.213783\pi\)
−0.622253 + 0.782816i \(0.713783\pi\)
\(884\) 0 0
\(885\) −3.08110e11 3.08110e11i −0.502265 0.502265i
\(886\) 0 0
\(887\) −8.61421e11 −1.39162 −0.695811 0.718225i \(-0.744955\pi\)
−0.695811 + 0.718225i \(0.744955\pi\)
\(888\) 0 0
\(889\) 3.85859e11i 0.617762i
\(890\) 0 0
\(891\) 3.24153e10 3.24153e10i 0.0514327 0.0514327i
\(892\) 0 0
\(893\) 8.68386e11 8.68386e11i 1.36555 1.36555i
\(894\) 0 0
\(895\) 1.47127e10i 0.0229298i
\(896\) 0 0
\(897\) −7.58760e11 −1.17202
\(898\) 0 0
\(899\) 3.01151e11 + 3.01151e11i 0.461047 + 0.461047i
\(900\) 0 0
\(901\) 9.95113e11 + 9.95113e11i 1.50999 + 1.50999i
\(902\) 0 0
\(903\) −3.29923e11 −0.496206
\(904\) 0 0
\(905\) 1.17313e12i 1.74885i
\(906\) 0 0
\(907\) 7.63561e11 7.63561e11i 1.12827 1.12827i 0.137817 0.990458i \(-0.455991\pi\)
0.990458 0.137817i \(-0.0440086\pi\)
\(908\) 0 0
\(909\) 1.65015e9 1.65015e9i 0.00241695 0.00241695i
\(910\) 0 0
\(911\) 1.00379e11i 0.145736i 0.997342 + 0.0728682i \(0.0232153\pi\)
−0.997342 + 0.0728682i \(0.976785\pi\)
\(912\) 0 0
\(913\) 1.78915e11 0.257492
\(914\) 0 0
\(915\) 5.16658e11 + 5.16658e11i 0.737087 + 0.737087i
\(916\) 0 0
\(917\) 2.48376e11 + 2.48376e11i 0.351263 + 0.351263i
\(918\) 0 0
\(919\) −4.24302e10 −0.0594858 −0.0297429 0.999558i \(-0.509469\pi\)
−0.0297429 + 0.999558i \(0.509469\pi\)
\(920\) 0 0
\(921\) 7.62900e11i 1.06030i
\(922\) 0 0
\(923\) −2.34621e11 + 2.34621e11i −0.323266 + 0.323266i
\(924\) 0 0
\(925\) 1.88181e11 1.88181e11i 0.257044 0.257044i
\(926\) 0 0
\(927\) 1.25889e11i 0.170478i
\(928\) 0 0
\(929\) 1.03495e12 1.38949 0.694745 0.719256i \(-0.255517\pi\)
0.694745 + 0.719256i \(0.255517\pi\)
\(930\) 0 0
\(931\) 4.73216e11 + 4.73216e11i 0.629884 + 0.629884i
\(932\) 0 0
\(933\) 3.93620e11 + 3.93620e11i 0.519458 + 0.519458i
\(934\) 0 0
\(935\) 1.06942e12 1.39928
\(936\) 0 0
\(937\) 8.71654e11i 1.13080i −0.824817 0.565400i \(-0.808722\pi\)
0.824817 0.565400i \(-0.191278\pi\)
\(938\) 0 0
\(939\) 5.71269e11 5.71269e11i 0.734816 0.734816i
\(940\) 0 0
\(941\) −8.26055e11 + 8.26055e11i −1.05354 + 1.05354i −0.0550553 + 0.998483i \(0.517533\pi\)
−0.998483 + 0.0550553i \(0.982467\pi\)
\(942\) 0 0
\(943\) 1.86373e10i 0.0235687i
\(944\) 0 0
\(945\) 2.39360e11 0.300140
\(946\) 0 0
\(947\) 2.32021e11 + 2.32021e11i 0.288487 + 0.288487i 0.836482 0.547994i \(-0.184609\pi\)
−0.547994 + 0.836482i \(0.684609\pi\)
\(948\) 0 0
\(949\) −3.05354e11 3.05354e11i −0.376477 0.376477i
\(950\) 0 0
\(951\) 2.84365e11 0.347659
\(952\) 0 0
\(953\) 1.33518e10i 0.0161871i 0.999967 + 0.00809355i \(0.00257628\pi\)
−0.999967 + 0.00809355i \(0.997424\pi\)
\(954\) 0 0
\(955\) −9.71622e11 + 9.71622e11i −1.16811 + 1.16811i
\(956\) 0 0
\(957\) 2.15178e11 2.15178e11i 0.256537 0.256537i
\(958\) 0 0
\(959\) 8.69796e10i 0.102836i
\(960\) 0 0
\(961\) 4.59380e11 0.538615
\(962\) 0 0
\(963\) 3.13495e11 + 3.13495e11i 0.364523 + 0.364523i
\(964\) 0 0
\(965\) −4.64247e11 4.64247e11i −0.535352 0.535352i
\(966\) 0 0
\(967\) 6.56705e11 0.751042 0.375521 0.926814i \(-0.377464\pi\)
0.375521 + 0.926814i \(0.377464\pi\)
\(968\) 0 0
\(969\) 1.00725e12i 1.14247i
\(970\) 0 0
\(971\) −9.77017e10 + 9.77017e10i −0.109907 + 0.109907i −0.759922 0.650015i \(-0.774763\pi\)
0.650015 + 0.759922i \(0.274763\pi\)
\(972\) 0 0
\(973\) −6.20324e11 + 6.20324e11i −0.692097 + 0.692097i
\(974\) 0 0
\(975\) 2.18577e11i 0.241873i
\(976\) 0 0
\(977\) 8.10989e11 0.890095 0.445048 0.895507i \(-0.353187\pi\)
0.445048 + 0.895507i \(0.353187\pi\)
\(978\) 0 0
\(979\) −4.68902e11 4.68902e11i −0.510448 0.510448i
\(980\) 0 0
\(981\) 2.10739e11 + 2.10739e11i 0.227546 + 0.227546i
\(982\) 0 0
\(983\) −5.69686e11 −0.610129 −0.305064 0.952332i \(-0.598678\pi\)
−0.305064 + 0.952332i \(0.598678\pi\)
\(984\) 0 0
\(985\) 6.83037e11i 0.725604i
\(986\) 0 0
\(987\) −9.51448e11 + 9.51448e11i −1.00257 + 1.00257i
\(988\) 0 0
\(989\) −6.75258e11 + 6.75258e11i −0.705804 + 0.705804i
\(990\) 0 0
\(991\) 1.31899e12i 1.36757i −0.729685 0.683783i \(-0.760333\pi\)
0.729685 0.683783i \(-0.239667\pi\)
\(992\) 0 0
\(993\) 3.26799e11 0.336111
\(994\) 0 0
\(995\) −1.28393e10 1.28393e10i −0.0130993 0.0130993i
\(996\) 0 0
\(997\) 4.63158e10 + 4.63158e10i 0.0468758 + 0.0468758i 0.730156 0.683280i \(-0.239447\pi\)
−0.683280 + 0.730156i \(0.739447\pi\)
\(998\) 0 0
\(999\) −2.14554e11 −0.215415
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.9.l.a.79.12 64
4.3 odd 2 48.9.l.a.43.15 yes 64
16.3 odd 4 inner 192.9.l.a.175.12 64
16.13 even 4 48.9.l.a.19.15 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.9.l.a.19.15 64 16.13 even 4
48.9.l.a.43.15 yes 64 4.3 odd 2
192.9.l.a.79.12 64 1.1 even 1 trivial
192.9.l.a.175.12 64 16.3 odd 4 inner