Properties

Label 192.9.l.a.175.21
Level $192$
Weight $9$
Character 192.175
Analytic conductor $78.217$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,9,Mod(79,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.79"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 192.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.2166931317\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 175.21
Character \(\chi\) \(=\) 192.175
Dual form 192.9.l.a.79.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(33.0681 - 33.0681i) q^{3} +(-349.282 + 349.282i) q^{5} +4640.58 q^{7} -2187.00i q^{9} +(549.148 + 549.148i) q^{11} +(-4126.26 - 4126.26i) q^{13} +23100.2i q^{15} +121373. q^{17} +(-16510.6 + 16510.6i) q^{19} +(153455. - 153455. i) q^{21} +104834. q^{23} +146628. i q^{25} +(-72320.0 - 72320.0i) q^{27} +(-781240. - 781240. i) q^{29} +340243. i q^{31} +36318.6 q^{33} +(-1.62088e6 + 1.62088e6i) q^{35} +(1.29420e6 - 1.29420e6i) q^{37} -272895. q^{39} +4.04263e6i q^{41} +(-1.64022e6 - 1.64022e6i) q^{43} +(763881. + 763881. i) q^{45} +2.89021e6i q^{47} +1.57702e7 q^{49} +(4.01357e6 - 4.01357e6i) q^{51} +(-3.17202e6 + 3.17202e6i) q^{53} -383616. q^{55} +1.09195e6i q^{57} +(5.50700e6 + 5.50700e6i) q^{59} +(1.51527e7 + 1.51527e7i) q^{61} -1.01490e7i q^{63} +2.88246e6 q^{65} +(1.20675e7 - 1.20675e7i) q^{67} +(3.46667e6 - 3.46667e6i) q^{69} -3.40128e7 q^{71} -3.77315e7i q^{73} +(4.84873e6 + 4.84873e6i) q^{75} +(2.54837e6 + 2.54837e6i) q^{77} -3.12659e6i q^{79} -4.78297e6 q^{81} +(6.95385e6 - 6.95385e6i) q^{83} +(-4.23934e7 + 4.23934e7i) q^{85} -5.16682e7 q^{87} -4.53098e7i q^{89} +(-1.91483e7 - 1.91483e7i) q^{91} +(1.12512e7 + 1.12512e7i) q^{93} -1.15337e7i q^{95} +1.53165e8 q^{97} +(1.20099e6 - 1.20099e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 39552 q^{11} + 167552 q^{19} - 1691136 q^{23} - 2132352 q^{29} + 2415744 q^{35} - 4720512 q^{37} + 7244672 q^{43} + 52706752 q^{49} - 13862016 q^{51} - 5358720 q^{53} + 46326784 q^{55} - 44938752 q^{59}+ \cdots - 86500224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 33.0681 33.0681i 0.408248 0.408248i
\(4\) 0 0
\(5\) −349.282 + 349.282i −0.558852 + 0.558852i −0.928981 0.370129i \(-0.879314\pi\)
0.370129 + 0.928981i \(0.379314\pi\)
\(6\) 0 0
\(7\) 4640.58 1.93277 0.966386 0.257096i \(-0.0827657\pi\)
0.966386 + 0.257096i \(0.0827657\pi\)
\(8\) 0 0
\(9\) 2187.00i 0.333333i
\(10\) 0 0
\(11\) 549.148 + 549.148i 0.0375076 + 0.0375076i 0.725612 0.688104i \(-0.241557\pi\)
−0.688104 + 0.725612i \(0.741557\pi\)
\(12\) 0 0
\(13\) −4126.26 4126.26i −0.144472 0.144472i 0.631171 0.775643i \(-0.282574\pi\)
−0.775643 + 0.631171i \(0.782574\pi\)
\(14\) 0 0
\(15\) 23100.2i 0.456301i
\(16\) 0 0
\(17\) 121373. 1.45320 0.726600 0.687061i \(-0.241099\pi\)
0.726600 + 0.687061i \(0.241099\pi\)
\(18\) 0 0
\(19\) −16510.6 + 16510.6i −0.126692 + 0.126692i −0.767610 0.640918i \(-0.778554\pi\)
0.640918 + 0.767610i \(0.278554\pi\)
\(20\) 0 0
\(21\) 153455. 153455.i 0.789051 0.789051i
\(22\) 0 0
\(23\) 104834. 0.374620 0.187310 0.982301i \(-0.440023\pi\)
0.187310 + 0.982301i \(0.440023\pi\)
\(24\) 0 0
\(25\) 146628.i 0.375369i
\(26\) 0 0
\(27\) −72320.0 72320.0i −0.136083 0.136083i
\(28\) 0 0
\(29\) −781240. 781240.i −1.10457 1.10457i −0.993852 0.110715i \(-0.964686\pi\)
−0.110715 0.993852i \(-0.535314\pi\)
\(30\) 0 0
\(31\) 340243.i 0.368419i 0.982887 + 0.184210i \(0.0589726\pi\)
−0.982887 + 0.184210i \(0.941027\pi\)
\(32\) 0 0
\(33\) 36318.6 0.0306248
\(34\) 0 0
\(35\) −1.62088e6 + 1.62088e6i −1.08013 + 1.08013i
\(36\) 0 0
\(37\) 1.29420e6 1.29420e6i 0.690549 0.690549i −0.271804 0.962353i \(-0.587620\pi\)
0.962353 + 0.271804i \(0.0876202\pi\)
\(38\) 0 0
\(39\) −272895. −0.117961
\(40\) 0 0
\(41\) 4.04263e6i 1.43063i 0.698801 + 0.715316i \(0.253717\pi\)
−0.698801 + 0.715316i \(0.746283\pi\)
\(42\) 0 0
\(43\) −1.64022e6 1.64022e6i −0.479766 0.479766i 0.425291 0.905057i \(-0.360172\pi\)
−0.905057 + 0.425291i \(0.860172\pi\)
\(44\) 0 0
\(45\) 763881. + 763881.i 0.186284 + 0.186284i
\(46\) 0 0
\(47\) 2.89021e6i 0.592294i 0.955142 + 0.296147i \(0.0957018\pi\)
−0.955142 + 0.296147i \(0.904298\pi\)
\(48\) 0 0
\(49\) 1.57702e7 2.73561
\(50\) 0 0
\(51\) 4.01357e6 4.01357e6i 0.593267 0.593267i
\(52\) 0 0
\(53\) −3.17202e6 + 3.17202e6i −0.402006 + 0.402006i −0.878939 0.476934i \(-0.841748\pi\)
0.476934 + 0.878939i \(0.341748\pi\)
\(54\) 0 0
\(55\) −383616. −0.0419224
\(56\) 0 0
\(57\) 1.09195e6i 0.103443i
\(58\) 0 0
\(59\) 5.50700e6 + 5.50700e6i 0.454472 + 0.454472i 0.896836 0.442364i \(-0.145860\pi\)
−0.442364 + 0.896836i \(0.645860\pi\)
\(60\) 0 0
\(61\) 1.51527e7 + 1.51527e7i 1.09438 + 1.09438i 0.995055 + 0.0993283i \(0.0316694\pi\)
0.0993283 + 0.995055i \(0.468331\pi\)
\(62\) 0 0
\(63\) 1.01490e7i 0.644257i
\(64\) 0 0
\(65\) 2.88246e6 0.161477
\(66\) 0 0
\(67\) 1.20675e7 1.20675e7i 0.598851 0.598851i −0.341156 0.940007i \(-0.610818\pi\)
0.940007 + 0.341156i \(0.110818\pi\)
\(68\) 0 0
\(69\) 3.46667e6 3.46667e6i 0.152938 0.152938i
\(70\) 0 0
\(71\) −3.40128e7 −1.33847 −0.669236 0.743050i \(-0.733379\pi\)
−0.669236 + 0.743050i \(0.733379\pi\)
\(72\) 0 0
\(73\) 3.77315e7i 1.32865i −0.747442 0.664327i \(-0.768718\pi\)
0.747442 0.664327i \(-0.231282\pi\)
\(74\) 0 0
\(75\) 4.84873e6 + 4.84873e6i 0.153244 + 0.153244i
\(76\) 0 0
\(77\) 2.54837e6 + 2.54837e6i 0.0724936 + 0.0724936i
\(78\) 0 0
\(79\) 3.12659e6i 0.0802717i −0.999194 0.0401359i \(-0.987221\pi\)
0.999194 0.0401359i \(-0.0127791\pi\)
\(80\) 0 0
\(81\) −4.78297e6 −0.111111
\(82\) 0 0
\(83\) 6.95385e6 6.95385e6i 0.146525 0.146525i −0.630038 0.776564i \(-0.716961\pi\)
0.776564 + 0.630038i \(0.216961\pi\)
\(84\) 0 0
\(85\) −4.23934e7 + 4.23934e7i −0.812124 + 0.812124i
\(86\) 0 0
\(87\) −5.16682e7 −0.901875
\(88\) 0 0
\(89\) 4.53098e7i 0.722158i −0.932535 0.361079i \(-0.882409\pi\)
0.932535 0.361079i \(-0.117591\pi\)
\(90\) 0 0
\(91\) −1.91483e7 1.91483e7i −0.279231 0.279231i
\(92\) 0 0
\(93\) 1.12512e7 + 1.12512e7i 0.150407 + 0.150407i
\(94\) 0 0
\(95\) 1.15337e7i 0.141604i
\(96\) 0 0
\(97\) 1.53165e8 1.73010 0.865052 0.501683i \(-0.167286\pi\)
0.865052 + 0.501683i \(0.167286\pi\)
\(98\) 0 0
\(99\) 1.20099e6 1.20099e6i 0.0125025 0.0125025i
\(100\) 0 0
\(101\) 1.29544e8 1.29544e8i 1.24489 1.24489i 0.286943 0.957948i \(-0.407361\pi\)
0.957948 0.286943i \(-0.0926391\pi\)
\(102\) 0 0
\(103\) 1.92950e8 1.71434 0.857168 0.515036i \(-0.172222\pi\)
0.857168 + 0.515036i \(0.172222\pi\)
\(104\) 0 0
\(105\) 1.07199e8i 0.881925i
\(106\) 0 0
\(107\) 1.42084e8 + 1.42084e8i 1.08395 + 1.08395i 0.996137 + 0.0878170i \(0.0279891\pi\)
0.0878170 + 0.996137i \(0.472011\pi\)
\(108\) 0 0
\(109\) 8.57719e7 + 8.57719e7i 0.607630 + 0.607630i 0.942326 0.334696i \(-0.108634\pi\)
−0.334696 + 0.942326i \(0.608634\pi\)
\(110\) 0 0
\(111\) 8.55935e7i 0.563831i
\(112\) 0 0
\(113\) 6.15982e7 0.377793 0.188897 0.981997i \(-0.439509\pi\)
0.188897 + 0.981997i \(0.439509\pi\)
\(114\) 0 0
\(115\) −3.66167e7 + 3.66167e7i −0.209357 + 0.209357i
\(116\) 0 0
\(117\) −9.02414e6 + 9.02414e6i −0.0481573 + 0.0481573i
\(118\) 0 0
\(119\) 5.63240e8 2.80870
\(120\) 0 0
\(121\) 2.13756e8i 0.997186i
\(122\) 0 0
\(123\) 1.33682e8 + 1.33682e8i 0.584053 + 0.584053i
\(124\) 0 0
\(125\) −1.87653e8 1.87653e8i −0.768628 0.768628i
\(126\) 0 0
\(127\) 4.09831e8i 1.57540i 0.616061 + 0.787699i \(0.288728\pi\)
−0.616061 + 0.787699i \(0.711272\pi\)
\(128\) 0 0
\(129\) −1.08478e8 −0.391727
\(130\) 0 0
\(131\) 1.85539e8 1.85539e8i 0.630013 0.630013i −0.318058 0.948071i \(-0.603031\pi\)
0.948071 + 0.318058i \(0.103031\pi\)
\(132\) 0 0
\(133\) −7.66189e7 + 7.66189e7i −0.244867 + 0.244867i
\(134\) 0 0
\(135\) 5.05202e7 0.152100
\(136\) 0 0
\(137\) 5.35882e8i 1.52120i 0.649220 + 0.760601i \(0.275096\pi\)
−0.649220 + 0.760601i \(0.724904\pi\)
\(138\) 0 0
\(139\) −2.10569e8 2.10569e8i −0.564072 0.564072i 0.366389 0.930462i \(-0.380594\pi\)
−0.930462 + 0.366389i \(0.880594\pi\)
\(140\) 0 0
\(141\) 9.55736e7 + 9.55736e7i 0.241803 + 0.241803i
\(142\) 0 0
\(143\) 4.53186e6i 0.0108376i
\(144\) 0 0
\(145\) 5.45747e8 1.23458
\(146\) 0 0
\(147\) 5.21492e8 5.21492e8i 1.11681 1.11681i
\(148\) 0 0
\(149\) −2.80503e8 + 2.80503e8i −0.569106 + 0.569106i −0.931878 0.362772i \(-0.881830\pi\)
0.362772 + 0.931878i \(0.381830\pi\)
\(150\) 0 0
\(151\) −1.68382e8 −0.323884 −0.161942 0.986800i \(-0.551776\pi\)
−0.161942 + 0.986800i \(0.551776\pi\)
\(152\) 0 0
\(153\) 2.65442e8i 0.484400i
\(154\) 0 0
\(155\) −1.18841e8 1.18841e8i −0.205892 0.205892i
\(156\) 0 0
\(157\) 3.86067e7 + 3.86067e7i 0.0635425 + 0.0635425i 0.738164 0.674621i \(-0.235693\pi\)
−0.674621 + 0.738164i \(0.735693\pi\)
\(158\) 0 0
\(159\) 2.09785e8i 0.328236i
\(160\) 0 0
\(161\) 4.86492e8 0.724056
\(162\) 0 0
\(163\) 5.58902e8 5.58902e8i 0.791745 0.791745i −0.190033 0.981778i \(-0.560859\pi\)
0.981778 + 0.190033i \(0.0608594\pi\)
\(164\) 0 0
\(165\) −1.26855e7 + 1.26855e7i −0.0171147 + 0.0171147i
\(166\) 0 0
\(167\) −2.25264e8 −0.289619 −0.144809 0.989460i \(-0.546257\pi\)
−0.144809 + 0.989460i \(0.546257\pi\)
\(168\) 0 0
\(169\) 7.81679e8i 0.958256i
\(170\) 0 0
\(171\) 3.61087e7 + 3.61087e7i 0.0422306 + 0.0422306i
\(172\) 0 0
\(173\) 1.20004e8 + 1.20004e8i 0.133971 + 0.133971i 0.770912 0.636941i \(-0.219801\pi\)
−0.636941 + 0.770912i \(0.719801\pi\)
\(174\) 0 0
\(175\) 6.80442e8i 0.725502i
\(176\) 0 0
\(177\) 3.64212e8 0.371075
\(178\) 0 0
\(179\) −1.63238e8 + 1.63238e8i −0.159004 + 0.159004i −0.782125 0.623121i \(-0.785864\pi\)
0.623121 + 0.782125i \(0.285864\pi\)
\(180\) 0 0
\(181\) 1.06929e9 1.06929e9i 0.996283 0.996283i −0.00371014 0.999993i \(-0.501181\pi\)
0.999993 + 0.00371014i \(0.00118098\pi\)
\(182\) 0 0
\(183\) 1.00214e9 0.893560
\(184\) 0 0
\(185\) 9.04083e8i 0.771829i
\(186\) 0 0
\(187\) 6.66517e7 + 6.66517e7i 0.0545060 + 0.0545060i
\(188\) 0 0
\(189\) −3.35607e8 3.35607e8i −0.263017 0.263017i
\(190\) 0 0
\(191\) 2.17451e9i 1.63391i 0.576701 + 0.816955i \(0.304340\pi\)
−0.576701 + 0.816955i \(0.695660\pi\)
\(192\) 0 0
\(193\) 1.80281e9 1.29934 0.649668 0.760218i \(-0.274908\pi\)
0.649668 + 0.760218i \(0.274908\pi\)
\(194\) 0 0
\(195\) 9.53176e7 9.53176e7i 0.0659226 0.0659226i
\(196\) 0 0
\(197\) −1.25683e9 + 1.25683e9i −0.834474 + 0.834474i −0.988125 0.153651i \(-0.950897\pi\)
0.153651 + 0.988125i \(0.450897\pi\)
\(198\) 0 0
\(199\) −1.91242e9 −1.21947 −0.609733 0.792607i \(-0.708723\pi\)
−0.609733 + 0.792607i \(0.708723\pi\)
\(200\) 0 0
\(201\) 7.98100e8i 0.488960i
\(202\) 0 0
\(203\) −3.62541e9 3.62541e9i −2.13488 2.13488i
\(204\) 0 0
\(205\) −1.41202e9 1.41202e9i −0.799512 0.799512i
\(206\) 0 0
\(207\) 2.29272e8i 0.124873i
\(208\) 0 0
\(209\) −1.81336e7 −0.00950381
\(210\) 0 0
\(211\) −2.42091e9 + 2.42091e9i −1.22137 + 1.22137i −0.254231 + 0.967143i \(0.581822\pi\)
−0.967143 + 0.254231i \(0.918178\pi\)
\(212\) 0 0
\(213\) −1.12474e9 + 1.12474e9i −0.546429 + 0.546429i
\(214\) 0 0
\(215\) 1.14580e9 0.536236
\(216\) 0 0
\(217\) 1.57893e9i 0.712071i
\(218\) 0 0
\(219\) −1.24771e9 1.24771e9i −0.542421 0.542421i
\(220\) 0 0
\(221\) −5.00816e8 5.00816e8i −0.209947 0.209947i
\(222\) 0 0
\(223\) 1.17635e8i 0.0475683i 0.999717 + 0.0237842i \(0.00757145\pi\)
−0.999717 + 0.0237842i \(0.992429\pi\)
\(224\) 0 0
\(225\) 3.20676e8 0.125123
\(226\) 0 0
\(227\) 1.20260e8 1.20260e8i 0.0452915 0.0452915i −0.684098 0.729390i \(-0.739804\pi\)
0.729390 + 0.684098i \(0.239804\pi\)
\(228\) 0 0
\(229\) 7.99469e8 7.99469e8i 0.290710 0.290710i −0.546651 0.837361i \(-0.684097\pi\)
0.837361 + 0.546651i \(0.184097\pi\)
\(230\) 0 0
\(231\) 1.68540e8 0.0591908
\(232\) 0 0
\(233\) 7.89356e8i 0.267824i −0.990993 0.133912i \(-0.957246\pi\)
0.990993 0.133912i \(-0.0427539\pi\)
\(234\) 0 0
\(235\) −1.00950e9 1.00950e9i −0.331005 0.331005i
\(236\) 0 0
\(237\) −1.03390e8 1.03390e8i −0.0327708 0.0327708i
\(238\) 0 0
\(239\) 1.65241e9i 0.506436i −0.967409 0.253218i \(-0.918511\pi\)
0.967409 0.253218i \(-0.0814891\pi\)
\(240\) 0 0
\(241\) −2.71108e7 −0.00803664 −0.00401832 0.999992i \(-0.501279\pi\)
−0.00401832 + 0.999992i \(0.501279\pi\)
\(242\) 0 0
\(243\) −1.58164e8 + 1.58164e8i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −5.50826e9 + 5.50826e9i −1.52880 + 1.52880i
\(246\) 0 0
\(247\) 1.36254e8 0.0366068
\(248\) 0 0
\(249\) 4.59901e8i 0.119638i
\(250\) 0 0
\(251\) 1.72776e9 + 1.72776e9i 0.435299 + 0.435299i 0.890426 0.455127i \(-0.150406\pi\)
−0.455127 + 0.890426i \(0.650406\pi\)
\(252\) 0 0
\(253\) 5.75695e7 + 5.75695e7i 0.0140511 + 0.0140511i
\(254\) 0 0
\(255\) 2.80374e9i 0.663096i
\(256\) 0 0
\(257\) 1.40666e9 0.322446 0.161223 0.986918i \(-0.448456\pi\)
0.161223 + 0.986918i \(0.448456\pi\)
\(258\) 0 0
\(259\) 6.00584e9 6.00584e9i 1.33467 1.33467i
\(260\) 0 0
\(261\) −1.70857e9 + 1.70857e9i −0.368189 + 0.368189i
\(262\) 0 0
\(263\) −5.15945e9 −1.07840 −0.539201 0.842177i \(-0.681274\pi\)
−0.539201 + 0.842177i \(0.681274\pi\)
\(264\) 0 0
\(265\) 2.21586e9i 0.449323i
\(266\) 0 0
\(267\) −1.49831e9 1.49831e9i −0.294820 0.294820i
\(268\) 0 0
\(269\) −4.42147e9 4.42147e9i −0.844419 0.844419i 0.145011 0.989430i \(-0.453678\pi\)
−0.989430 + 0.145011i \(0.953678\pi\)
\(270\) 0 0
\(271\) 3.85251e9i 0.714276i 0.934052 + 0.357138i \(0.116247\pi\)
−0.934052 + 0.357138i \(0.883753\pi\)
\(272\) 0 0
\(273\) −1.26639e9 −0.227991
\(274\) 0 0
\(275\) −8.05208e7 + 8.05208e7i −0.0140792 + 0.0140792i
\(276\) 0 0
\(277\) −6.72321e9 + 6.72321e9i −1.14198 + 1.14198i −0.153890 + 0.988088i \(0.549180\pi\)
−0.988088 + 0.153890i \(0.950820\pi\)
\(278\) 0 0
\(279\) 7.44112e8 0.122806
\(280\) 0 0
\(281\) 6.67183e9i 1.07009i −0.844824 0.535044i \(-0.820295\pi\)
0.844824 0.535044i \(-0.179705\pi\)
\(282\) 0 0
\(283\) −1.00632e9 1.00632e9i −0.156888 0.156888i 0.624298 0.781186i \(-0.285385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(284\) 0 0
\(285\) −3.81399e8 3.81399e8i −0.0578096 0.0578096i
\(286\) 0 0
\(287\) 1.87602e10i 2.76509i
\(288\) 0 0
\(289\) 7.75558e9 1.11179
\(290\) 0 0
\(291\) 5.06487e9 5.06487e9i 0.706312 0.706312i
\(292\) 0 0
\(293\) −8.19417e9 + 8.19417e9i −1.11182 + 1.11182i −0.118915 + 0.992904i \(0.537942\pi\)
−0.992904 + 0.118915i \(0.962058\pi\)
\(294\) 0 0
\(295\) −3.84700e9 −0.507965
\(296\) 0 0
\(297\) 7.94288e7i 0.0102083i
\(298\) 0 0
\(299\) −4.32573e8 4.32573e8i −0.0541221 0.0541221i
\(300\) 0 0
\(301\) −7.61160e9 7.61160e9i −0.927278 0.927278i
\(302\) 0 0
\(303\) 8.56754e9i 1.01645i
\(304\) 0 0
\(305\) −1.05851e10 −1.22320
\(306\) 0 0
\(307\) −4.32070e9 + 4.32070e9i −0.486408 + 0.486408i −0.907171 0.420763i \(-0.861762\pi\)
0.420763 + 0.907171i \(0.361762\pi\)
\(308\) 0 0
\(309\) 6.38049e9 6.38049e9i 0.699875 0.699875i
\(310\) 0 0
\(311\) −1.13313e10 −1.21126 −0.605631 0.795746i \(-0.707079\pi\)
−0.605631 + 0.795746i \(0.707079\pi\)
\(312\) 0 0
\(313\) 7.72644e9i 0.805011i −0.915418 0.402506i \(-0.868139\pi\)
0.915418 0.402506i \(-0.131861\pi\)
\(314\) 0 0
\(315\) 3.54485e9 + 3.54485e9i 0.360044 + 0.360044i
\(316\) 0 0
\(317\) −1.03658e9 1.03658e9i −0.102651 0.102651i 0.653916 0.756567i \(-0.273125\pi\)
−0.756567 + 0.653916i \(0.773125\pi\)
\(318\) 0 0
\(319\) 8.58033e8i 0.0828593i
\(320\) 0 0
\(321\) 9.39691e9 0.885044
\(322\) 0 0
\(323\) −2.00394e9 + 2.00394e9i −0.184109 + 0.184109i
\(324\) 0 0
\(325\) 6.05028e8 6.05028e8i 0.0542303 0.0542303i
\(326\) 0 0
\(327\) 5.67263e9 0.496128
\(328\) 0 0
\(329\) 1.34122e10i 1.14477i
\(330\) 0 0
\(331\) −1.58849e10 1.58849e10i −1.32334 1.32334i −0.911053 0.412289i \(-0.864729\pi\)
−0.412289 0.911053i \(-0.635271\pi\)
\(332\) 0 0
\(333\) −2.83041e9 2.83041e9i −0.230183 0.230183i
\(334\) 0 0
\(335\) 8.42995e9i 0.669338i
\(336\) 0 0
\(337\) 1.38780e10 1.07599 0.537995 0.842948i \(-0.319182\pi\)
0.537995 + 0.842948i \(0.319182\pi\)
\(338\) 0 0
\(339\) 2.03694e9 2.03694e9i 0.154234 0.154234i
\(340\) 0 0
\(341\) −1.86844e8 + 1.86844e8i −0.0138185 + 0.0138185i
\(342\) 0 0
\(343\) 4.64310e10 3.35453
\(344\) 0 0
\(345\) 2.42169e9i 0.170940i
\(346\) 0 0
\(347\) 1.49255e9 + 1.49255e9i 0.102946 + 0.102946i 0.756704 0.653758i \(-0.226808\pi\)
−0.653758 + 0.756704i \(0.726808\pi\)
\(348\) 0 0
\(349\) −5.44079e9 5.44079e9i −0.366742 0.366742i 0.499546 0.866287i \(-0.333500\pi\)
−0.866287 + 0.499546i \(0.833500\pi\)
\(350\) 0 0
\(351\) 5.96822e8i 0.0393203i
\(352\) 0 0
\(353\) 1.23319e8 0.00794203 0.00397101 0.999992i \(-0.498736\pi\)
0.00397101 + 0.999992i \(0.498736\pi\)
\(354\) 0 0
\(355\) 1.18801e10 1.18801e10i 0.748008 0.748008i
\(356\) 0 0
\(357\) 1.86253e10 1.86253e10i 1.14665 1.14665i
\(358\) 0 0
\(359\) −1.27174e10 −0.765635 −0.382817 0.923824i \(-0.625046\pi\)
−0.382817 + 0.923824i \(0.625046\pi\)
\(360\) 0 0
\(361\) 1.64384e10i 0.967898i
\(362\) 0 0
\(363\) −7.06850e9 7.06850e9i −0.407100 0.407100i
\(364\) 0 0
\(365\) 1.31789e10 + 1.31789e10i 0.742521 + 0.742521i
\(366\) 0 0
\(367\) 2.23031e10i 1.22942i −0.788752 0.614711i \(-0.789272\pi\)
0.788752 0.614711i \(-0.210728\pi\)
\(368\) 0 0
\(369\) 8.84122e9 0.476878
\(370\) 0 0
\(371\) −1.47200e10 + 1.47200e10i −0.776985 + 0.776985i
\(372\) 0 0
\(373\) −1.28562e10 + 1.28562e10i −0.664168 + 0.664168i −0.956360 0.292192i \(-0.905616\pi\)
0.292192 + 0.956360i \(0.405616\pi\)
\(374\) 0 0
\(375\) −1.24107e10 −0.627582
\(376\) 0 0
\(377\) 6.44720e9i 0.319158i
\(378\) 0 0
\(379\) −4.44623e9 4.44623e9i −0.215494 0.215494i 0.591103 0.806596i \(-0.298693\pi\)
−0.806596 + 0.591103i \(0.798693\pi\)
\(380\) 0 0
\(381\) 1.35523e10 + 1.35523e10i 0.643153 + 0.643153i
\(382\) 0 0
\(383\) 3.76186e9i 0.174827i 0.996172 + 0.0874134i \(0.0278601\pi\)
−0.996172 + 0.0874134i \(0.972140\pi\)
\(384\) 0 0
\(385\) −1.78020e9 −0.0810264
\(386\) 0 0
\(387\) −3.58717e9 + 3.58717e9i −0.159922 + 0.159922i
\(388\) 0 0
\(389\) 1.83324e10 1.83324e10i 0.800611 0.800611i −0.182580 0.983191i \(-0.558445\pi\)
0.983191 + 0.182580i \(0.0584450\pi\)
\(390\) 0 0
\(391\) 1.27240e10 0.544398
\(392\) 0 0
\(393\) 1.22708e10i 0.514403i
\(394\) 0 0
\(395\) 1.09206e9 + 1.09206e9i 0.0448600 + 0.0448600i
\(396\) 0 0
\(397\) 1.45854e10 + 1.45854e10i 0.587161 + 0.587161i 0.936862 0.349700i \(-0.113717\pi\)
−0.349700 + 0.936862i \(0.613717\pi\)
\(398\) 0 0
\(399\) 5.06729e9i 0.199933i
\(400\) 0 0
\(401\) 6.59308e9 0.254983 0.127491 0.991840i \(-0.459307\pi\)
0.127491 + 0.991840i \(0.459307\pi\)
\(402\) 0 0
\(403\) 1.40393e9 1.40393e9i 0.0532263 0.0532263i
\(404\) 0 0
\(405\) 1.67061e9 1.67061e9i 0.0620947 0.0620947i
\(406\) 0 0
\(407\) 1.42142e9 0.0518016
\(408\) 0 0
\(409\) 1.51172e10i 0.540230i −0.962828 0.270115i \(-0.912938\pi\)
0.962828 0.270115i \(-0.0870617\pi\)
\(410\) 0 0
\(411\) 1.77206e10 + 1.77206e10i 0.621028 + 0.621028i
\(412\) 0 0
\(413\) 2.55557e10 + 2.55557e10i 0.878390 + 0.878390i
\(414\) 0 0
\(415\) 4.85772e9i 0.163772i
\(416\) 0 0
\(417\) −1.39262e10 −0.460563
\(418\) 0 0
\(419\) 8.17978e9 8.17978e9i 0.265391 0.265391i −0.561849 0.827240i \(-0.689910\pi\)
0.827240 + 0.561849i \(0.189910\pi\)
\(420\) 0 0
\(421\) 2.56878e10 2.56878e10i 0.817709 0.817709i −0.168066 0.985776i \(-0.553752\pi\)
0.985776 + 0.168066i \(0.0537523\pi\)
\(422\) 0 0
\(423\) 6.32088e9 0.197431
\(424\) 0 0
\(425\) 1.77967e10i 0.545486i
\(426\) 0 0
\(427\) 7.03172e10 + 7.03172e10i 2.11519 + 2.11519i
\(428\) 0 0
\(429\) −1.49860e8 1.49860e8i −0.00442442 0.00442442i
\(430\) 0 0
\(431\) 1.66830e10i 0.483466i −0.970343 0.241733i \(-0.922284\pi\)
0.970343 0.241733i \(-0.0777159\pi\)
\(432\) 0 0
\(433\) 7.67816e9 0.218427 0.109213 0.994018i \(-0.465167\pi\)
0.109213 + 0.994018i \(0.465167\pi\)
\(434\) 0 0
\(435\) 1.80468e10 1.80468e10i 0.504015 0.504015i
\(436\) 0 0
\(437\) −1.73088e9 + 1.73088e9i −0.0474614 + 0.0474614i
\(438\) 0 0
\(439\) −1.34964e10 −0.363379 −0.181690 0.983356i \(-0.558157\pi\)
−0.181690 + 0.983356i \(0.558157\pi\)
\(440\) 0 0
\(441\) 3.44895e10i 0.911869i
\(442\) 0 0
\(443\) −1.43417e9 1.43417e9i −0.0372380 0.0372380i 0.688243 0.725481i \(-0.258382\pi\)
−0.725481 + 0.688243i \(0.758382\pi\)
\(444\) 0 0
\(445\) 1.58259e10 + 1.58259e10i 0.403579 + 0.403579i
\(446\) 0 0
\(447\) 1.85514e10i 0.464673i
\(448\) 0 0
\(449\) 3.58489e9 0.0882045 0.0441023 0.999027i \(-0.485957\pi\)
0.0441023 + 0.999027i \(0.485957\pi\)
\(450\) 0 0
\(451\) −2.22000e9 + 2.22000e9i −0.0536596 + 0.0536596i
\(452\) 0 0
\(453\) −5.56809e9 + 5.56809e9i −0.132225 + 0.132225i
\(454\) 0 0
\(455\) 1.33763e10 0.312098
\(456\) 0 0
\(457\) 9.01706e9i 0.206729i 0.994644 + 0.103364i \(0.0329607\pi\)
−0.994644 + 0.103364i \(0.967039\pi\)
\(458\) 0 0
\(459\) −8.77767e9 8.77767e9i −0.197756 0.197756i
\(460\) 0 0
\(461\) −3.51252e9 3.51252e9i −0.0777705 0.0777705i 0.667152 0.744922i \(-0.267513\pi\)
−0.744922 + 0.667152i \(0.767513\pi\)
\(462\) 0 0
\(463\) 5.97409e10i 1.30001i −0.759929 0.650006i \(-0.774766\pi\)
0.759929 0.650006i \(-0.225234\pi\)
\(464\) 0 0
\(465\) −7.85969e9 −0.168110
\(466\) 0 0
\(467\) −2.93856e10 + 2.93856e10i −0.617827 + 0.617827i −0.944974 0.327147i \(-0.893913\pi\)
0.327147 + 0.944974i \(0.393913\pi\)
\(468\) 0 0
\(469\) 5.60004e10 5.60004e10i 1.15744 1.15744i
\(470\) 0 0
\(471\) 2.55330e9 0.0518823
\(472\) 0 0
\(473\) 1.80145e9i 0.0359897i
\(474\) 0 0
\(475\) −2.42093e9 2.42093e9i −0.0475562 0.0475562i
\(476\) 0 0
\(477\) 6.93720e9 + 6.93720e9i 0.134002 + 0.134002i
\(478\) 0 0
\(479\) 7.02776e9i 0.133498i 0.997770 + 0.0667490i \(0.0212627\pi\)
−0.997770 + 0.0667490i \(0.978737\pi\)
\(480\) 0 0
\(481\) −1.06804e10 −0.199530
\(482\) 0 0
\(483\) 1.60874e10 1.60874e10i 0.295594 0.295594i
\(484\) 0 0
\(485\) −5.34978e10 + 5.34978e10i −0.966872 + 0.966872i
\(486\) 0 0
\(487\) 3.09001e10 0.549344 0.274672 0.961538i \(-0.411431\pi\)
0.274672 + 0.961538i \(0.411431\pi\)
\(488\) 0 0
\(489\) 3.69637e10i 0.646457i
\(490\) 0 0
\(491\) −1.14690e9 1.14690e9i −0.0197333 0.0197333i 0.697171 0.716905i \(-0.254442\pi\)
−0.716905 + 0.697171i \(0.754442\pi\)
\(492\) 0 0
\(493\) −9.48212e10 9.48212e10i −1.60516 1.60516i
\(494\) 0 0
\(495\) 8.38968e8i 0.0139741i
\(496\) 0 0
\(497\) −1.57839e11 −2.58696
\(498\) 0 0
\(499\) 5.15755e9 5.15755e9i 0.0831843 0.0831843i −0.664290 0.747475i \(-0.731266\pi\)
0.747475 + 0.664290i \(0.231266\pi\)
\(500\) 0 0
\(501\) −7.44907e9 + 7.44907e9i −0.118236 + 0.118236i
\(502\) 0 0
\(503\) −5.78499e10 −0.903713 −0.451857 0.892091i \(-0.649238\pi\)
−0.451857 + 0.892091i \(0.649238\pi\)
\(504\) 0 0
\(505\) 9.04948e10i 1.39142i
\(506\) 0 0
\(507\) −2.58486e10 2.58486e10i −0.391206 0.391206i
\(508\) 0 0
\(509\) −5.10199e10 5.10199e10i −0.760097 0.760097i 0.216243 0.976340i \(-0.430620\pi\)
−0.976340 + 0.216243i \(0.930620\pi\)
\(510\) 0 0
\(511\) 1.75096e11i 2.56799i
\(512\) 0 0
\(513\) 2.38809e9 0.0344812
\(514\) 0 0
\(515\) −6.73941e10 + 6.73941e10i −0.958060 + 0.958060i
\(516\) 0 0
\(517\) −1.58715e9 + 1.58715e9i −0.0222155 + 0.0222155i
\(518\) 0 0
\(519\) 7.93659e9 0.109387
\(520\) 0 0
\(521\) 6.53646e10i 0.887139i 0.896240 + 0.443569i \(0.146288\pi\)
−0.896240 + 0.443569i \(0.853712\pi\)
\(522\) 0 0
\(523\) 8.70195e10 + 8.70195e10i 1.16308 + 1.16308i 0.983798 + 0.179283i \(0.0573777\pi\)
0.179283 + 0.983798i \(0.442622\pi\)
\(524\) 0 0
\(525\) 2.25009e10 + 2.25009e10i 0.296185 + 0.296185i
\(526\) 0 0
\(527\) 4.12962e10i 0.535387i
\(528\) 0 0
\(529\) −6.73208e10 −0.859660
\(530\) 0 0
\(531\) 1.20438e10 1.20438e10i 0.151491 0.151491i
\(532\) 0 0
\(533\) 1.66809e10 1.66809e10i 0.206686 0.206686i
\(534\) 0 0
\(535\) −9.92551e10 −1.21154
\(536\) 0 0
\(537\) 1.07960e10i 0.129827i
\(538\) 0 0
\(539\) 8.66020e9 + 8.66020e9i 0.102606 + 0.102606i
\(540\) 0 0
\(541\) 2.92281e10 + 2.92281e10i 0.341202 + 0.341202i 0.856819 0.515617i \(-0.172437\pi\)
−0.515617 + 0.856819i \(0.672437\pi\)
\(542\) 0 0
\(543\) 7.07190e10i 0.813462i
\(544\) 0 0
\(545\) −5.99173e10 −0.679150
\(546\) 0 0
\(547\) −1.10860e11 + 1.10860e11i −1.23830 + 1.23830i −0.277610 + 0.960694i \(0.589542\pi\)
−0.960694 + 0.277610i \(0.910458\pi\)
\(548\) 0 0
\(549\) 3.31389e10 3.31389e10i 0.364794 0.364794i
\(550\) 0 0
\(551\) 2.57975e10 0.279879
\(552\) 0 0
\(553\) 1.45092e10i 0.155147i
\(554\) 0 0
\(555\) 2.98963e10 + 2.98963e10i 0.315098 + 0.315098i
\(556\) 0 0
\(557\) 9.54682e10 + 9.54682e10i 0.991831 + 0.991831i 0.999967 0.00813548i \(-0.00258963\pi\)
−0.00813548 + 0.999967i \(0.502590\pi\)
\(558\) 0 0
\(559\) 1.35360e10i 0.138625i
\(560\) 0 0
\(561\) 4.40809e9 0.0445040
\(562\) 0 0
\(563\) 7.33771e10 7.33771e10i 0.730343 0.730343i −0.240345 0.970688i \(-0.577260\pi\)
0.970688 + 0.240345i \(0.0772604\pi\)
\(564\) 0 0
\(565\) −2.15152e10 + 2.15152e10i −0.211131 + 0.211131i
\(566\) 0 0
\(567\) −2.21958e10 −0.214752
\(568\) 0 0
\(569\) 1.46591e11i 1.39849i −0.714883 0.699244i \(-0.753520\pi\)
0.714883 0.699244i \(-0.246480\pi\)
\(570\) 0 0
\(571\) −4.69788e10 4.69788e10i −0.441934 0.441934i 0.450727 0.892662i \(-0.351165\pi\)
−0.892662 + 0.450727i \(0.851165\pi\)
\(572\) 0 0
\(573\) 7.19070e10 + 7.19070e10i 0.667041 + 0.667041i
\(574\) 0 0
\(575\) 1.53717e10i 0.140621i
\(576\) 0 0
\(577\) 1.24179e11 1.12032 0.560162 0.828383i \(-0.310739\pi\)
0.560162 + 0.828383i \(0.310739\pi\)
\(578\) 0 0
\(579\) 5.96156e10 5.96156e10i 0.530452 0.530452i
\(580\) 0 0
\(581\) 3.22699e10 3.22699e10i 0.283200 0.283200i
\(582\) 0 0
\(583\) −3.48382e9 −0.0301565
\(584\) 0 0
\(585\) 6.30394e9i 0.0538256i
\(586\) 0 0
\(587\) 1.02901e11 + 1.02901e11i 0.866696 + 0.866696i 0.992105 0.125409i \(-0.0400244\pi\)
−0.125409 + 0.992105i \(0.540024\pi\)
\(588\) 0 0
\(589\) −5.61762e9 5.61762e9i −0.0466757 0.0466757i
\(590\) 0 0
\(591\) 8.31222e10i 0.681345i
\(592\) 0 0
\(593\) −1.17548e11 −0.950597 −0.475298 0.879825i \(-0.657660\pi\)
−0.475298 + 0.879825i \(0.657660\pi\)
\(594\) 0 0
\(595\) −1.96730e11 + 1.96730e11i −1.56965 + 1.56965i
\(596\) 0 0
\(597\) −6.32400e10 + 6.32400e10i −0.497845 + 0.497845i
\(598\) 0 0
\(599\) −1.63720e11 −1.27173 −0.635863 0.771802i \(-0.719356\pi\)
−0.635863 + 0.771802i \(0.719356\pi\)
\(600\) 0 0
\(601\) 5.57589e10i 0.427382i −0.976901 0.213691i \(-0.931451\pi\)
0.976901 0.213691i \(-0.0685485\pi\)
\(602\) 0 0
\(603\) −2.63917e10 2.63917e10i −0.199617 0.199617i
\(604\) 0 0
\(605\) 7.46611e10 + 7.46611e10i 0.557280 + 0.557280i
\(606\) 0 0
\(607\) 4.32872e10i 0.318863i −0.987209 0.159432i \(-0.949034\pi\)
0.987209 0.159432i \(-0.0509661\pi\)
\(608\) 0 0
\(609\) −2.39771e11 −1.74312
\(610\) 0 0
\(611\) 1.19257e10 1.19257e10i 0.0855698 0.0855698i
\(612\) 0 0
\(613\) 1.36205e10 1.36205e10i 0.0964610 0.0964610i −0.657230 0.753691i \(-0.728272\pi\)
0.753691 + 0.657230i \(0.228272\pi\)
\(614\) 0 0
\(615\) −9.33856e10 −0.652799
\(616\) 0 0
\(617\) 6.25456e9i 0.0431575i −0.999767 0.0215787i \(-0.993131\pi\)
0.999767 0.0215787i \(-0.00686926\pi\)
\(618\) 0 0
\(619\) −1.57733e11 1.57733e11i −1.07439 1.07439i −0.997001 0.0773863i \(-0.975343\pi\)
−0.0773863 0.997001i \(-0.524657\pi\)
\(620\) 0 0
\(621\) −7.58160e9 7.58160e9i −0.0509794 0.0509794i
\(622\) 0 0
\(623\) 2.10264e11i 1.39577i
\(624\) 0 0
\(625\) 7.38112e10 0.483729
\(626\) 0 0
\(627\) −5.99643e8 + 5.99643e8i −0.00387992 + 0.00387992i
\(628\) 0 0
\(629\) 1.57081e11 1.57081e11i 1.00351 1.00351i
\(630\) 0 0
\(631\) −2.08602e11 −1.31583 −0.657917 0.753091i \(-0.728562\pi\)
−0.657917 + 0.753091i \(0.728562\pi\)
\(632\) 0 0
\(633\) 1.60110e11i 0.997248i
\(634\) 0 0
\(635\) −1.43147e11 1.43147e11i −0.880414 0.880414i
\(636\) 0 0
\(637\) −6.50721e10 6.50721e10i −0.395218 0.395218i
\(638\) 0 0
\(639\) 7.43861e10i 0.446158i
\(640\) 0 0
\(641\) 1.21135e11 0.717525 0.358762 0.933429i \(-0.383199\pi\)
0.358762 + 0.933429i \(0.383199\pi\)
\(642\) 0 0
\(643\) −1.88623e11 + 1.88623e11i −1.10345 + 1.10345i −0.109455 + 0.993992i \(0.534910\pi\)
−0.993992 + 0.109455i \(0.965090\pi\)
\(644\) 0 0
\(645\) 3.78895e10 3.78895e10i 0.218917 0.218917i
\(646\) 0 0
\(647\) 1.15579e11 0.659569 0.329784 0.944056i \(-0.393024\pi\)
0.329784 + 0.944056i \(0.393024\pi\)
\(648\) 0 0
\(649\) 6.04832e9i 0.0340923i
\(650\) 0 0
\(651\) 5.22121e10 + 5.22121e10i 0.290702 + 0.290702i
\(652\) 0 0
\(653\) −7.72771e10 7.72771e10i −0.425009 0.425009i 0.461915 0.886924i \(-0.347162\pi\)
−0.886924 + 0.461915i \(0.847162\pi\)
\(654\) 0 0
\(655\) 1.29611e11i 0.704168i
\(656\) 0 0
\(657\) −8.25187e10 −0.442885
\(658\) 0 0
\(659\) 1.10931e11 1.10931e11i 0.588182 0.588182i −0.348957 0.937139i \(-0.613464\pi\)
0.937139 + 0.348957i \(0.113464\pi\)
\(660\) 0 0
\(661\) −1.22962e11 + 1.22962e11i −0.644117 + 0.644117i −0.951565 0.307448i \(-0.900525\pi\)
0.307448 + 0.951565i \(0.400525\pi\)
\(662\) 0 0
\(663\) −3.31221e10 −0.171421
\(664\) 0 0
\(665\) 5.35233e10i 0.273688i
\(666\) 0 0
\(667\) −8.19006e10 8.19006e10i −0.413793 0.413793i
\(668\) 0 0
\(669\) 3.88998e9 + 3.88998e9i 0.0194197 + 0.0194197i
\(670\) 0 0
\(671\) 1.66421e10i 0.0820953i
\(672\) 0 0
\(673\) 4.31551e10 0.210364 0.105182 0.994453i \(-0.466457\pi\)
0.105182 + 0.994453i \(0.466457\pi\)
\(674\) 0 0
\(675\) 1.06042e10 1.06042e10i 0.0510812 0.0510812i
\(676\) 0 0
\(677\) −3.94181e10 + 3.94181e10i −0.187647 + 0.187647i −0.794678 0.607031i \(-0.792360\pi\)
0.607031 + 0.794678i \(0.292360\pi\)
\(678\) 0 0
\(679\) 7.10774e11 3.34389
\(680\) 0 0
\(681\) 7.95352e9i 0.0369803i
\(682\) 0 0
\(683\) 1.51155e11 + 1.51155e11i 0.694607 + 0.694607i 0.963242 0.268635i \(-0.0865724\pi\)
−0.268635 + 0.963242i \(0.586572\pi\)
\(684\) 0 0
\(685\) −1.87174e11 1.87174e11i −0.850127 0.850127i
\(686\) 0 0
\(687\) 5.28739e10i 0.237364i
\(688\) 0 0
\(689\) 2.61771e10 0.116157
\(690\) 0 0
\(691\) 2.45807e9 2.45807e9i 0.0107816 0.0107816i −0.701695 0.712477i \(-0.747573\pi\)
0.712477 + 0.701695i \(0.247573\pi\)
\(692\) 0 0
\(693\) 5.57329e9 5.57329e9i 0.0241645 0.0241645i
\(694\) 0 0
\(695\) 1.47096e11 0.630466
\(696\) 0 0
\(697\) 4.90665e11i 2.07900i
\(698\) 0 0
\(699\) −2.61025e10 2.61025e10i −0.109339 0.109339i
\(700\) 0 0
\(701\) −6.09190e10 6.09190e10i −0.252279 0.252279i 0.569626 0.821904i \(-0.307088\pi\)
−0.821904 + 0.569626i \(0.807088\pi\)
\(702\) 0 0
\(703\) 4.27361e10i 0.174974i
\(704\) 0 0
\(705\) −6.67644e10 −0.270264
\(706\) 0 0
\(707\) 6.01159e11 6.01159e11i 2.40609 2.40609i
\(708\) 0 0
\(709\) 1.24268e10 1.24268e10i 0.0491785 0.0491785i −0.682090 0.731268i \(-0.738929\pi\)
0.731268 + 0.682090i \(0.238929\pi\)
\(710\) 0 0
\(711\) −6.83785e9 −0.0267572
\(712\) 0 0
\(713\) 3.56691e10i 0.138017i
\(714\) 0 0
\(715\) 1.58290e9 + 1.58290e9i 0.00605660 + 0.00605660i
\(716\) 0 0
\(717\) −5.46419e10 5.46419e10i −0.206752 0.206752i
\(718\) 0 0
\(719\) 3.85268e11i 1.44161i 0.693139 + 0.720804i \(0.256227\pi\)
−0.693139 + 0.720804i \(0.743773\pi\)
\(720\) 0 0
\(721\) 8.95401e11 3.31342
\(722\) 0 0
\(723\) −8.96504e8 + 8.96504e8i −0.00328094 + 0.00328094i
\(724\) 0 0
\(725\) 1.14552e11 1.14552e11i 0.414620 0.414620i
\(726\) 0 0
\(727\) 2.31720e11 0.829517 0.414758 0.909932i \(-0.363866\pi\)
0.414758 + 0.909932i \(0.363866\pi\)
\(728\) 0 0
\(729\) 1.04604e10i 0.0370370i
\(730\) 0 0
\(731\) −1.99078e11 1.99078e11i −0.697196 0.697196i
\(732\) 0 0
\(733\) −3.46561e11 3.46561e11i −1.20051 1.20051i −0.974013 0.226492i \(-0.927274\pi\)
−0.226492 0.974013i \(-0.572726\pi\)
\(734\) 0 0
\(735\) 3.64296e11i 1.24826i
\(736\) 0 0
\(737\) 1.32537e10 0.0449229
\(738\) 0 0
\(739\) −1.05521e11 + 1.05521e11i −0.353803 + 0.353803i −0.861523 0.507719i \(-0.830489\pi\)
0.507719 + 0.861523i \(0.330489\pi\)
\(740\) 0 0
\(741\) 4.50567e9 4.50567e9i 0.0149447 0.0149447i
\(742\) 0 0
\(743\) −3.02342e11 −0.992072 −0.496036 0.868302i \(-0.665212\pi\)
−0.496036 + 0.868302i \(0.665212\pi\)
\(744\) 0 0
\(745\) 1.95950e11i 0.636092i
\(746\) 0 0
\(747\) −1.52081e10 1.52081e10i −0.0488418 0.0488418i
\(748\) 0 0
\(749\) 6.59354e11 + 6.59354e11i 2.09503 + 2.09503i
\(750\) 0 0
\(751\) 3.24940e11i 1.02151i −0.859725 0.510757i \(-0.829365\pi\)
0.859725 0.510757i \(-0.170635\pi\)
\(752\) 0 0
\(753\) 1.14267e11 0.355420
\(754\) 0 0
\(755\) 5.88130e10 5.88130e10i 0.181003 0.181003i
\(756\) 0 0
\(757\) −1.75367e11 + 1.75367e11i −0.534027 + 0.534027i −0.921768 0.387741i \(-0.873255\pi\)
0.387741 + 0.921768i \(0.373255\pi\)
\(758\) 0 0
\(759\) 3.80743e9 0.0114727
\(760\) 0 0
\(761\) 3.45616e11i 1.03052i −0.857035 0.515259i \(-0.827696\pi\)
0.857035 0.515259i \(-0.172304\pi\)
\(762\) 0 0
\(763\) 3.98032e11 + 3.98032e11i 1.17441 + 1.17441i
\(764\) 0 0
\(765\) 9.27143e10 + 9.27143e10i 0.270708 + 0.270708i
\(766\) 0 0
\(767\) 4.54466e10i 0.131317i
\(768\) 0 0
\(769\) −1.85498e11 −0.530438 −0.265219 0.964188i \(-0.585444\pi\)
−0.265219 + 0.964188i \(0.585444\pi\)
\(770\) 0 0
\(771\) 4.65156e10 4.65156e10i 0.131638 0.131638i
\(772\) 0 0
\(773\) −4.08694e11 + 4.08694e11i −1.14467 + 1.14467i −0.157087 + 0.987585i \(0.550210\pi\)
−0.987585 + 0.157087i \(0.949790\pi\)
\(774\) 0 0
\(775\) −4.98893e10 −0.138293
\(776\) 0 0
\(777\) 3.97204e11i 1.08976i
\(778\) 0 0
\(779\) −6.67462e10 6.67462e10i −0.181250 0.181250i
\(780\) 0 0
\(781\) −1.86781e10 1.86781e10i −0.0502029 0.0502029i
\(782\) 0 0
\(783\) 1.12998e11i 0.300625i
\(784\) 0 0
\(785\) −2.69693e10 −0.0710218
\(786\) 0 0
\(787\) 2.43389e11 2.43389e11i 0.634456 0.634456i −0.314726 0.949183i \(-0.601913\pi\)
0.949183 + 0.314726i \(0.101913\pi\)
\(788\) 0 0
\(789\) −1.70613e11 + 1.70613e11i −0.440255 + 0.440255i
\(790\) 0 0
\(791\) 2.85852e11 0.730189
\(792\) 0 0
\(793\) 1.25048e11i 0.316215i
\(794\) 0 0
\(795\) −7.32743e10 7.32743e10i −0.183435 0.183435i
\(796\) 0 0
\(797\) −4.03719e11 4.03719e11i −1.00057 1.00057i −1.00000 0.000566047i \(-0.999820\pi\)
−0.000566047 1.00000i \(-0.500180\pi\)
\(798\) 0 0
\(799\) 3.50792e11i 0.860722i
\(800\) 0 0
\(801\) −9.90925e10 −0.240719
\(802\) 0 0
\(803\) 2.07202e10 2.07202e10i 0.0498346 0.0498346i
\(804\) 0 0
\(805\) −1.69923e11 + 1.69923e11i −0.404640 + 0.404640i
\(806\) 0 0
\(807\) −2.92420e11 −0.689465
\(808\) 0 0
\(809\) 6.29891e11i 1.47052i −0.677784 0.735261i \(-0.737060\pi\)
0.677784 0.735261i \(-0.262940\pi\)
\(810\) 0 0
\(811\) 3.55543e11 + 3.55543e11i 0.821880 + 0.821880i 0.986378 0.164497i \(-0.0526002\pi\)
−0.164497 + 0.986378i \(0.552600\pi\)
\(812\) 0 0
\(813\) 1.27395e11 + 1.27395e11i 0.291602 + 0.291602i
\(814\) 0 0
\(815\) 3.90429e11i 0.884937i
\(816\) 0 0
\(817\) 5.41622e10 0.121565
\(818\) 0 0
\(819\) −4.18773e10 + 4.18773e10i −0.0930771 + 0.0930771i
\(820\) 0 0
\(821\) 4.52982e11 4.52982e11i 0.997031 0.997031i −0.00296475 0.999996i \(-0.500944\pi\)
0.999996 + 0.00296475i \(0.000943711\pi\)
\(822\) 0 0
\(823\) 6.69757e10 0.145988 0.0729941 0.997332i \(-0.476745\pi\)
0.0729941 + 0.997332i \(0.476745\pi\)
\(824\) 0 0
\(825\) 5.32534e9i 0.0114956i
\(826\) 0 0
\(827\) 1.77018e11 + 1.77018e11i 0.378440 + 0.378440i 0.870539 0.492099i \(-0.163770\pi\)
−0.492099 + 0.870539i \(0.663770\pi\)
\(828\) 0 0
\(829\) 1.85563e10 + 1.85563e10i 0.0392892 + 0.0392892i 0.726478 0.687189i \(-0.241156\pi\)
−0.687189 + 0.726478i \(0.741156\pi\)
\(830\) 0 0
\(831\) 4.44648e11i 0.932421i
\(832\) 0 0
\(833\) 1.91408e12 3.97538
\(834\) 0 0
\(835\) 7.86809e10 7.86809e10i 0.161854 0.161854i
\(836\) 0 0
\(837\) 2.46064e10 2.46064e10i 0.0501355 0.0501355i
\(838\) 0 0
\(839\) 2.97050e11 0.599490 0.299745 0.954019i \(-0.403098\pi\)
0.299745 + 0.954019i \(0.403098\pi\)
\(840\) 0 0
\(841\) 7.20424e11i 1.44014i
\(842\) 0 0
\(843\) −2.20625e11 2.20625e11i −0.436862 0.436862i
\(844\) 0 0
\(845\) 2.73027e11 + 2.73027e11i 0.535523 + 0.535523i
\(846\) 0 0
\(847\) 9.91952e11i 1.92733i
\(848\) 0 0
\(849\) −6.65541e10 −0.128098
\(850\) 0 0
\(851\) 1.35676e11 1.35676e11i 0.258694 0.258694i
\(852\) 0 0
\(853\) −2.40559e11 + 2.40559e11i −0.454386 + 0.454386i −0.896807 0.442421i \(-0.854120\pi\)
0.442421 + 0.896807i \(0.354120\pi\)
\(854\) 0 0
\(855\) −2.52243e10 −0.0472013
\(856\) 0 0
\(857\) 5.39842e11i 1.00079i −0.865797 0.500395i \(-0.833188\pi\)
0.865797 0.500395i \(-0.166812\pi\)
\(858\) 0 0
\(859\) −3.59477e11 3.59477e11i −0.660234 0.660234i 0.295201 0.955435i \(-0.404613\pi\)
−0.955435 + 0.295201i \(0.904613\pi\)
\(860\) 0 0
\(861\) 6.20363e11 + 6.20363e11i 1.12884 + 1.12884i
\(862\) 0 0
\(863\) 3.07520e11i 0.554409i 0.960811 + 0.277204i \(0.0894079\pi\)
−0.960811 + 0.277204i \(0.910592\pi\)
\(864\) 0 0
\(865\) −8.38304e10 −0.149740
\(866\) 0 0
\(867\) 2.56463e11 2.56463e11i 0.453887 0.453887i
\(868\) 0 0
\(869\) 1.71696e9 1.71696e9i 0.00301080 0.00301080i
\(870\) 0 0
\(871\) −9.95875e10 −0.173034
\(872\) 0 0
\(873\) 3.34971e11i 0.576701i
\(874\) 0 0
\(875\) −8.70821e11 8.70821e11i −1.48558 1.48558i
\(876\) 0 0
\(877\) −7.10933e11 7.10933e11i −1.20179 1.20179i −0.973620 0.228173i \(-0.926725\pi\)
−0.228173 0.973620i \(-0.573275\pi\)
\(878\) 0 0
\(879\) 5.41931e11i 0.907797i
\(880\) 0 0
\(881\) −2.06616e11 −0.342973 −0.171486 0.985187i \(-0.554857\pi\)
−0.171486 + 0.985187i \(0.554857\pi\)
\(882\) 0 0
\(883\) −7.60639e11 + 7.60639e11i −1.25123 + 1.25123i −0.296055 + 0.955171i \(0.595671\pi\)
−0.955171 + 0.296055i \(0.904329\pi\)
\(884\) 0 0
\(885\) −1.27213e11 + 1.27213e11i −0.207376 + 0.207376i
\(886\) 0 0
\(887\) 5.30110e11 0.856390 0.428195 0.903686i \(-0.359150\pi\)
0.428195 + 0.903686i \(0.359150\pi\)
\(888\) 0 0
\(889\) 1.90186e12i 3.04488i
\(890\) 0 0
\(891\) −2.62656e9 2.62656e9i −0.00416751 0.00416751i
\(892\) 0 0
\(893\) −4.77191e10 4.77191e10i −0.0750388 0.0750388i
\(894\) 0 0
\(895\) 1.14032e11i 0.177720i
\(896\) 0 0
\(897\) −2.86087e10 −0.0441905
\(898\) 0 0
\(899\) 2.65811e11 2.65811e11i 0.406944 0.406944i
\(900\) 0 0
\(901\) −3.84996e11 + 3.84996e11i −0.584195 + 0.584195i
\(902\) 0 0
\(903\) −5.03402e11 −0.757119
\(904\) 0 0
\(905\) 7.46971e11i 1.11355i
\(906\) 0 0
\(907\) −3.02031e11 3.02031e11i −0.446296 0.446296i 0.447825 0.894121i \(-0.352199\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(908\) 0 0
\(909\) −2.83312e11 2.83312e11i −0.414964 0.414964i
\(910\) 0 0
\(911\) 1.29875e12i 1.88561i −0.333351 0.942803i \(-0.608179\pi\)
0.333351 0.942803i \(-0.391821\pi\)
\(912\) 0 0
\(913\) 7.63739e9 0.0109916
\(914\) 0 0
\(915\) −3.50030e11 + 3.50030e11i −0.499368 + 0.499368i
\(916\) 0 0
\(917\) 8.61008e11 8.61008e11i 1.21767 1.21767i
\(918\) 0 0
\(919\) −8.43775e11 −1.18295 −0.591473 0.806325i \(-0.701453\pi\)
−0.591473 + 0.806325i \(0.701453\pi\)
\(920\) 0 0
\(921\) 2.85755e11i 0.397150i
\(922\) 0 0
\(923\) 1.40346e11 + 1.40346e11i 0.193372 + 0.193372i
\(924\) 0 0
\(925\) 1.89767e11 + 1.89767e11i 0.259211 + 0.259211i
\(926\) 0 0
\(927\) 4.21982e11i 0.571445i
\(928\) 0 0
\(929\) −1.17440e12 −1.57671 −0.788357 0.615219i \(-0.789068\pi\)
−0.788357 + 0.615219i \(0.789068\pi\)
\(930\) 0 0
\(931\) −2.60376e11 + 2.60376e11i −0.346579 + 0.346579i
\(932\) 0 0
\(933\) −3.74705e11 + 3.74705e11i −0.494496 + 0.494496i
\(934\) 0 0
\(935\) −4.65605e10 −0.0609216
\(936\) 0 0
\(937\) 1.36352e12i 1.76890i −0.466639 0.884448i \(-0.654535\pi\)
0.466639 0.884448i \(-0.345465\pi\)
\(938\) 0 0
\(939\) −2.55499e11 2.55499e11i −0.328644 0.328644i
\(940\) 0 0
\(941\) −9.62141e11 9.62141e11i −1.22710 1.22710i −0.965056 0.262045i \(-0.915603\pi\)
−0.262045 0.965056i \(-0.584397\pi\)
\(942\) 0 0
\(943\) 4.23805e11i 0.535944i
\(944\) 0 0
\(945\) 2.34443e11 0.293975
\(946\) 0 0
\(947\) −5.13392e11 + 5.13392e11i −0.638336 + 0.638336i −0.950145 0.311809i \(-0.899065\pi\)
0.311809 + 0.950145i \(0.399065\pi\)
\(948\) 0 0
\(949\) −1.55690e11 + 1.55690e11i −0.191953 + 0.191953i
\(950\) 0 0
\(951\) −6.85554e10 −0.0838145
\(952\) 0 0
\(953\) 2.21524e11i 0.268565i −0.990943 0.134283i \(-0.957127\pi\)
0.990943 0.134283i \(-0.0428730\pi\)
\(954\) 0 0
\(955\) −7.59519e11 7.59519e11i −0.913114 0.913114i
\(956\) 0 0
\(957\) −2.83735e10 2.83735e10i −0.0338272 0.0338272i
\(958\) 0 0
\(959\) 2.48681e12i 2.94014i
\(960\) 0 0
\(961\) 7.37126e11 0.864267
\(962\) 0 0
\(963\) 3.10738e11 3.10738e11i 0.361318 0.361318i
\(964\) 0 0
\(965\) −6.29691e11 + 6.29691e11i −0.726137 + 0.726137i
\(966\) 0 0
\(967\) −1.19611e11 −0.136793 −0.0683967 0.997658i \(-0.521788\pi\)
−0.0683967 + 0.997658i \(0.521788\pi\)
\(968\) 0 0
\(969\) 1.32533e11i 0.150324i
\(970\) 0 0
\(971\) −3.26614e11 3.26614e11i −0.367416 0.367416i 0.499118 0.866534i \(-0.333657\pi\)
−0.866534 + 0.499118i \(0.833657\pi\)
\(972\) 0 0
\(973\) −9.77162e11 9.77162e11i −1.09022 1.09022i
\(974\) 0 0
\(975\) 4.00142e10i 0.0442788i
\(976\) 0 0
\(977\) −1.04861e12 −1.15090 −0.575448 0.817838i \(-0.695172\pi\)
−0.575448 + 0.817838i \(0.695172\pi\)
\(978\) 0 0
\(979\) 2.48818e10 2.48818e10i 0.0270864 0.0270864i
\(980\) 0 0
\(981\) 1.87583e11 1.87583e11i 0.202543 0.202543i
\(982\) 0 0
\(983\) −1.01847e12 −1.09078 −0.545389 0.838183i \(-0.683618\pi\)
−0.545389 + 0.838183i \(0.683618\pi\)
\(984\) 0 0
\(985\) 8.77979e11i 0.932694i
\(986\) 0 0
\(987\) 4.43518e11 + 4.43518e11i 0.467350 + 0.467350i
\(988\) 0 0
\(989\) −1.71951e11 1.71951e11i −0.179730 0.179730i
\(990\) 0 0
\(991\) 6.45658e11i 0.669435i −0.942319 0.334717i \(-0.891359\pi\)
0.942319 0.334717i \(-0.108641\pi\)
\(992\) 0 0
\(993\) −1.05057e12 −1.08050
\(994\) 0 0
\(995\) 6.67973e11 6.67973e11i 0.681501 0.681501i
\(996\) 0 0
\(997\) 5.11002e10 5.11002e10i 0.0517180 0.0517180i −0.680775 0.732493i \(-0.738357\pi\)
0.732493 + 0.680775i \(0.238357\pi\)
\(998\) 0 0
\(999\) −1.87193e11 −0.187944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.9.l.a.175.21 64
4.3 odd 2 48.9.l.a.19.14 64
16.5 even 4 48.9.l.a.43.14 yes 64
16.11 odd 4 inner 192.9.l.a.79.21 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.9.l.a.19.14 64 4.3 odd 2
48.9.l.a.43.14 yes 64 16.5 even 4
192.9.l.a.79.21 64 16.11 odd 4 inner
192.9.l.a.175.21 64 1.1 even 1 trivial