[N,k,chi] = [192,9,Mod(127,192)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(192, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("192.127");
S:= CuspForms(chi, 9);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).
\(n\)
\(65\)
\(127\)
\(133\)
\(\chi(n)\)
\(1\)
\(-1\)
\(1\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 168T_{5}^{3} - 622376T_{5}^{2} + 281724000T_{5} - 29045327600 \)
T5^4 - 168*T5^3 - 622376*T5^2 + 281724000*T5 - 29045327600
acting on \(S_{9}^{\mathrm{new}}(192, [\chi])\).
$p$
$F_p(T)$
$2$
\( T^{8} \)
T^8
$3$
\( (T^{2} + 2187)^{4} \)
(T^2 + 2187)^4
$5$
\( (T^{4} - 168 T^{3} + \cdots - 29045327600)^{2} \)
(T^4 - 168*T^3 - 622376*T^2 + 281724000*T - 29045327600)^2
$7$
\( T^{8} + 32521152 T^{6} + \cdots + 88\!\cdots\!36 \)
T^8 + 32521152*T^6 + 265262951278080*T^4 + 301790318570608508928*T^2 + 88584309160415193202753536
$11$
\( T^{8} + 731054784 T^{6} + \cdots + 71\!\cdots\!04 \)
T^8 + 731054784*T^6 + 188831795228333568*T^4 + 20070398504013570412167168*T^2 + 712291262654612601002751209570304
$13$
\( (T^{4} - 1432 T^{3} + \cdots + 46\!\cdots\!76)^{2} \)
(T^4 - 1432*T^3 - 2530391592*T^2 - 12058282270048*T + 465082752964296976)^2
$17$
\( (T^{4} + 96600 T^{3} + \cdots + 31\!\cdots\!00)^{2} \)
(T^4 + 96600*T^3 - 16885621928*T^2 - 1618328057734560*T + 3159076771609584400)^2
$19$
\( T^{8} + 68043402432 T^{6} + \cdots + 20\!\cdots\!56 \)
T^8 + 68043402432*T^6 + 926020403955396933120*T^4 + 2760144040927112790498462056448*T^2 + 2053576830792291622207497742911584403456
$23$
\( T^{8} + 372146313216 T^{6} + \cdots + 83\!\cdots\!76 \)
T^8 + 372146313216*T^6 + 38166072448421043634176*T^4 + 707514619307825188499724680822784*T^2 + 83899245191563438900356060495117419544576
$29$
\( (T^{4} + 1031736 T^{3} + \cdots - 15\!\cdots\!24)^{2} \)
(T^4 + 1031736*T^3 - 310905257960*T^2 - 61815372234963744*T - 1596164002801672842224)^2
$31$
\( T^{8} + 5136946069440 T^{6} + \cdots + 17\!\cdots\!64 \)
T^8 + 5136946069440*T^6 + 8508078551072091698947584*T^4 + 4705606466827552481212680918345695232*T^2 + 177991383975738784957583916352233614934831857664
$37$
\( (T^{4} + 3735176 T^{3} + \cdots - 48\!\cdots\!84)^{2} \)
(T^4 + 3735176*T^3 + 1733237376792*T^2 - 5897504594234036704*T - 4847166479430284230118384)^2
$41$
\( (T^{4} + 4432728 T^{3} + \cdots - 44\!\cdots\!92)^{2} \)
(T^4 + 4432728*T^3 - 3708793548968*T^2 - 39021113596555832736*T - 44175021993013593770519792)^2
$43$
\( T^{8} + 42553473302208 T^{6} + \cdots + 21\!\cdots\!16 \)
T^8 + 42553473302208*T^6 + 453201486029578332478379520*T^4 + 1731489642234826117786217575097601933312*T^2 + 2186982880595825722503861182069555619481595103215616
$47$
\( T^{8} + 108463214970624 T^{6} + \cdots + 26\!\cdots\!00 \)
T^8 + 108463214970624*T^6 + 2429080480270696933710913536*T^4 + 10619324081259765128338999433022642585600*T^2 + 2606042551834108789289643093863227353563073085440000
$53$
\( (T^{4} + 4353336 T^{3} + \cdots - 39\!\cdots\!44)^{2} \)
(T^4 + 4353336*T^3 - 113578064794088*T^2 - 463181105090428725024*T - 393587733417536166851036144)^2
$59$
\( T^{8} + 345827707315392 T^{6} + \cdots + 15\!\cdots\!96 \)
T^8 + 345827707315392*T^6 + 12509651530138640962812802560*T^4 + 27361506013259051444953443490421496004608*T^2 + 15182093979807071377517915011294311838424064469303296
$61$
\( (T^{4} + 6728648 T^{3} + \cdots + 34\!\cdots\!04)^{2} \)
(T^4 + 6728648*T^3 - 45615921812328*T^2 - 105519129701885123296*T + 347215490092860240568677904)^2
$67$
\( T^{8} + \cdots + 10\!\cdots\!76 \)
T^8 + 1212820113830592*T^6 + 396727333319396731210832401920*T^4 + 17996344385865490050565348766832179606765568*T^2 + 100938186450889235073465984404919918823845832782947352576
$71$
\( T^{8} + \cdots + 30\!\cdots\!00 \)
T^8 + 3471380029910016*T^6 + 4141734699830476161397414035456*T^4 + 1975428717794073949298469102919223902155571200*T^2 + 308747893388594045130381954092376144333417015530225664000000
$73$
\( (T^{4} - 47369480 T^{3} + \cdots + 42\!\cdots\!28)^{2} \)
(T^4 - 47369480*T^3 - 976018905100776*T^2 + 35275561122750444168160*T + 426625161625497056679394240528)^2
$79$
\( T^{8} + \cdots + 29\!\cdots\!24 \)
T^8 + 2234185348421568*T^6 + 906831341512177665182743881216*T^4 + 32105724151995755629567467524583278020116480*T^2 + 296867455173096607229687959447217123992043971911549517824
$83$
\( T^{8} + \cdots + 25\!\cdots\!84 \)
T^8 + 2474383357371072*T^6 + 1812539311831684620391473501696*T^4 + 455899742706423641653621728454155581796433920*T^2 + 25331761986135915641801247826207701065440843122815085379584
$89$
\( (T^{4} - 94496136 T^{3} + \cdots - 16\!\cdots\!88)^{2} \)
(T^4 - 94496136*T^3 - 2911238744198888*T^2 + 227248946455061005336032*T - 1661922441382325213243246613488)^2
$97$
\( (T^{4} + 61645816 T^{3} + \cdots + 30\!\cdots\!48)^{2} \)
(T^4 + 61645816*T^3 - 2469956951973864*T^2 - 15111278139898139848736*T + 302258626539697896037532024848)^2
show more
show less