Properties

Label 192.9.g.b.127.1
Level $192$
Weight $9$
Character 192.127
Analytic conductor $78.217$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,9,Mod(127,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.127");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 192.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.2166931317\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 192.127
Dual form 192.9.g.b.127.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-46.7654i q^{3} +90.0000 q^{5} +921.451i q^{7} -2187.00 q^{9} +O(q^{10})\) \(q-46.7654i q^{3} +90.0000 q^{5} +921.451i q^{7} -2187.00 q^{9} -5175.37i q^{11} +16358.0 q^{13} -4208.88i q^{15} -42678.0 q^{17} +114447. i q^{19} +43092.0 q^{21} -250662. i q^{23} -382525. q^{25} +102276. i q^{27} +1.27053e6 q^{29} -512943. i q^{31} -242028. q^{33} +82930.6i q^{35} +2.26214e6 q^{37} -764988. i q^{39} -872694. q^{41} +1.66208e6i q^{43} -196830. q^{45} +797007. i q^{47} +4.91573e6 q^{49} +1.99585e6i q^{51} -1.06169e6 q^{53} -465783. i q^{55} +5.35216e6 q^{57} -2.33723e7i q^{59} -1.53010e7 q^{61} -2.01521e6i q^{63} +1.47222e6 q^{65} -9.18022e6i q^{67} -1.17223e7 q^{69} +2.28310e7i q^{71} +1.89164e7 q^{73} +1.78889e7i q^{75} +4.76885e6 q^{77} -5.41593e7i q^{79} +4.78297e6 q^{81} -6.52089e7i q^{83} -3.84102e6 q^{85} -5.94168e7i q^{87} -8.98132e7 q^{89} +1.50731e7i q^{91} -2.39880e7 q^{93} +1.03002e7i q^{95} -7.57782e7 q^{97} +1.13185e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 180 q^{5} - 4374 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 180 q^{5} - 4374 q^{9} + 32716 q^{13} - 85356 q^{17} + 86184 q^{21} - 765050 q^{25} + 2541060 q^{29} - 484056 q^{33} + 4524284 q^{37} - 1745388 q^{41} - 393660 q^{45} + 9831458 q^{49} - 2123388 q^{53} + 10704312 q^{57} - 30602020 q^{61} + 2944440 q^{65} - 23444640 q^{69} + 37832708 q^{73} + 9537696 q^{77} + 9565938 q^{81} - 7682040 q^{85} - 179626428 q^{89} - 47975976 q^{93} - 151556476 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 46.7654i − 0.577350i
\(4\) 0 0
\(5\) 90.0000 0.144000 0.0720000 0.997405i \(-0.477062\pi\)
0.0720000 + 0.997405i \(0.477062\pi\)
\(6\) 0 0
\(7\) 921.451i 0.383778i 0.981417 + 0.191889i \(0.0614614\pi\)
−0.981417 + 0.191889i \(0.938539\pi\)
\(8\) 0 0
\(9\) −2187.00 −0.333333
\(10\) 0 0
\(11\) − 5175.37i − 0.353485i −0.984257 0.176742i \(-0.943444\pi\)
0.984257 0.176742i \(-0.0565559\pi\)
\(12\) 0 0
\(13\) 16358.0 0.572739 0.286370 0.958119i \(-0.407552\pi\)
0.286370 + 0.958119i \(0.407552\pi\)
\(14\) 0 0
\(15\) − 4208.88i − 0.0831384i
\(16\) 0 0
\(17\) −42678.0 −0.510985 −0.255493 0.966811i \(-0.582238\pi\)
−0.255493 + 0.966811i \(0.582238\pi\)
\(18\) 0 0
\(19\) 114447.i 0.878193i 0.898440 + 0.439096i \(0.144701\pi\)
−0.898440 + 0.439096i \(0.855299\pi\)
\(20\) 0 0
\(21\) 43092.0 0.221574
\(22\) 0 0
\(23\) − 250662.i − 0.895731i −0.894101 0.447866i \(-0.852184\pi\)
0.894101 0.447866i \(-0.147816\pi\)
\(24\) 0 0
\(25\) −382525. −0.979264
\(26\) 0 0
\(27\) 102276.i 0.192450i
\(28\) 0 0
\(29\) 1.27053e6 1.79636 0.898179 0.439630i \(-0.144890\pi\)
0.898179 + 0.439630i \(0.144890\pi\)
\(30\) 0 0
\(31\) − 512943.i − 0.555421i −0.960665 0.277711i \(-0.910424\pi\)
0.960665 0.277711i \(-0.0895757\pi\)
\(32\) 0 0
\(33\) −242028. −0.204084
\(34\) 0 0
\(35\) 82930.6i 0.0552640i
\(36\) 0 0
\(37\) 2.26214e6 1.20702 0.603508 0.797357i \(-0.293769\pi\)
0.603508 + 0.797357i \(0.293769\pi\)
\(38\) 0 0
\(39\) − 764988.i − 0.330671i
\(40\) 0 0
\(41\) −872694. −0.308835 −0.154418 0.988006i \(-0.549350\pi\)
−0.154418 + 0.988006i \(0.549350\pi\)
\(42\) 0 0
\(43\) 1.66208e6i 0.486160i 0.970006 + 0.243080i \(0.0781577\pi\)
−0.970006 + 0.243080i \(0.921842\pi\)
\(44\) 0 0
\(45\) −196830. −0.0480000
\(46\) 0 0
\(47\) 797007.i 0.163332i 0.996660 + 0.0816659i \(0.0260240\pi\)
−0.996660 + 0.0816659i \(0.973976\pi\)
\(48\) 0 0
\(49\) 4.91573e6 0.852714
\(50\) 0 0
\(51\) 1.99585e6i 0.295017i
\(52\) 0 0
\(53\) −1.06169e6 −0.134554 −0.0672769 0.997734i \(-0.521431\pi\)
−0.0672769 + 0.997734i \(0.521431\pi\)
\(54\) 0 0
\(55\) − 465783.i − 0.0509018i
\(56\) 0 0
\(57\) 5.35216e6 0.507025
\(58\) 0 0
\(59\) − 2.33723e7i − 1.92883i −0.264402 0.964413i \(-0.585174\pi\)
0.264402 0.964413i \(-0.414826\pi\)
\(60\) 0 0
\(61\) −1.53010e7 −1.10510 −0.552549 0.833480i \(-0.686345\pi\)
−0.552549 + 0.833480i \(0.686345\pi\)
\(62\) 0 0
\(63\) − 2.01521e6i − 0.127926i
\(64\) 0 0
\(65\) 1.47222e6 0.0824744
\(66\) 0 0
\(67\) − 9.18022e6i − 0.455569i −0.973712 0.227784i \(-0.926852\pi\)
0.973712 0.227784i \(-0.0731481\pi\)
\(68\) 0 0
\(69\) −1.17223e7 −0.517151
\(70\) 0 0
\(71\) 2.28310e7i 0.898444i 0.893420 + 0.449222i \(0.148299\pi\)
−0.893420 + 0.449222i \(0.851701\pi\)
\(72\) 0 0
\(73\) 1.89164e7 0.666110 0.333055 0.942907i \(-0.391921\pi\)
0.333055 + 0.942907i \(0.391921\pi\)
\(74\) 0 0
\(75\) 1.78889e7i 0.565378i
\(76\) 0 0
\(77\) 4.76885e6 0.135660
\(78\) 0 0
\(79\) − 5.41593e7i − 1.39048i −0.718778 0.695240i \(-0.755298\pi\)
0.718778 0.695240i \(-0.244702\pi\)
\(80\) 0 0
\(81\) 4.78297e6 0.111111
\(82\) 0 0
\(83\) − 6.52089e7i − 1.37403i −0.726645 0.687013i \(-0.758922\pi\)
0.726645 0.687013i \(-0.241078\pi\)
\(84\) 0 0
\(85\) −3.84102e6 −0.0735819
\(86\) 0 0
\(87\) − 5.94168e7i − 1.03713i
\(88\) 0 0
\(89\) −8.98132e7 −1.43146 −0.715732 0.698375i \(-0.753907\pi\)
−0.715732 + 0.698375i \(0.753907\pi\)
\(90\) 0 0
\(91\) 1.50731e7i 0.219805i
\(92\) 0 0
\(93\) −2.39880e7 −0.320673
\(94\) 0 0
\(95\) 1.03002e7i 0.126460i
\(96\) 0 0
\(97\) −7.57782e7 −0.855968 −0.427984 0.903786i \(-0.640776\pi\)
−0.427984 + 0.903786i \(0.640776\pi\)
\(98\) 0 0
\(99\) 1.13185e7i 0.117828i
\(100\) 0 0
\(101\) 1.68976e8 1.62383 0.811914 0.583778i \(-0.198426\pi\)
0.811914 + 0.583778i \(0.198426\pi\)
\(102\) 0 0
\(103\) − 1.59060e8i − 1.41323i −0.707601 0.706613i \(-0.750222\pi\)
0.707601 0.706613i \(-0.249778\pi\)
\(104\) 0 0
\(105\) 3.87828e6 0.0319067
\(106\) 0 0
\(107\) − 1.75980e8i − 1.34254i −0.741213 0.671270i \(-0.765749\pi\)
0.741213 0.671270i \(-0.234251\pi\)
\(108\) 0 0
\(109\) 1.37980e7 0.0977483 0.0488742 0.998805i \(-0.484437\pi\)
0.0488742 + 0.998805i \(0.484437\pi\)
\(110\) 0 0
\(111\) − 1.05790e8i − 0.696871i
\(112\) 0 0
\(113\) −9.25151e7 −0.567412 −0.283706 0.958911i \(-0.591564\pi\)
−0.283706 + 0.958911i \(0.591564\pi\)
\(114\) 0 0
\(115\) − 2.25596e7i − 0.128985i
\(116\) 0 0
\(117\) −3.57749e7 −0.190913
\(118\) 0 0
\(119\) − 3.93257e7i − 0.196105i
\(120\) 0 0
\(121\) 1.87574e8 0.875049
\(122\) 0 0
\(123\) 4.08119e7i 0.178306i
\(124\) 0 0
\(125\) −6.95835e7 −0.285014
\(126\) 0 0
\(127\) − 2.21744e8i − 0.852389i −0.904632 0.426195i \(-0.859854\pi\)
0.904632 0.426195i \(-0.140146\pi\)
\(128\) 0 0
\(129\) 7.77279e7 0.280684
\(130\) 0 0
\(131\) − 3.60662e8i − 1.22466i −0.790603 0.612329i \(-0.790233\pi\)
0.790603 0.612329i \(-0.209767\pi\)
\(132\) 0 0
\(133\) −1.05457e8 −0.337031
\(134\) 0 0
\(135\) 9.20483e6i 0.0277128i
\(136\) 0 0
\(137\) 4.40725e8 1.25108 0.625541 0.780191i \(-0.284878\pi\)
0.625541 + 0.780191i \(0.284878\pi\)
\(138\) 0 0
\(139\) − 5.44242e8i − 1.45792i −0.684558 0.728958i \(-0.740005\pi\)
0.684558 0.728958i \(-0.259995\pi\)
\(140\) 0 0
\(141\) 3.72723e7 0.0942996
\(142\) 0 0
\(143\) − 8.46587e7i − 0.202454i
\(144\) 0 0
\(145\) 1.14348e8 0.258676
\(146\) 0 0
\(147\) − 2.29886e8i − 0.492315i
\(148\) 0 0
\(149\) −4.40746e7 −0.0894217 −0.0447109 0.999000i \(-0.514237\pi\)
−0.0447109 + 0.999000i \(0.514237\pi\)
\(150\) 0 0
\(151\) 1.11931e8i 0.215300i 0.994189 + 0.107650i \(0.0343326\pi\)
−0.994189 + 0.107650i \(0.965667\pi\)
\(152\) 0 0
\(153\) 9.33368e7 0.170328
\(154\) 0 0
\(155\) − 4.61649e7i − 0.0799807i
\(156\) 0 0
\(157\) −2.89510e8 −0.476503 −0.238251 0.971204i \(-0.576574\pi\)
−0.238251 + 0.971204i \(0.576574\pi\)
\(158\) 0 0
\(159\) 4.96505e7i 0.0776847i
\(160\) 0 0
\(161\) 2.30973e8 0.343762
\(162\) 0 0
\(163\) − 3.06936e8i − 0.434808i −0.976082 0.217404i \(-0.930241\pi\)
0.976082 0.217404i \(-0.0697589\pi\)
\(164\) 0 0
\(165\) −2.17825e7 −0.0293882
\(166\) 0 0
\(167\) − 1.19626e9i − 1.53801i −0.639243 0.769004i \(-0.720752\pi\)
0.639243 0.769004i \(-0.279248\pi\)
\(168\) 0 0
\(169\) −5.48147e8 −0.671970
\(170\) 0 0
\(171\) − 2.50296e8i − 0.292731i
\(172\) 0 0
\(173\) −8.26090e7 −0.0922237 −0.0461119 0.998936i \(-0.514683\pi\)
−0.0461119 + 0.998936i \(0.514683\pi\)
\(174\) 0 0
\(175\) − 3.52478e8i − 0.375820i
\(176\) 0 0
\(177\) −1.09301e9 −1.11361
\(178\) 0 0
\(179\) 1.13619e9i 1.10673i 0.832940 + 0.553364i \(0.186656\pi\)
−0.832940 + 0.553364i \(0.813344\pi\)
\(180\) 0 0
\(181\) 8.20024e8 0.764033 0.382017 0.924155i \(-0.375230\pi\)
0.382017 + 0.924155i \(0.375230\pi\)
\(182\) 0 0
\(183\) 7.15557e8i 0.638029i
\(184\) 0 0
\(185\) 2.03593e8 0.173810
\(186\) 0 0
\(187\) 2.20874e8i 0.180625i
\(188\) 0 0
\(189\) −9.42422e7 −0.0738581
\(190\) 0 0
\(191\) − 1.24962e9i − 0.938956i −0.882944 0.469478i \(-0.844442\pi\)
0.882944 0.469478i \(-0.155558\pi\)
\(192\) 0 0
\(193\) −2.01195e9 −1.45007 −0.725033 0.688714i \(-0.758176\pi\)
−0.725033 + 0.688714i \(0.758176\pi\)
\(194\) 0 0
\(195\) − 6.88489e7i − 0.0476166i
\(196\) 0 0
\(197\) 6.32559e8 0.419988 0.209994 0.977703i \(-0.432656\pi\)
0.209994 + 0.977703i \(0.432656\pi\)
\(198\) 0 0
\(199\) 1.45714e9i 0.929156i 0.885532 + 0.464578i \(0.153794\pi\)
−0.885532 + 0.464578i \(0.846206\pi\)
\(200\) 0 0
\(201\) −4.29317e8 −0.263023
\(202\) 0 0
\(203\) 1.17073e9i 0.689403i
\(204\) 0 0
\(205\) −7.85425e7 −0.0444722
\(206\) 0 0
\(207\) 5.48199e8i 0.298577i
\(208\) 0 0
\(209\) 5.92305e8 0.310428
\(210\) 0 0
\(211\) 3.57401e8i 0.180312i 0.995928 + 0.0901562i \(0.0287366\pi\)
−0.995928 + 0.0901562i \(0.971263\pi\)
\(212\) 0 0
\(213\) 1.06770e9 0.518717
\(214\) 0 0
\(215\) 1.49587e8i 0.0700070i
\(216\) 0 0
\(217\) 4.72652e8 0.213159
\(218\) 0 0
\(219\) − 8.84630e8i − 0.384579i
\(220\) 0 0
\(221\) −6.98127e8 −0.292661
\(222\) 0 0
\(223\) 1.66879e9i 0.674813i 0.941359 + 0.337406i \(0.109550\pi\)
−0.941359 + 0.337406i \(0.890450\pi\)
\(224\) 0 0
\(225\) 8.36582e8 0.326421
\(226\) 0 0
\(227\) 3.34498e9i 1.25977i 0.776690 + 0.629883i \(0.216897\pi\)
−0.776690 + 0.629883i \(0.783103\pi\)
\(228\) 0 0
\(229\) −1.42427e9 −0.517906 −0.258953 0.965890i \(-0.583378\pi\)
−0.258953 + 0.965890i \(0.583378\pi\)
\(230\) 0 0
\(231\) − 2.23017e8i − 0.0783231i
\(232\) 0 0
\(233\) 3.82745e9 1.29863 0.649316 0.760519i \(-0.275055\pi\)
0.649316 + 0.760519i \(0.275055\pi\)
\(234\) 0 0
\(235\) 7.17306e7i 0.0235198i
\(236\) 0 0
\(237\) −2.53278e9 −0.802794
\(238\) 0 0
\(239\) 3.55074e9i 1.08825i 0.839006 + 0.544123i \(0.183137\pi\)
−0.839006 + 0.544123i \(0.816863\pi\)
\(240\) 0 0
\(241\) 2.46612e9 0.731048 0.365524 0.930802i \(-0.380890\pi\)
0.365524 + 0.930802i \(0.380890\pi\)
\(242\) 0 0
\(243\) − 2.23677e8i − 0.0641500i
\(244\) 0 0
\(245\) 4.42416e8 0.122791
\(246\) 0 0
\(247\) 1.87212e9i 0.502975i
\(248\) 0 0
\(249\) −3.04952e9 −0.793294
\(250\) 0 0
\(251\) − 2.51003e9i − 0.632389i −0.948694 0.316195i \(-0.897595\pi\)
0.948694 0.316195i \(-0.102405\pi\)
\(252\) 0 0
\(253\) −1.29727e9 −0.316627
\(254\) 0 0
\(255\) 1.79627e8i 0.0424825i
\(256\) 0 0
\(257\) 3.24232e9 0.743231 0.371615 0.928387i \(-0.378804\pi\)
0.371615 + 0.928387i \(0.378804\pi\)
\(258\) 0 0
\(259\) 2.08445e9i 0.463226i
\(260\) 0 0
\(261\) −2.77865e9 −0.598786
\(262\) 0 0
\(263\) 8.13109e9i 1.69952i 0.527172 + 0.849759i \(0.323252\pi\)
−0.527172 + 0.849759i \(0.676748\pi\)
\(264\) 0 0
\(265\) −9.55525e7 −0.0193757
\(266\) 0 0
\(267\) 4.20015e9i 0.826456i
\(268\) 0 0
\(269\) 7.44829e9 1.42248 0.711242 0.702947i \(-0.248133\pi\)
0.711242 + 0.702947i \(0.248133\pi\)
\(270\) 0 0
\(271\) − 7.41657e7i − 0.0137507i −0.999976 0.00687537i \(-0.997811\pi\)
0.999976 0.00687537i \(-0.00218851\pi\)
\(272\) 0 0
\(273\) 7.04899e8 0.126904
\(274\) 0 0
\(275\) 1.97971e9i 0.346155i
\(276\) 0 0
\(277\) −2.00834e9 −0.341128 −0.170564 0.985347i \(-0.554559\pi\)
−0.170564 + 0.985347i \(0.554559\pi\)
\(278\) 0 0
\(279\) 1.12181e9i 0.185140i
\(280\) 0 0
\(281\) −1.37037e9 −0.219793 −0.109896 0.993943i \(-0.535052\pi\)
−0.109896 + 0.993943i \(0.535052\pi\)
\(282\) 0 0
\(283\) 6.48210e9i 1.01058i 0.862950 + 0.505289i \(0.168614\pi\)
−0.862950 + 0.505289i \(0.831386\pi\)
\(284\) 0 0
\(285\) 4.81694e8 0.0730116
\(286\) 0 0
\(287\) − 8.04145e8i − 0.118524i
\(288\) 0 0
\(289\) −5.15435e9 −0.738894
\(290\) 0 0
\(291\) 3.54380e9i 0.494193i
\(292\) 0 0
\(293\) 1.10320e10 1.49687 0.748436 0.663207i \(-0.230805\pi\)
0.748436 + 0.663207i \(0.230805\pi\)
\(294\) 0 0
\(295\) − 2.10350e9i − 0.277751i
\(296\) 0 0
\(297\) 5.29315e8 0.0680281
\(298\) 0 0
\(299\) − 4.10034e9i − 0.513020i
\(300\) 0 0
\(301\) −1.53153e9 −0.186577
\(302\) 0 0
\(303\) − 7.90223e9i − 0.937517i
\(304\) 0 0
\(305\) −1.37709e9 −0.159134
\(306\) 0 0
\(307\) 9.80026e9i 1.10328i 0.834084 + 0.551638i \(0.185997\pi\)
−0.834084 + 0.551638i \(0.814003\pi\)
\(308\) 0 0
\(309\) −7.43849e9 −0.815926
\(310\) 0 0
\(311\) 6.60957e9i 0.706531i 0.935523 + 0.353266i \(0.114929\pi\)
−0.935523 + 0.353266i \(0.885071\pi\)
\(312\) 0 0
\(313\) −8.98046e9 −0.935667 −0.467834 0.883817i \(-0.654965\pi\)
−0.467834 + 0.883817i \(0.654965\pi\)
\(314\) 0 0
\(315\) − 1.81369e8i − 0.0184213i
\(316\) 0 0
\(317\) 1.29468e10 1.28211 0.641057 0.767493i \(-0.278496\pi\)
0.641057 + 0.767493i \(0.278496\pi\)
\(318\) 0 0
\(319\) − 6.57546e9i − 0.634985i
\(320\) 0 0
\(321\) −8.22975e9 −0.775115
\(322\) 0 0
\(323\) − 4.88437e9i − 0.448744i
\(324\) 0 0
\(325\) −6.25734e9 −0.560863
\(326\) 0 0
\(327\) − 6.45267e8i − 0.0564350i
\(328\) 0 0
\(329\) −7.34403e8 −0.0626831
\(330\) 0 0
\(331\) − 8.27574e9i − 0.689438i −0.938706 0.344719i \(-0.887974\pi\)
0.938706 0.344719i \(-0.112026\pi\)
\(332\) 0 0
\(333\) −4.94730e9 −0.402339
\(334\) 0 0
\(335\) − 8.26220e8i − 0.0656019i
\(336\) 0 0
\(337\) −1.22715e9 −0.0951436 −0.0475718 0.998868i \(-0.515148\pi\)
−0.0475718 + 0.998868i \(0.515148\pi\)
\(338\) 0 0
\(339\) 4.32650e9i 0.327596i
\(340\) 0 0
\(341\) −2.65467e9 −0.196333
\(342\) 0 0
\(343\) 9.84159e9i 0.711031i
\(344\) 0 0
\(345\) −1.05501e9 −0.0744697
\(346\) 0 0
\(347\) − 1.34897e10i − 0.930429i −0.885198 0.465214i \(-0.845977\pi\)
0.885198 0.465214i \(-0.154023\pi\)
\(348\) 0 0
\(349\) −9.63945e9 −0.649756 −0.324878 0.945756i \(-0.605323\pi\)
−0.324878 + 0.945756i \(0.605323\pi\)
\(350\) 0 0
\(351\) 1.67303e9i 0.110224i
\(352\) 0 0
\(353\) 2.39489e10 1.54237 0.771183 0.636614i \(-0.219666\pi\)
0.771183 + 0.636614i \(0.219666\pi\)
\(354\) 0 0
\(355\) 2.05479e9i 0.129376i
\(356\) 0 0
\(357\) −1.83908e9 −0.113221
\(358\) 0 0
\(359\) − 1.22556e9i − 0.0737831i −0.999319 0.0368915i \(-0.988254\pi\)
0.999319 0.0368915i \(-0.0117456\pi\)
\(360\) 0 0
\(361\) 3.88545e9 0.228777
\(362\) 0 0
\(363\) − 8.77199e9i − 0.505210i
\(364\) 0 0
\(365\) 1.70247e9 0.0959198
\(366\) 0 0
\(367\) − 2.19414e10i − 1.20948i −0.796422 0.604742i \(-0.793276\pi\)
0.796422 0.604742i \(-0.206724\pi\)
\(368\) 0 0
\(369\) 1.90858e9 0.102945
\(370\) 0 0
\(371\) − 9.78299e8i − 0.0516388i
\(372\) 0 0
\(373\) −2.32459e10 −1.20091 −0.600457 0.799657i \(-0.705014\pi\)
−0.600457 + 0.799657i \(0.705014\pi\)
\(374\) 0 0
\(375\) 3.25410e9i 0.164553i
\(376\) 0 0
\(377\) 2.07833e10 1.02884
\(378\) 0 0
\(379\) − 3.77864e10i − 1.83138i −0.401887 0.915689i \(-0.631646\pi\)
0.401887 0.915689i \(-0.368354\pi\)
\(380\) 0 0
\(381\) −1.03700e10 −0.492127
\(382\) 0 0
\(383\) − 3.04157e10i − 1.41352i −0.707452 0.706761i \(-0.750155\pi\)
0.707452 0.706761i \(-0.249845\pi\)
\(384\) 0 0
\(385\) 4.29196e8 0.0195350
\(386\) 0 0
\(387\) − 3.63498e9i − 0.162053i
\(388\) 0 0
\(389\) 1.53539e10 0.670532 0.335266 0.942123i \(-0.391174\pi\)
0.335266 + 0.942123i \(0.391174\pi\)
\(390\) 0 0
\(391\) 1.06978e10i 0.457706i
\(392\) 0 0
\(393\) −1.68665e10 −0.707057
\(394\) 0 0
\(395\) − 4.87434e9i − 0.200229i
\(396\) 0 0
\(397\) 2.10954e10 0.849231 0.424615 0.905374i \(-0.360409\pi\)
0.424615 + 0.905374i \(0.360409\pi\)
\(398\) 0 0
\(399\) 4.93175e9i 0.194585i
\(400\) 0 0
\(401\) 3.89388e10 1.50593 0.752966 0.658059i \(-0.228622\pi\)
0.752966 + 0.658059i \(0.228622\pi\)
\(402\) 0 0
\(403\) − 8.39073e9i − 0.318112i
\(404\) 0 0
\(405\) 4.30467e8 0.0160000
\(406\) 0 0
\(407\) − 1.17074e10i − 0.426661i
\(408\) 0 0
\(409\) −1.41946e10 −0.507258 −0.253629 0.967302i \(-0.581624\pi\)
−0.253629 + 0.967302i \(0.581624\pi\)
\(410\) 0 0
\(411\) − 2.06107e10i − 0.722312i
\(412\) 0 0
\(413\) 2.15364e10 0.740241
\(414\) 0 0
\(415\) − 5.86881e9i − 0.197860i
\(416\) 0 0
\(417\) −2.54517e10 −0.841729
\(418\) 0 0
\(419\) 3.39978e10i 1.10305i 0.834159 + 0.551524i \(0.185953\pi\)
−0.834159 + 0.551524i \(0.814047\pi\)
\(420\) 0 0
\(421\) 1.11314e10 0.354342 0.177171 0.984180i \(-0.443305\pi\)
0.177171 + 0.984180i \(0.443305\pi\)
\(422\) 0 0
\(423\) − 1.74305e9i − 0.0544439i
\(424\) 0 0
\(425\) 1.63254e10 0.500389
\(426\) 0 0
\(427\) − 1.40991e10i − 0.424112i
\(428\) 0 0
\(429\) −3.95909e9 −0.116887
\(430\) 0 0
\(431\) − 4.91968e10i − 1.42570i −0.701318 0.712849i \(-0.747405\pi\)
0.701318 0.712849i \(-0.252595\pi\)
\(432\) 0 0
\(433\) −4.76011e10 −1.35414 −0.677072 0.735916i \(-0.736752\pi\)
−0.677072 + 0.735916i \(0.736752\pi\)
\(434\) 0 0
\(435\) − 5.34751e9i − 0.149346i
\(436\) 0 0
\(437\) 2.86876e10 0.786625
\(438\) 0 0
\(439\) − 1.30610e10i − 0.351657i −0.984421 0.175829i \(-0.943740\pi\)
0.984421 0.175829i \(-0.0562605\pi\)
\(440\) 0 0
\(441\) −1.07507e10 −0.284238
\(442\) 0 0
\(443\) 1.48073e10i 0.384468i 0.981349 + 0.192234i \(0.0615732\pi\)
−0.981349 + 0.192234i \(0.938427\pi\)
\(444\) 0 0
\(445\) −8.08319e9 −0.206131
\(446\) 0 0
\(447\) 2.06116e9i 0.0516276i
\(448\) 0 0
\(449\) 2.97486e9 0.0731949 0.0365975 0.999330i \(-0.488348\pi\)
0.0365975 + 0.999330i \(0.488348\pi\)
\(450\) 0 0
\(451\) 4.51651e9i 0.109168i
\(452\) 0 0
\(453\) 5.23451e9 0.124304
\(454\) 0 0
\(455\) 1.35658e9i 0.0316519i
\(456\) 0 0
\(457\) −3.07215e10 −0.704333 −0.352166 0.935937i \(-0.614555\pi\)
−0.352166 + 0.935937i \(0.614555\pi\)
\(458\) 0 0
\(459\) − 4.36493e9i − 0.0983392i
\(460\) 0 0
\(461\) −8.09097e9 −0.179142 −0.0895709 0.995980i \(-0.528550\pi\)
−0.0895709 + 0.995980i \(0.528550\pi\)
\(462\) 0 0
\(463\) − 4.56191e10i − 0.992711i −0.868119 0.496356i \(-0.834671\pi\)
0.868119 0.496356i \(-0.165329\pi\)
\(464\) 0 0
\(465\) −2.15892e9 −0.0461769
\(466\) 0 0
\(467\) 4.09800e10i 0.861598i 0.902448 + 0.430799i \(0.141768\pi\)
−0.902448 + 0.430799i \(0.858232\pi\)
\(468\) 0 0
\(469\) 8.45913e9 0.174837
\(470\) 0 0
\(471\) 1.35391e10i 0.275109i
\(472\) 0 0
\(473\) 8.60189e9 0.171850
\(474\) 0 0
\(475\) − 4.37788e10i − 0.859983i
\(476\) 0 0
\(477\) 2.32192e9 0.0448513
\(478\) 0 0
\(479\) − 4.58901e10i − 0.871720i −0.900014 0.435860i \(-0.856444\pi\)
0.900014 0.435860i \(-0.143556\pi\)
\(480\) 0 0
\(481\) 3.70041e10 0.691305
\(482\) 0 0
\(483\) − 1.08015e10i − 0.198471i
\(484\) 0 0
\(485\) −6.82004e9 −0.123259
\(486\) 0 0
\(487\) 1.01277e11i 1.80051i 0.435360 + 0.900256i \(0.356621\pi\)
−0.435360 + 0.900256i \(0.643379\pi\)
\(488\) 0 0
\(489\) −1.43540e10 −0.251036
\(490\) 0 0
\(491\) − 8.24892e10i − 1.41929i −0.704559 0.709645i \(-0.748855\pi\)
0.704559 0.709645i \(-0.251145\pi\)
\(492\) 0 0
\(493\) −5.42237e10 −0.917913
\(494\) 0 0
\(495\) 1.01867e9i 0.0169673i
\(496\) 0 0
\(497\) −2.10376e10 −0.344803
\(498\) 0 0
\(499\) 9.46533e10i 1.52663i 0.646026 + 0.763315i \(0.276430\pi\)
−0.646026 + 0.763315i \(0.723570\pi\)
\(500\) 0 0
\(501\) −5.59434e10 −0.887970
\(502\) 0 0
\(503\) 9.80310e10i 1.53141i 0.643192 + 0.765705i \(0.277610\pi\)
−0.643192 + 0.765705i \(0.722390\pi\)
\(504\) 0 0
\(505\) 1.52078e10 0.233831
\(506\) 0 0
\(507\) 2.56343e10i 0.387962i
\(508\) 0 0
\(509\) −1.42476e10 −0.212261 −0.106131 0.994352i \(-0.533846\pi\)
−0.106131 + 0.994352i \(0.533846\pi\)
\(510\) 0 0
\(511\) 1.74305e10i 0.255638i
\(512\) 0 0
\(513\) −1.17052e10 −0.169008
\(514\) 0 0
\(515\) − 1.43154e10i − 0.203504i
\(516\) 0 0
\(517\) 4.12480e9 0.0577352
\(518\) 0 0
\(519\) 3.86324e9i 0.0532454i
\(520\) 0 0
\(521\) 8.85973e10 1.20246 0.601229 0.799077i \(-0.294678\pi\)
0.601229 + 0.799077i \(0.294678\pi\)
\(522\) 0 0
\(523\) − 3.72959e10i − 0.498488i −0.968441 0.249244i \(-0.919818\pi\)
0.968441 0.249244i \(-0.0801821\pi\)
\(524\) 0 0
\(525\) −1.64838e10 −0.216980
\(526\) 0 0
\(527\) 2.18914e10i 0.283812i
\(528\) 0 0
\(529\) 1.54794e10 0.197665
\(530\) 0 0
\(531\) 5.11152e10i 0.642942i
\(532\) 0 0
\(533\) −1.42755e10 −0.176882
\(534\) 0 0
\(535\) − 1.58382e10i − 0.193326i
\(536\) 0 0
\(537\) 5.31346e10 0.638969
\(538\) 0 0
\(539\) − 2.54407e10i − 0.301421i
\(540\) 0 0
\(541\) −8.90331e10 −1.03935 −0.519676 0.854364i \(-0.673947\pi\)
−0.519676 + 0.854364i \(0.673947\pi\)
\(542\) 0 0
\(543\) − 3.83487e10i − 0.441115i
\(544\) 0 0
\(545\) 1.24182e9 0.0140758
\(546\) 0 0
\(547\) 1.11679e11i 1.24745i 0.781645 + 0.623723i \(0.214381\pi\)
−0.781645 + 0.623723i \(0.785619\pi\)
\(548\) 0 0
\(549\) 3.34633e10 0.368366
\(550\) 0 0
\(551\) 1.45408e11i 1.57755i
\(552\) 0 0
\(553\) 4.99051e10 0.533636
\(554\) 0 0
\(555\) − 9.52109e9i − 0.100349i
\(556\) 0 0
\(557\) 1.51601e11 1.57501 0.787503 0.616310i \(-0.211373\pi\)
0.787503 + 0.616310i \(0.211373\pi\)
\(558\) 0 0
\(559\) 2.71884e10i 0.278443i
\(560\) 0 0
\(561\) 1.03293e10 0.104284
\(562\) 0 0
\(563\) 9.17147e10i 0.912863i 0.889759 + 0.456431i \(0.150873\pi\)
−0.889759 + 0.456431i \(0.849127\pi\)
\(564\) 0 0
\(565\) −8.32636e9 −0.0817074
\(566\) 0 0
\(567\) 4.40727e9i 0.0426420i
\(568\) 0 0
\(569\) −7.26500e10 −0.693085 −0.346543 0.938034i \(-0.612644\pi\)
−0.346543 + 0.938034i \(0.612644\pi\)
\(570\) 0 0
\(571\) 6.84484e10i 0.643901i 0.946757 + 0.321950i \(0.104338\pi\)
−0.946757 + 0.321950i \(0.895662\pi\)
\(572\) 0 0
\(573\) −5.84391e10 −0.542107
\(574\) 0 0
\(575\) 9.58846e10i 0.877158i
\(576\) 0 0
\(577\) −1.62814e11 −1.46889 −0.734445 0.678668i \(-0.762557\pi\)
−0.734445 + 0.678668i \(0.762557\pi\)
\(578\) 0 0
\(579\) 9.40896e10i 0.837196i
\(580\) 0 0
\(581\) 6.00869e10 0.527321
\(582\) 0 0
\(583\) 5.49466e9i 0.0475627i
\(584\) 0 0
\(585\) −3.21975e9 −0.0274915
\(586\) 0 0
\(587\) − 3.09698e10i − 0.260847i −0.991458 0.130423i \(-0.958366\pi\)
0.991458 0.130423i \(-0.0416337\pi\)
\(588\) 0 0
\(589\) 5.87048e10 0.487767
\(590\) 0 0
\(591\) − 2.95819e10i − 0.242480i
\(592\) 0 0
\(593\) −1.25721e11 −1.01669 −0.508347 0.861152i \(-0.669743\pi\)
−0.508347 + 0.861152i \(0.669743\pi\)
\(594\) 0 0
\(595\) − 3.53931e9i − 0.0282391i
\(596\) 0 0
\(597\) 6.81437e10 0.536449
\(598\) 0 0
\(599\) 8.69133e10i 0.675117i 0.941305 + 0.337559i \(0.109601\pi\)
−0.941305 + 0.337559i \(0.890399\pi\)
\(600\) 0 0
\(601\) 1.19412e11 0.915269 0.457634 0.889140i \(-0.348697\pi\)
0.457634 + 0.889140i \(0.348697\pi\)
\(602\) 0 0
\(603\) 2.00771e10i 0.151856i
\(604\) 0 0
\(605\) 1.68817e10 0.126007
\(606\) 0 0
\(607\) − 2.21728e11i − 1.63330i −0.577136 0.816648i \(-0.695830\pi\)
0.577136 0.816648i \(-0.304170\pi\)
\(608\) 0 0
\(609\) 5.47497e10 0.398027
\(610\) 0 0
\(611\) 1.30374e10i 0.0935464i
\(612\) 0 0
\(613\) 2.09579e11 1.48425 0.742123 0.670263i \(-0.233819\pi\)
0.742123 + 0.670263i \(0.233819\pi\)
\(614\) 0 0
\(615\) 3.67307e9i 0.0256761i
\(616\) 0 0
\(617\) −1.95007e11 −1.34558 −0.672788 0.739835i \(-0.734904\pi\)
−0.672788 + 0.739835i \(0.734904\pi\)
\(618\) 0 0
\(619\) 1.27224e11i 0.866574i 0.901256 + 0.433287i \(0.142646\pi\)
−0.901256 + 0.433287i \(0.857354\pi\)
\(620\) 0 0
\(621\) 2.56367e10 0.172384
\(622\) 0 0
\(623\) − 8.27585e10i − 0.549364i
\(624\) 0 0
\(625\) 1.43161e11 0.938222
\(626\) 0 0
\(627\) − 2.76994e10i − 0.179226i
\(628\) 0 0
\(629\) −9.65437e10 −0.616767
\(630\) 0 0
\(631\) 2.89620e11i 1.82689i 0.406966 + 0.913443i \(0.366587\pi\)
−0.406966 + 0.913443i \(0.633413\pi\)
\(632\) 0 0
\(633\) 1.67140e10 0.104103
\(634\) 0 0
\(635\) − 1.99570e10i − 0.122744i
\(636\) 0 0
\(637\) 8.04115e10 0.488383
\(638\) 0 0
\(639\) − 4.99314e10i − 0.299481i
\(640\) 0 0
\(641\) 1.34888e11 0.798991 0.399496 0.916735i \(-0.369185\pi\)
0.399496 + 0.916735i \(0.369185\pi\)
\(642\) 0 0
\(643\) 1.40627e11i 0.822670i 0.911484 + 0.411335i \(0.134937\pi\)
−0.911484 + 0.411335i \(0.865063\pi\)
\(644\) 0 0
\(645\) 6.99551e9 0.0404185
\(646\) 0 0
\(647\) − 9.22875e10i − 0.526655i −0.964707 0.263327i \(-0.915180\pi\)
0.964707 0.263327i \(-0.0848199\pi\)
\(648\) 0 0
\(649\) −1.20960e11 −0.681810
\(650\) 0 0
\(651\) − 2.21038e10i − 0.123067i
\(652\) 0 0
\(653\) −1.79607e11 −0.987805 −0.493902 0.869517i \(-0.664430\pi\)
−0.493902 + 0.869517i \(0.664430\pi\)
\(654\) 0 0
\(655\) − 3.24596e10i − 0.176351i
\(656\) 0 0
\(657\) −4.13701e10 −0.222037
\(658\) 0 0
\(659\) 5.95800e10i 0.315907i 0.987447 + 0.157953i \(0.0504896\pi\)
−0.987447 + 0.157953i \(0.949510\pi\)
\(660\) 0 0
\(661\) −3.13906e11 −1.64435 −0.822174 0.569236i \(-0.807239\pi\)
−0.822174 + 0.569236i \(0.807239\pi\)
\(662\) 0 0
\(663\) 3.26482e10i 0.168968i
\(664\) 0 0
\(665\) −9.49116e9 −0.0485325
\(666\) 0 0
\(667\) − 3.18474e11i − 1.60905i
\(668\) 0 0
\(669\) 7.80418e10 0.389603
\(670\) 0 0
\(671\) 7.91884e10i 0.390635i
\(672\) 0 0
\(673\) 5.89957e10 0.287581 0.143791 0.989608i \(-0.454071\pi\)
0.143791 + 0.989608i \(0.454071\pi\)
\(674\) 0 0
\(675\) − 3.91231e10i − 0.188459i
\(676\) 0 0
\(677\) −8.71335e10 −0.414792 −0.207396 0.978257i \(-0.566499\pi\)
−0.207396 + 0.978257i \(0.566499\pi\)
\(678\) 0 0
\(679\) − 6.98259e10i − 0.328502i
\(680\) 0 0
\(681\) 1.56429e11 0.727326
\(682\) 0 0
\(683\) − 4.38375e10i − 0.201448i −0.994914 0.100724i \(-0.967884\pi\)
0.994914 0.100724i \(-0.0321159\pi\)
\(684\) 0 0
\(685\) 3.96653e10 0.180156
\(686\) 0 0
\(687\) 6.66066e10i 0.299013i
\(688\) 0 0
\(689\) −1.73672e10 −0.0770642
\(690\) 0 0
\(691\) − 2.55445e11i − 1.12043i −0.828347 0.560216i \(-0.810718\pi\)
0.828347 0.560216i \(-0.189282\pi\)
\(692\) 0 0
\(693\) −1.04295e10 −0.0452199
\(694\) 0 0
\(695\) − 4.89818e10i − 0.209940i
\(696\) 0 0
\(697\) 3.72448e10 0.157810
\(698\) 0 0
\(699\) − 1.78992e11i − 0.749766i
\(700\) 0 0
\(701\) −4.08255e11 −1.69067 −0.845337 0.534233i \(-0.820600\pi\)
−0.845337 + 0.534233i \(0.820600\pi\)
\(702\) 0 0
\(703\) 2.58895e11i 1.05999i
\(704\) 0 0
\(705\) 3.35451e9 0.0135791
\(706\) 0 0
\(707\) 1.55703e11i 0.623189i
\(708\) 0 0
\(709\) 9.56878e10 0.378679 0.189340 0.981912i \(-0.439365\pi\)
0.189340 + 0.981912i \(0.439365\pi\)
\(710\) 0 0
\(711\) 1.18446e11i 0.463493i
\(712\) 0 0
\(713\) −1.28576e11 −0.497508
\(714\) 0 0
\(715\) − 7.61928e9i − 0.0291534i
\(716\) 0 0
\(717\) 1.66051e11 0.628299
\(718\) 0 0
\(719\) − 3.37132e11i − 1.26149i −0.775990 0.630746i \(-0.782749\pi\)
0.775990 0.630746i \(-0.217251\pi\)
\(720\) 0 0
\(721\) 1.46566e11 0.542365
\(722\) 0 0
\(723\) − 1.15329e11i − 0.422071i
\(724\) 0 0
\(725\) −4.86009e11 −1.75911
\(726\) 0 0
\(727\) − 2.71347e11i − 0.971377i −0.874132 0.485688i \(-0.838569\pi\)
0.874132 0.485688i \(-0.161431\pi\)
\(728\) 0 0
\(729\) −1.04604e10 −0.0370370
\(730\) 0 0
\(731\) − 7.09344e10i − 0.248420i
\(732\) 0 0
\(733\) −3.31640e9 −0.0114882 −0.00574409 0.999984i \(-0.501828\pi\)
−0.00574409 + 0.999984i \(0.501828\pi\)
\(734\) 0 0
\(735\) − 2.06897e10i − 0.0708933i
\(736\) 0 0
\(737\) −4.75110e10 −0.161037
\(738\) 0 0
\(739\) − 3.59220e11i − 1.20443i −0.798333 0.602216i \(-0.794284\pi\)
0.798333 0.602216i \(-0.205716\pi\)
\(740\) 0 0
\(741\) 8.75506e10 0.290393
\(742\) 0 0
\(743\) − 4.22337e11i − 1.38581i −0.721028 0.692906i \(-0.756330\pi\)
0.721028 0.692906i \(-0.243670\pi\)
\(744\) 0 0
\(745\) −3.96671e9 −0.0128767
\(746\) 0 0
\(747\) 1.42612e11i 0.458009i
\(748\) 0 0
\(749\) 1.62157e11 0.515237
\(750\) 0 0
\(751\) − 2.60036e11i − 0.817473i −0.912653 0.408736i \(-0.865970\pi\)
0.912653 0.408736i \(-0.134030\pi\)
\(752\) 0 0
\(753\) −1.17383e11 −0.365110
\(754\) 0 0
\(755\) 1.00738e10i 0.0310032i
\(756\) 0 0
\(757\) 6.09599e11 1.85635 0.928177 0.372140i \(-0.121376\pi\)
0.928177 + 0.372140i \(0.121376\pi\)
\(758\) 0 0
\(759\) 6.06673e10i 0.182805i
\(760\) 0 0
\(761\) −8.45871e10 −0.252212 −0.126106 0.992017i \(-0.540248\pi\)
−0.126106 + 0.992017i \(0.540248\pi\)
\(762\) 0 0
\(763\) 1.27142e10i 0.0375137i
\(764\) 0 0
\(765\) 8.40031e9 0.0245273
\(766\) 0 0
\(767\) − 3.82324e11i − 1.10471i
\(768\) 0 0
\(769\) 6.82479e10 0.195157 0.0975784 0.995228i \(-0.468890\pi\)
0.0975784 + 0.995228i \(0.468890\pi\)
\(770\) 0 0
\(771\) − 1.51628e11i − 0.429104i
\(772\) 0 0
\(773\) 3.06208e10 0.0857627 0.0428813 0.999080i \(-0.486346\pi\)
0.0428813 + 0.999080i \(0.486346\pi\)
\(774\) 0 0
\(775\) 1.96214e11i 0.543904i
\(776\) 0 0
\(777\) 9.74802e10 0.267444
\(778\) 0 0
\(779\) − 9.98772e10i − 0.271217i
\(780\) 0 0
\(781\) 1.18159e11 0.317586
\(782\) 0 0
\(783\) 1.29945e11i 0.345709i
\(784\) 0 0
\(785\) −2.60559e10 −0.0686164
\(786\) 0 0
\(787\) 4.62193e11i 1.20483i 0.798185 + 0.602413i \(0.205794\pi\)
−0.798185 + 0.602413i \(0.794206\pi\)
\(788\) 0 0
\(789\) 3.80253e11 0.981217
\(790\) 0 0
\(791\) − 8.52481e10i − 0.217760i
\(792\) 0 0
\(793\) −2.50294e11 −0.632933
\(794\) 0 0
\(795\) 4.46855e9i 0.0111866i
\(796\) 0 0
\(797\) 3.34741e11 0.829614 0.414807 0.909909i \(-0.363849\pi\)
0.414807 + 0.909909i \(0.363849\pi\)
\(798\) 0 0
\(799\) − 3.40146e10i − 0.0834601i
\(800\) 0 0
\(801\) 1.96421e11 0.477154
\(802\) 0 0
\(803\) − 9.78991e10i − 0.235460i
\(804\) 0 0
\(805\) 2.07876e10 0.0495017
\(806\) 0 0
\(807\) − 3.48322e11i − 0.821271i
\(808\) 0 0
\(809\) −5.80925e11 −1.35621 −0.678104 0.734966i \(-0.737198\pi\)
−0.678104 + 0.734966i \(0.737198\pi\)
\(810\) 0 0
\(811\) − 6.93631e11i − 1.60341i −0.597719 0.801706i \(-0.703926\pi\)
0.597719 0.801706i \(-0.296074\pi\)
\(812\) 0 0
\(813\) −3.46839e9 −0.00793899
\(814\) 0 0
\(815\) − 2.76242e10i − 0.0626123i
\(816\) 0 0
\(817\) −1.90220e11 −0.426942
\(818\) 0 0
\(819\) − 3.29649e10i − 0.0732682i
\(820\) 0 0
\(821\) −7.20568e11 −1.58600 −0.792999 0.609223i \(-0.791481\pi\)
−0.792999 + 0.609223i \(0.791481\pi\)
\(822\) 0 0
\(823\) − 5.20292e11i − 1.13409i −0.823686 0.567046i \(-0.808086\pi\)
0.823686 0.567046i \(-0.191914\pi\)
\(824\) 0 0
\(825\) 9.25818e10 0.199853
\(826\) 0 0
\(827\) 2.76065e11i 0.590187i 0.955468 + 0.295093i \(0.0953508\pi\)
−0.955468 + 0.295093i \(0.904649\pi\)
\(828\) 0 0
\(829\) 5.58542e11 1.18260 0.591300 0.806452i \(-0.298615\pi\)
0.591300 + 0.806452i \(0.298615\pi\)
\(830\) 0 0
\(831\) 9.39206e10i 0.196950i
\(832\) 0 0
\(833\) −2.09793e11 −0.435725
\(834\) 0 0
\(835\) − 1.07663e11i − 0.221473i
\(836\) 0 0
\(837\) 5.24617e10 0.106891
\(838\) 0 0
\(839\) 1.37279e11i 0.277049i 0.990359 + 0.138525i \(0.0442360\pi\)
−0.990359 + 0.138525i \(0.955764\pi\)
\(840\) 0 0
\(841\) 1.11400e12 2.22690
\(842\) 0 0
\(843\) 6.40859e10i 0.126897i
\(844\) 0 0
\(845\) −4.93332e10 −0.0967637
\(846\) 0 0
\(847\) 1.72841e11i 0.335824i
\(848\) 0 0
\(849\) 3.03138e11 0.583457
\(850\) 0 0
\(851\) − 5.67034e11i − 1.08116i
\(852\) 0 0
\(853\) −5.08270e11 −0.960060 −0.480030 0.877252i \(-0.659374\pi\)
−0.480030 + 0.877252i \(0.659374\pi\)
\(854\) 0 0
\(855\) − 2.25266e10i − 0.0421533i
\(856\) 0 0
\(857\) −5.97042e11 −1.10683 −0.553416 0.832905i \(-0.686676\pi\)
−0.553416 + 0.832905i \(0.686676\pi\)
\(858\) 0 0
\(859\) 8.74635e11i 1.60640i 0.595708 + 0.803201i \(0.296872\pi\)
−0.595708 + 0.803201i \(0.703128\pi\)
\(860\) 0 0
\(861\) −3.76061e10 −0.0684299
\(862\) 0 0
\(863\) 8.44217e11i 1.52199i 0.648760 + 0.760993i \(0.275288\pi\)
−0.648760 + 0.760993i \(0.724712\pi\)
\(864\) 0 0
\(865\) −7.43481e9 −0.0132802
\(866\) 0 0
\(867\) 2.41045e11i 0.426601i
\(868\) 0 0
\(869\) −2.80294e11 −0.491513
\(870\) 0 0
\(871\) − 1.50170e11i − 0.260922i
\(872\) 0 0
\(873\) 1.65727e11 0.285323
\(874\) 0 0
\(875\) − 6.41178e10i − 0.109382i
\(876\) 0 0
\(877\) −6.03933e11 −1.02092 −0.510458 0.859903i \(-0.670524\pi\)
−0.510458 + 0.859903i \(0.670524\pi\)
\(878\) 0 0
\(879\) − 5.15917e11i − 0.864220i
\(880\) 0 0
\(881\) 7.65645e11 1.27094 0.635468 0.772127i \(-0.280807\pi\)
0.635468 + 0.772127i \(0.280807\pi\)
\(882\) 0 0
\(883\) − 7.59490e11i − 1.24934i −0.780891 0.624668i \(-0.785234\pi\)
0.780891 0.624668i \(-0.214766\pi\)
\(884\) 0 0
\(885\) −9.83712e10 −0.160360
\(886\) 0 0
\(887\) 2.76654e11i 0.446932i 0.974712 + 0.223466i \(0.0717372\pi\)
−0.974712 + 0.223466i \(0.928263\pi\)
\(888\) 0 0
\(889\) 2.04327e11 0.327128
\(890\) 0 0
\(891\) − 2.47536e10i − 0.0392761i
\(892\) 0 0
\(893\) −9.12150e10 −0.143437
\(894\) 0 0
\(895\) 1.02258e11i 0.159369i
\(896\) 0 0
\(897\) −1.91754e11 −0.296192
\(898\) 0 0
\(899\) − 6.51710e11i − 0.997736i
\(900\) 0 0
\(901\) 4.53110e10 0.0687550
\(902\) 0 0
\(903\) 7.16225e10i 0.107720i
\(904\) 0 0
\(905\) 7.38022e10 0.110021
\(906\) 0 0
\(907\) 1.00823e12i 1.48980i 0.667174 + 0.744902i \(0.267504\pi\)
−0.667174 + 0.744902i \(0.732496\pi\)
\(908\) 0 0
\(909\) −3.69551e11 −0.541276
\(910\) 0 0
\(911\) 1.30302e12i 1.89181i 0.324437 + 0.945907i \(0.394825\pi\)
−0.324437 + 0.945907i \(0.605175\pi\)
\(912\) 0 0
\(913\) −3.37480e11 −0.485697
\(914\) 0 0
\(915\) 6.44002e10i 0.0918761i
\(916\) 0 0
\(917\) 3.32332e11 0.469997
\(918\) 0 0
\(919\) 8.83053e11i 1.23801i 0.785387 + 0.619006i \(0.212464\pi\)
−0.785387 + 0.619006i \(0.787536\pi\)
\(920\) 0 0
\(921\) 4.58313e11 0.636977
\(922\) 0 0
\(923\) 3.73469e11i 0.514574i
\(924\) 0 0
\(925\) −8.65326e11 −1.18199
\(926\) 0 0
\(927\) 3.47864e11i 0.471075i
\(928\) 0 0
\(929\) −6.58431e11 −0.883990 −0.441995 0.897017i \(-0.645729\pi\)
−0.441995 + 0.897017i \(0.645729\pi\)
\(930\) 0 0
\(931\) 5.62590e11i 0.748848i
\(932\) 0 0
\(933\) 3.09099e11 0.407916
\(934\) 0 0
\(935\) 1.98787e10i 0.0260101i
\(936\) 0 0
\(937\) −3.25948e11 −0.422854 −0.211427 0.977394i \(-0.567811\pi\)
−0.211427 + 0.977394i \(0.567811\pi\)
\(938\) 0 0
\(939\) 4.19975e11i 0.540208i
\(940\) 0 0
\(941\) 5.07812e11 0.647656 0.323828 0.946116i \(-0.395030\pi\)
0.323828 + 0.946116i \(0.395030\pi\)
\(942\) 0 0
\(943\) 2.18752e11i 0.276633i
\(944\) 0 0
\(945\) −8.48180e9 −0.0106356
\(946\) 0 0
\(947\) − 1.00994e11i − 0.125573i −0.998027 0.0627867i \(-0.980001\pi\)
0.998027 0.0627867i \(-0.0199988\pi\)
\(948\) 0 0
\(949\) 3.09434e11 0.381507
\(950\) 0 0
\(951\) − 6.05464e11i − 0.740229i
\(952\) 0 0
\(953\) −4.54997e11 −0.551616 −0.275808 0.961213i \(-0.588945\pi\)
−0.275808 + 0.961213i \(0.588945\pi\)
\(954\) 0 0
\(955\) − 1.12466e11i − 0.135210i
\(956\) 0 0
\(957\) −3.07504e11 −0.366609
\(958\) 0 0
\(959\) 4.06107e11i 0.480138i
\(960\) 0 0
\(961\) 5.89780e11 0.691507
\(962\) 0 0
\(963\) 3.84867e11i 0.447513i
\(964\) 0 0
\(965\) −1.81076e11 −0.208810
\(966\) 0 0
\(967\) − 1.62872e12i − 1.86269i −0.364134 0.931346i \(-0.618635\pi\)
0.364134 0.931346i \(-0.381365\pi\)
\(968\) 0 0
\(969\) −2.28419e11 −0.259082
\(970\) 0 0
\(971\) 5.60458e11i 0.630472i 0.949013 + 0.315236i \(0.102084\pi\)
−0.949013 + 0.315236i \(0.897916\pi\)
\(972\) 0 0
\(973\) 5.01492e11 0.559516
\(974\) 0 0
\(975\) 2.92627e11i 0.323814i
\(976\) 0 0
\(977\) −5.16303e11 −0.566665 −0.283332 0.959022i \(-0.591440\pi\)
−0.283332 + 0.959022i \(0.591440\pi\)
\(978\) 0 0
\(979\) 4.64816e11i 0.506000i
\(980\) 0 0
\(981\) −3.01762e10 −0.0325828
\(982\) 0 0
\(983\) − 6.31070e11i − 0.675870i −0.941169 0.337935i \(-0.890272\pi\)
0.941169 0.337935i \(-0.109728\pi\)
\(984\) 0 0
\(985\) 5.69304e10 0.0604782
\(986\) 0 0
\(987\) 3.43446e10i 0.0361901i
\(988\) 0 0
\(989\) 4.16622e11 0.435468
\(990\) 0 0
\(991\) 1.28282e12i 1.33006i 0.746815 + 0.665032i \(0.231582\pi\)
−0.746815 + 0.665032i \(0.768418\pi\)
\(992\) 0 0
\(993\) −3.87018e11 −0.398047
\(994\) 0 0
\(995\) 1.31143e11i 0.133799i
\(996\) 0 0
\(997\) 1.44928e12 1.46680 0.733402 0.679795i \(-0.237931\pi\)
0.733402 + 0.679795i \(0.237931\pi\)
\(998\) 0 0
\(999\) 2.31363e11i 0.232290i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.9.g.b.127.1 2
4.3 odd 2 inner 192.9.g.b.127.2 2
8.3 odd 2 48.9.g.a.31.1 2
8.5 even 2 48.9.g.a.31.2 yes 2
24.5 odd 2 144.9.g.f.127.2 2
24.11 even 2 144.9.g.f.127.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.9.g.a.31.1 2 8.3 odd 2
48.9.g.a.31.2 yes 2 8.5 even 2
144.9.g.f.127.1 2 24.11 even 2
144.9.g.f.127.2 2 24.5 odd 2
192.9.g.b.127.1 2 1.1 even 1 trivial
192.9.g.b.127.2 2 4.3 odd 2 inner