Properties

Label 192.9.g.b
Level $192$
Weight $9$
Character orbit 192.g
Analytic conductor $78.217$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,9,Mod(127,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.127");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 192.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.2166931317\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 27 \beta q^{3} + 90 q^{5} - 532 \beta q^{7} - 2187 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 27 \beta q^{3} + 90 q^{5} - 532 \beta q^{7} - 2187 q^{9} + 2988 \beta q^{11} + 16358 q^{13} + 2430 \beta q^{15} - 42678 q^{17} - 66076 \beta q^{19} + 43092 q^{21} + 144720 \beta q^{23} - 382525 q^{25} - 59049 \beta q^{27} + 1270530 q^{29} + 296148 \beta q^{31} - 242028 q^{33} - 47880 \beta q^{35} + 2262142 q^{37} + 441666 \beta q^{39} - 872694 q^{41} - 959604 \beta q^{43} - 196830 q^{45} - 460152 \beta q^{47} + 4915729 q^{49} - 1152306 \beta q^{51} - 1061694 q^{53} + 268920 \beta q^{55} + 5352156 q^{57} + 13493988 \beta q^{59} - 15301010 q^{61} + 1163484 \beta q^{63} + 1472220 q^{65} + 5300204 \beta q^{67} - 11722320 q^{69} - 13181472 \beta q^{71} + 18916354 q^{73} - 10328175 \beta q^{75} + 4768848 q^{77} + 31268884 \beta q^{79} + 4782969 q^{81} + 37648404 \beta q^{83} - 3841020 q^{85} + 34304310 \beta q^{87} - 89813214 q^{89} - 8702456 \beta q^{91} - 23987988 q^{93} - 5946840 \beta q^{95} - 75778238 q^{97} - 6534756 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 180 q^{5} - 4374 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 180 q^{5} - 4374 q^{9} + 32716 q^{13} - 85356 q^{17} + 86184 q^{21} - 765050 q^{25} + 2541060 q^{29} - 484056 q^{33} + 4524284 q^{37} - 1745388 q^{41} - 393660 q^{45} + 9831458 q^{49} - 2123388 q^{53} + 10704312 q^{57} - 30602020 q^{61} + 2944440 q^{65} - 23444640 q^{69} + 37832708 q^{73} + 9537696 q^{77} + 9565938 q^{81} - 7682040 q^{85} - 179626428 q^{89} - 47975976 q^{93} - 151556476 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
0.500000 0.866025i
0.500000 + 0.866025i
0 46.7654i 0 90.0000 0 921.451i 0 −2187.00 0
127.2 0 46.7654i 0 90.0000 0 921.451i 0 −2187.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.9.g.b 2
4.b odd 2 1 inner 192.9.g.b 2
8.b even 2 1 48.9.g.a 2
8.d odd 2 1 48.9.g.a 2
24.f even 2 1 144.9.g.f 2
24.h odd 2 1 144.9.g.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.9.g.a 2 8.b even 2 1
48.9.g.a 2 8.d odd 2 1
144.9.g.f 2 24.f even 2 1
144.9.g.f 2 24.h odd 2 1
192.9.g.b 2 1.a even 1 1 trivial
192.9.g.b 2 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 90 \) acting on \(S_{9}^{\mathrm{new}}(192, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2187 \) Copy content Toggle raw display
$5$ \( (T - 90)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 849072 \) Copy content Toggle raw display
$11$ \( T^{2} + 26784432 \) Copy content Toggle raw display
$13$ \( (T - 16358)^{2} \) Copy content Toggle raw display
$17$ \( (T + 42678)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 13098113328 \) Copy content Toggle raw display
$23$ \( T^{2} + 62831635200 \) Copy content Toggle raw display
$29$ \( (T - 1270530)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 263110913712 \) Copy content Toggle raw display
$37$ \( (T - 2262142)^{2} \) Copy content Toggle raw display
$41$ \( (T + 872694)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 2762519510448 \) Copy content Toggle raw display
$47$ \( T^{2} + 635219589312 \) Copy content Toggle raw display
$53$ \( (T + 1061694)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 546263136432432 \) Copy content Toggle raw display
$61$ \( (T + 15301010)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 84276487324848 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 521253612260352 \) Copy content Toggle raw display
$73$ \( (T - 18916354)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 29\!\cdots\!68 \) Copy content Toggle raw display
$83$ \( T^{2} + 42\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( (T + 89813214)^{2} \) Copy content Toggle raw display
$97$ \( (T + 75778238)^{2} \) Copy content Toggle raw display
show more
show less